
J
H
E
P
1
2
(
2
0
2
2
)
1
1
0

Published for SISSA by Springer

Received: June 5, 2022
Revised: September 13, 2022
Accepted: December 4, 2022

Published: December 19, 2022

Dynamical Abelianization and anomalies in chiral
gauge theories

Stefano Bolognesi,a,b Kenichi Konishia,b and Andrea Luzioc,b
aDepartment of Physics “E. Fermi”, University of Pisa,
Largo Pontecorvo 3, Ed. C, 56127 Pisa, Italy
bINFN, Sezione di Pisa,
Largo Pontecorvo 3, Ed. C, 56127 Pisa, Italy
cScuola Normale Superiore,
Piazza dei Cavalieri 7, 56127 Pisa, Italy
E-mail: stefano.bolognesi@unipi.it, kenichi.konishi@unipi.it,
andrea.luzio@sns.it

Abstract: We explore the idea that in some class of strongly-coupled chiral SU(N) gauge
theories the infrared dynamics might be characterized by a bifermion condensate in the ad-
joint representation of the color gauge group. As an illustration, in this work we revisit an
SU(N) chiral gauge theory with Weyl fermions in a symmetric (ψ) and anti-antisymmetric
(χ) tensor representations, together with eight fermions in the anti-fundamental repre-
sentations (η), which we called ψχη model in the previous investigations. We study the
infrared dynamics of this system more carefully, by assuming dynamical Abelianization, a
phenomenon familiar from N = 2 supersymmetric gauge theories, and by analyzing the
way various continuous and discrete symmetries are realized at low energies. We submit
then these ideas to a more stringent test, by taking into account some higher-form sym-
metries and the consequent mixed anomalies. A detailed analysis of the mixed anomalies
involving certain 0-form U(1) symmetries and the color-flavor locked 1-form ZN symmetry
in the ψχη system shows that the proposed infrared dynamics is consistent with it.

Keywords: Nonperturbative Effects, Anomalies in Field and String Theories, Effective
Field Theories

ArXiv ePrint: 2206.00538

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2022)110

mailto:stefano.bolognesi@unipi.it
mailto:kenichi.konishi@unipi.it
mailto:andrea.luzio@sns.it
https://arxiv.org/abs/2206.00538
https://doi.org/10.1007/JHEP12(2022)110


J
H
E
P
1
2
(
2
0
2
2
)
1
1
0

Contents

1 Introduction 1

2 ψχη model and its symmetries 2

3 Dynamical Abelianization 4
3.1 ’t Hooft anomaly matching 7
3.2 Nambu-Goldstone (NG) bosons 8
3.3 The low-energy effective action 10

4 The generalized anomalies 13
4.1 Calculation of the mixed anomalies 13
4.2 Observations 16

5 Summary and discussion 19

A Chiral Ward-Takahashi identities and NG bosons 21

1 Introduction

Dynamics of strongly-coupled chiral gauge theories is still largely unknown, after many
years of studies [1]-[14] and in spite of their potential role in constructing the theory of the
fundamental interactions, beyond the standard SU(3)QCD × (SU(2)L × U(1)Y )GWS model
of the strong and electroweak interactions.

In the last few years some renewed efforts to understand better this class of gauge the-
ories have been made [15]-[18], mainly by using the idea of anomaly-matching consistency
requirement, both based on the conventional ’t Hooft anomalies [19], and on the recently
found generalized (e.g., 1-form) symmetries and mixed anomalies [20]-[36]. Also, the im-
portance of the strong anomaly and its implications has been pointed out in the context of
a large class of (generalized Bars-Yankielowicz and Georgi-Glashow) models, recently [37].

In the present work, we start to explore earnestly the idea that in some chiral gauge
theories bifermion condensates in the adjoint representation of the (strong) gauge group
form, and play a central role in determining the infrared physics. A possible consequence
of such a condensate is dynamical Abelianization, a phenomenon familiar from the exact
Seiberg-Witten solution of N = 2 supersymmetric theories [38]- [40], where elementary
adjoint scalar fields are present in the theory whose vacuum expectation values (VEV)
play the crucial role in the dynamics of the theories. In theories of our interest (a class of
non-supersymmetric chiral gauge theories), such an adjoint scalar emerges as a composite
field, but nothing forbids it to acquire dynamically nonvanishing vacuum expectation value
(VEV), breaking either part of color gauge symmetry, part of the flavor symmetry, or both.
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An interesting possibility is that it leads to dynamical Abelianization, i.e., the gauge group
is broken as

SU(N)→ U(1)N−1 , (1.1)

leaving a weakly-coupled, IR free, Abelian theory with a number of massless fermions.
Such a scenario emerged in our previous studies [15, 16] as a way of finding a possible

solution to the anomaly matching equations in the ψχη and in some other models. Let us
note that in many chiral gauge theories as those studied in [15–17] even the conventional
’t Hooft anomaly matching requirement represents a highly nontrivial constraint on the
possible infrared dynamics, in general not easy to satisfy.

In this work we revisit the physics of the ψχη model more carefully, assuming dy-
namical Abelianization and reviewing the massless degrees of freedom, consistent with the
conventional ’t Hooft anomaly argument. The structure of the low-energy effective action
is studied, by taking into account all the anomalous and nonanomalous symmetries as
well as the effects of the strong anomalies. We then examine the generalized symmetries
and the consequent, mixed anomalies involving some 0-form U(1) symmetries and 1-form
color-flavor locked center ZN symmetry. Nontrivial anomalies found indicate that there
is an obstruction in gauging simultaneously one of the 0-form U(1) symmetries together
with the center ZN symmetry (generalized ’t Hooft anomalies), implying that some of the
symmetries involved must be broken. The pattern of the symmetry breaking predicted by
the assumption of dynamical Abelianization is found to fit nicely with these expectations.

2 ψχη model and its symmetries

The ψχη model was studied earlier in [5, 6, 12] and more recently in [15, 16]. It is an
SU(N) gauge theory with left-handed fermion matter fields

ψ{ij} , χ[ij] , ηAi , A = 1, 2, . . . 8 , (2.1)

a symmetric tensor, an anti-antisymmetric tensor and eight anti-fundamental multiplets of
SU(N), or

⊕

¯

⊕ 8× ¯
. (2.2)

The model has a global SU(8) symmetry. It is asymptotically free, the first coefficient of
the beta function being,

b0 = 1
3 [11N − (N + 2)− (N − 2)− 8] = 9N − 8

3 . (2.3)

Such a β function suggests that it is a very strongly coupled theory in the infrared: it is
unlikely that it flows into an infrared-fixed CFT. But then some very nontrivial dynamical
phenomenon must take place towards the infrared: confinement, tumbling (dynamical
gauge symmetry breaking), or something else. The option that the system confines, with
no global symmetry breaking and with some massless “baryons” saturating the ’t Hooft
anomalies, does not appear to be plausible [5, 6, 12], as it would require an order ∝ N of
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the underlying fermions to form gauge-invariant baryons. The wish to understand what
happens in the (after all, simple) systems such as the ψχη model, was the driving motivation
for the renewed studies on this model [15, 16]. Several possible dynamical scenarios have
been found which are all compatible with ’t Hooft’s anomaly matching conditions, but the
results of the analysis remained not quite conclusive.

The system has three U(1) symmetries, U(1)ψ, U(1)χ, U(1)η, of which two combina-
tions are anomaly-free. For convenience we will take them below as

Ũ(1) : ψ → e2iαψ , χ→ e−2iαχ , η → e−iαη , (2.4)

and
U(1)ψχ : ψ → ei

N−2
N∗ βψ , χ→ e−i

N+2
N∗ βχ , η → η , (2.5)

where
N∗ = GCD(N + 2, N − 2) and α, β ∈ (0, 2π) . (2.6)

Any combination of the three classical U(1) symmetries which cannot be expressed as a
linear combination of the above two, suffers from the strong anomaly. As is well known,
the consideration of such an anomalous symmetry also provides us with an important
information about the infrared physics. The famous UA(1) problem and its solution [44]–
[50] are an example of this. For related considerations in the context of chiral gauge
theories, see [4, 37]. For the present model, we will take

U(1)an : ψ → eiδψ , χ→ e−iδχ , η → η . (2.7)

A nonvanishing instanton amplitude

〈ψψ . . . ψ︸ ︷︷ ︸
N+2

χχ . . . χ︸ ︷︷ ︸
N−2

η . . . η︸ ︷︷ ︸
8

〉 6= 0 (2.8)

involving N + 2 ψ’s, N − 2 χ’s and 8 η’s, is indeed not invariant under U(1)an while it is
invariant under (2.4) and (2.5).

There are also anomaly-free discrete subgroups (ZN+2)ψ×(ZN−2)χ×(Z8)η of U(1)ψ×
U(1)χ ×U(1)η. Under these Z’s the fields transform as

ψ → e2πi k
N+2ψ , k = 1, 2, . . . , N + 2 ,

χ→ e−2πi `
N−2χ , ` = 1, 2, . . . , N − 2 ,

η → e−2πim8 η , m = 1, 2, . . . 8 , (2.9)

which are not broken by the instantons. However, they are not independent. It turns out,
in fact, that (ZN+2)ψ×(ZN−2)χ×(Z8)η is entirely contained inside SU(8)×Ũ(1)×U(1)ψχ,
as is easy to check. The global symmetry group is connected.

Furthermore, Ũ(1)×U(1)ψχ and (Z8)η ⊂ SU(8) has an intersection:1(
Ũ(1)×U(1)ψχ

)
∩ (Z8)η = Z8/N∗ . (2.10)

1This can be understood in a simple way. For eiα ∈ Ũ(1) and eiβ ∈ U(1)ψχ, the composition of the two
transformations acts only on η if and only if 2α+ (N−2)

N∗ β = 2πZ and −2α− (N+2)
N∗ β = 2πZ. Combining the

two equations one obtains 8
N∗α = 2πZ (here we use that (N+2)

N∗ A − (N−2)
N∗ B = 1 has integer solutions for

A and B, as (N − 2)/N∗ and (N + 2)/N∗ are co-primes). Thus η → e2πiN
∗

8 kη, which, for k = 1, . . . , 8/N∗

forms the Z8/N∗ subgroup of (Z8)η ⊂ SU(8).
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This leads to the symmetry of the ψχη model:

G = SU(N)×U(1)ψχ × Ũ(1)× SU(8)
ZN ×Z8/N∗

. (2.11)

The division by ZN is due to the fact that the color ZN center is shared by a subgroup
of the flavor U(1) groups. To see this, it is sufficient to choose the angles α = 2πk

N ,
k ∈ ZN , in (2.4); it indeed reduces to the center ZN ⊂ SU(N) transformations of the
matter fermions,

ψ → e2· 2πi
N ψ , χ→ e−2· 2πi

N χ , η → e−
2πi
N η . (2.12)

3 Dynamical Abelianization

The aim of this work is to study the consistency of the assumption that bifermion conden-
sates in the adjoint representation

〈ψikχkj〉 = Λ3


c1

. . .
cN


i

j

, 〈ψijηAj 〉 = 0 , (3.1)

cn ∈ C ,
∑
n

cn = 0 , cm − cn 6= 0 , m 6= n , (3.2)

(with no other particular relations among cj ’s) form in the infrared, inducing dynamical
Abelianization of the system.

The condition of dynamical Abelianization must be made more precise. We require
that the condensate (3.1), (3.2) induce the symmetry breaking

SU(N)→ U(1)N−1 . (3.3)

As the effective composite scalar fields φ ∼ ψχ are in the adjoint representation, it is
convenient to describe them as a linear combination,

φ ∼ ψχ = φATA = φ(α)Eα + φ(−α)E−α + φ(i)H i , (3.4)

where φA are complex fields and TA are the Hermitian generators of SU(N) in the funda-
mental representation (A = 1, 2, . . . , N2−1). In (3.4) we have introduced the SU(N) gener-
ators in the Cartan-Weyl basis. E±α are the raising and lowering operators associated with
positive root vectors, α; H i (i = 1, 2, . . . N−1) are the generators in the Cartan subalgebra.

A field in the adjoint representation transforms under SU(N) as

φ→ U φU † , U = eiβ
ATA , (3.5)

i.e., as
φ→ φ+ iβA[TA, φ] + . . . . (3.6)
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We recall also that the diagonal generators TA = H i are those in the Cartan subalgebra,
whereas the nondiagonal ones correspond to the pairs,

TA = 1√
2α2

(Eα + E−α) , −i√
2α2

(Eα − E−α) . (3.7)

H i’s commute with each other, and the rest of the SU(N) algebra is of the form:

[H i, Eα] = αiEα , [Eα, E−α] = α ·H =
∑
i

αiH
i ,

[Eα, Eβ ] =

Nα+βEα+β , if α+ β is a root vector ,
0 , otherwise.

(3.8)

The condition of dynamical Abelianization, (3.3), is clearly that the fields that condense
are in the Cartan subalgebra,

φ ∼ ψχ = φ(i)H i , 〈φi〉 6= 0 , ∀i , (3.9)

whereas
〈φ(α)〉 = 〈φ(−α)〉 = 0 , ∀α . (3.10)

See below, section 3.2, for more about the associated (would-be) NG bosons.
The gauge and flavor symmetries are reduced as:

SU(N)c × SU(8)f × Ũ(1)×U(1)ψχ −→
N−1∏
`=1

U(1)` × SU(8)f × Ũ(1) , (3.11)

where Ũ(1) is given in (2.4), with charges

ψ : 2 , χ : −2 , η : −1 . (3.12)

The unbroken gauge group ∏N−1
`=1 U(1)` is generated by the Cartan subalgebra,

t1 = 1
2



1
−1

0
. . .

0


, t2 = 1

2
√

3



1
1
−2

. . .
0


,

· · · , tN−1 = 1√
2N(N − 1)



1
1
. . .

1
−(N − 1)


. (3.13)
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By taking into account also the full global structure of the groups, the symmetry breaking
pattern due to the (3.1) condensate is actually

SU(N)× SU(8)f × Ũ(1)×U(1)ψχ
ZN ×Z8/N∗

−→
∏N−1
`=1 U(1)` × SU(8)f × Ũ(1)∏N−1

`=1 Z` ×ZN ×Z2
, (3.14)

where
ZN = U(1)N−1 ∩ Ũ(1) = SU(N) ∩ Ũ(1) . (3.15)

U(1)N−1 is generated by tN−1 in (3.13).2
The condensate (3.1) leaves unbroken a discrete subgroup Z4/N∗ ⊂ U(1)ψχ:

Z4/N∗ : ψ → ei
N−2
N∗ αψ ; χ→ e−i

N+2
N∗ αχ , (3.16)

so that
ψχ→ e−i

4
N∗ αψχ , (3.17)

with
α = 2πkN

∗

4 , k = 1, 2, . . . 4
N∗

. (3.18)

Note that 4/N∗ is always an integer, as N∗ = GCD(N+2, N−2) can be only one of 1, 2, 4.
We however note that Z4/N∗ is a subgroup of SU(8) × Ũ(1).3 Thus the global unbroken
symmetry group in (3.14) is still connected.

Another discrete symmetry which remains unbroken by the condensate is ZN∗ ,

ZN∗ : ψ → e2πi p
N∗ ψ , χ→ e−2πi p

N∗ χ , (3.19)

(p = 1, . . . , N∗). This is a subgroup4 of the nonanomalous, discrete (ZN+2)ψ × (ZN−2)χ
symmetries, both of which are broken by the condensate. ZN∗ is also a subgroup of
nonanomalous, unbroken continuous SU(8)× Ũ(1).5

The pattern of the gauge symmetry breaking is somewhat reminiscent of what happens
in the N = 2 supersymmetric gauge theories. Indeed the massive spectrum will contain ’t
Hooft-Polyakov magnetic monopoles, as well as the massive SU(N)/U(1)N−1 gauge bosons.
Note however that these monopoles are not in a semiclassical regime. The coupling constant
at the scale of symmetry breaking is not small but of order one, g2 ∼ 1. Thus the monopole
size and its Compton length are comparable; it is a soliton in a highly quantum regime.
Our system is analogous to the N = 2 supersymmetric gauge theories in the so-called quark
vacua, where the bare quark mass is cancelled by the adjoint field VEV. In the absence
of the moduli space of vacua here it is reasonable to assume that our low-energy system
describes the photons of the electric ∏N−1

`=1 U(1)` theory. Our system is analogous to the
2By choosing α`−1 = α` = 2πκ

`
, it is easily seen that Z` = U(1)` ∩U(1)`−1. Also Z2 = Ũ(1) ∩ SU(8).

3To see this, note first that SU(8) × Ũ(1) contains a discrete subgroup Z4 acting on ψ and χ by
phases ±2πk/4, k = 1, . . . , 4. Depending on N , Z4/N∗ of (3.17) can be seen to be 1, Z2 or Z4, always in
Z4 ⊂ SU(8)× Ũ(1).

4Just take k = pN+2
N∗ and ` = pN−2

N∗ in (2.9).
5This can be seen by taking ei

2πp
2N∗ ∈ Ũ(1) and e2πi p

2N∗ ∈ Z8 ⊂ SU(8).
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fields SU(8) Ũ(1)
UV ψ N(N+1)

2 · (·) N(N+1)
2 · (2)

χ N(N−1)
2 · (·) N(N−1)

2 · (−2)
ηA N · 8N · (−1)

IR ψii N · (·) N · (2)
ηA N · 8N · (−1)

Table 1. Full dynamical Abelianization in the ψχη model.

N = 2 Seiberg-Witten theories outside the so-called marginal stability curves,6 though
perhaps not far from one.

3.1 ’t Hooft anomaly matching

The fields ηAi which do not participate in the condensate remain massless and weakly cou-
pled to the gauge bosons from the Cartan subalgebra which we will refer to as the photons,
in the infrared. Also, some of the fermions ψij do not participate in the condensates. Due
to the fact that ψ{ij} are symmetric whereas χ[ij] are antisymmetric, actually only the non-
diagonal elements of ψ{ij} condense and get mass. The diagonal fields ψ{ii}, i = 1, 2, . . . , N ,
together with all of ηai remain massless. Also there is one physical NG boson (see section 3.2
below). All of the anomaly triangles, [SU(8)]3, Ũ(1)− [SU(8)]2, [Ũ(1)]3, Ũ(1)− [gravity]2,
ZN∗− [SU(8)]2, ZN∗− [gravity]2 are easily seen to match, on inspection of table 1. Perhaps
the only nontrivial ones are the ones that do not involve SU(8). For Ũ(1)−[gravity]2 we have

2 · N(N + 1)
2 − 2 · N(N − 1)

2 − 8 ·N︸ ︷︷ ︸
UV

= 2 ·N − 8N︸ ︷︷ ︸
IR

= −6N , (3.20)

for [Ũ(1)]3 we have

8 · N(N + 1)
2 − 8 · N(N − 1)

2 − 8 ·N︸ ︷︷ ︸
UV

= 8 ·N − 8N︸ ︷︷ ︸
IR

= 0 , (3.21)

for ZN∗ − [gravity]2 we have

1 · N(N + 1)
2 − 1 · N(N − 1)

2︸ ︷︷ ︸
UV

= 1 ·N︸ ︷︷ ︸
IR

= N . (3.22)

The massless fermions in the infrared are shown again in table 2, where their quantum
numbers with respect to the weak ∏N−1

`=1 U(1)` ⊂ SU(N) are also shown.
6Due to the phenomenon of isomonodromy the spectrum of the stable particles of the system changes

when crossing some subspace of the vacuum moduli space. The phenomenon has been studied in detail for
SU(2) Seiberg-Witten theory [41]-[43].
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fields U(1)1 U(1)2 · · · U(1)N−1 SU(8) Ũ(1) U(1)an

ψ ψ11 1 1√
3 · · · 2√

2N(N−1)
(·) 2 1

ψ22 −1 1√
3 · · · 2√

2N(N−1)
(·) 2 1

ψ33 0 − 2√
3 · · · 2√

2N(N−1)
(·) 2 1

...
...

...
...

...
ψNN 0 0 · · · − 2(N−1)√

2N(N−1)
(·) 2 1

η ηa1 −1
2 − 1

2
√

3 · · · − 1√
2N(N−1)

−1 0

ηa2
1
2 − 1

2
√

3 · · · − 1√
2N(N−1)

−1 0

ηa3 0 1√
3 · · · − 1√

2N(N−1)
−1 0

...
...

...
...

ηaN 0 0 · · · N−1√
2N(N−1)

−1 0

π φ̃ ∼ (ψχ)1
1 0 0 · · · 0 (·) 0 0

Table 2. Massless fermions in the infrared in the ψχη model and their charges with respect to
the unbroken symmetry groups. The massless NG boson carries no charges with respect to the
unbroken symmetries, see section 3.2. The two (nonanomalous and anomalous) U(1) symmetries
Ũ(1) and U(1)an which are not affected by the ψχ condensate are defined in (2.7). u(1)N−1 ⊂ su(N)
are taken in Cartan subalgebra, satisfying the orthogonality relations, Tr(T aT b) ∝ δab.

3.2 Nambu-Goldstone (NG) bosons

Discussion of the infrared physics implied by the dynamical Abelianization requires also
understanding of the massless bosonic degrees of freedom, besides the fermions in table 2.
As will be seen below, there is one physical massless U(1) NG boson in this system.

Before discussing the U(1) NG boson, however, let us briefly comment on the SU(N)
gauge symmetry breaking, discussed in section 3. The diagonal generators in Cartan sub-
algebra H i correspond to the unbroken U(1)N−1 Abelian group, whereas the broken gen-
erators of SU(N)/U(1)N−1 are the nondiagonal Eα and E−α’s. Recalling the commutation
relations (3.8), it is easy to see the NG boson (interpolating) fields φ̃ which get trans-
formed into the ones which condense, see (A.1)–(A.4), are φ(α), φ(−α) of (3.4). They are
just the nondiagonal N(N − 1)/2 · 2 = N2 − N components of (ψχ)ij composite scalars.
The would-be NG bosons πα associated with the currents Jαµ , J−αµ ,

〈0|Jαµ |πβ〉 = Fπδ
αβ , 〈πβ |φ−α(0)|0〉 ∝ δαβ , (3.23)

are eaten by the Englert-Brout-Higgs mechanism making the SU(N)/U(1)N−1 gauge bosons
massive.

Let us now focus our attention on the U(1) NG boson. As noted already, there are three
U(1) symmetries in the model, the two nonanomalous ones Ũ(1) and U(1)ψχ in (2.4), (2.5)
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and an anomalous U(1)an in (2.7). The associated currents are

Jµψχ = i

{
N − 2
N∗

ψ̄σ̄µψ − N + 2
N∗

χ̄σ̄µχ

}
, ∂µJ

µ
ψχ = 0 , (3.24)

J̃µ = i
{

2 ψ̄σ̄µψ − 2 χ̄σ̄µχ− η̄aσ̄µηa
}
, ∂µJ̃

µ = 0 , (3.25)

Jµan = iψ̄σ̄µψ − iχ̄σ̄µχ , ∂µ J
µ
an = 2g2

32π2GµνG̃
µν , (3.26)

and the associated charges are7

Qψχ =
∫
d3x

(
N − 2
N∗

ψ̄ψ − N + 2
N∗

χ̄χ

)
,

Q̃ =
∫
d3x

(
2 ψ̄ψ − 2 χ̄χ− η̄aηa

)
,

Qan =
∫
d3x (ψ̄ψ − χ̄χ) . (3.27)

It follows from the standard quantization rule that ((ψχ)nm ≡ ψnkχkm)

[Qψχ, (ψχ)nm] = 4
N∗

(ψχ)nm ,

[Q̃, (ψχ)nm] = (2− 2)(ψχ)nm = 0 ,

[Qan, (ψχ)nm] = 0 . (3.28)

It is seen from these that the condensates (3.1), (3.2) (i.e., the diagonal 〈(ψχ)nn〉) break
spontaneously only the nonanomalous U(1)ψχ symmetry. Both Ũ(1) and U(1)an remain
unbroken. There is only one massless (physical) NG boson in the system.

Also, it is seen easily that among the diagonal (ψχ)nn’s there is only one independent
component, which can be taken e.g.,

U(x) = (ψχ)1
1(x) , (3.29)

that is transformed into a field which acquires a nonvanishing VEV.8 A simple chiral Ward-
Takahashi identity (see appendix A) then shows that Jµψχ generates from the vacuum the
massless boson, which can be described by the interpolating field, U(x) = (ψχ)1

1(x).
It is instructive to compare the situation here with the fate of the U(1) symmetries

in QCD. In QCD, the bifermion condensate is of the form, ψ̄RψL. It is invariant under
U(1)V and noninvariant under U(1)A. By appropriately choosing the phases of ψL and ψR
the condensate 〈ψ̄RψL〉 can be chosen to be real; the (would-be) NG boson of the broken
U(1)A symmetry then corresponds to the imaginary part of ψ̄RψL. Due to the effects of
the strong anomaly, this would-be NG boson gets mass.

Here the condensate 〈ψχ〉 is invariant under the Ũ(1) as well as under the anoma-
lous U(1)an. Only the nonanomalous U(1)ψχ is broken by the condensate: the quantum
fluctuations of (ψχ)1

1(x) contain one physical, massless NG boson, π.
7Note that in the two-component spinor notation of Wess and Bagger, σ̄0 = −i , and ψ̄ ≡ ψ†.
8This can be seen by considering the linear combinations such as c2(ψχ)1

1− c1(ψχ)2
2, c3(ψχ)2

2− c2(ψχ)3
3,

etc., whose VEV’s all vanish.
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3.3 The low-energy effective action

The massless degrees of freedom in the infrared are thus the gauge bosons Akµ (the photons)
of the U(1)N−1 gauge group, the fermions listed in table 2 and the “pion”, π. The effective
low-energy Lagrangian has the form,

L(eff) = L(ψ, η,A(i)
µ ) + L(π)− V(π, ψ, η) + . . . , (3.30)

where ψ, η are the fermions in table 2. L(ψ, η,Aµ) is the Lagrangian of the U(1)N−1

theory with “electrons” ψ, η, minimally coupled to the U(1)N−1 gauge fields. L(π) is the
Lagrangian containing only the pion. Our task now is to learn about L(eff) of (3.30) as
much as we can from symmetries, either broken, unbroken, anomalous or non anomalous.

In particular, upon condensation the composite scalar field ψχ can be written as

U(x) = (ψχ)1
1(x) = const.Λ3 eiπ(x)/F (3.31)

where F is the analogue of the pion decay constant. L(π) contains the kinetic term

L(π) = ∂µU(x)†∂µU(x) + . . . , (3.32)

with possible higher order terms.
Let us recapitulate the symmetries and their low-energy realizations

SU(N)× SU(8)f × Ũ(1)×U(1)ψχ
ZN ×Z8/N∗

−→
∏N−1
`=1 U(1)` × SU(8)f × Ũ(1)∏N−1

`=1 Z` ×ZN ×Z2
. (3.33)

A possible local interaction Lagrangian, consistent with the symmetries of the sys-
tem, (3.33), is

V(π, ψ, η)(x) ∼ U(x)N−2 ψ · · ·ψ︸ ︷︷ ︸
4

η η · · · η︸ ︷︷ ︸
8

+h.c. = const. ππ . . . π ψ · · ·ψ︸ ︷︷ ︸
4

η η · · · η︸ ︷︷ ︸
8

+h.c. ,

(3.34)
with any number of pions, four ψ’s and eight η’s. It is invariant under the full UV sym-
metries SU(N)c × SU(8)f × Ũ(1) × U(1)ψχ, and a fortiori with the unbroken symmetries∏N−1
`=1 U(1)` × SU(8)f × Ũ(1) as well as some discrete symmetries (see below), surviving in

the infrared. Such a Lagrangian is not invariant under the anomalous U(1)an.
The structure of (3.34) may be understood from the original multi-fermion ’t Hooft

effective instanton potential, e.g.,

εa1a2...a8 (ψχ)ij(ψχ)jk . . . (ψχ)pi︸ ︷︷ ︸
N−2

(ψηa1ηa2) . . . (ψηa7ηa8)︸ ︷︷ ︸
4

, (3.35)

where a possible (certainly not unique) way to contract the color SU(N) and the flavor
SU(8) indices in an invariant way is shown. The idea is to realize these symmetry properties
in terms of the infrared degrees of freedom. In particular, by replacing the condensate ψχ
with a slowly varying fields U(x) of (3.31), one arrives at (3.34).

– 10 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
0

The Yukawa interactions among π, ψ, η are forbidden by the unbroken symmetries, see
table 2. The only possible interactions among them are those arising from the instanton-
induced amplitude such as (3.34).

The ψχη system has three global U(1) symmetries. Ũ(1) symmetry is nonanoma-
lous and remains unbroken. It is a manifest symmetry of the low-energy effective action.
The consequences of the nonanomalous but spontaneously broken U(1)ψχ symmetry and
anomalous but not-spontaneously-broken symmetry U(1)an are a little subtler.

U(1)ψχ is spontaneously broken by the ψχ condensate. It is a nonanomalous symmetry
in the UV: the fermion charges are such that the U(1)ψχ anomalies due to the SU(N)
gauge interactions cancel. In the IR it is spontaneously broken by the ψχ condensate, a
NG boson (π) is produced by the current from the vacuum, and at the same time SU(N)
is dynamically broken to ∏` U(1)`.

Now there seems to be a paradox. In the underlying (UV) theory the global U(1)ψχ
symmetry acts on the fermions as:

ψ → ei
N−2
N∗ βψ , χ→ e−i

N+2
N∗ βχ , η → η . (3.36)

The ’t Hooft effective instanton potential (3.35) is indeed invariant under this. It is impor-
tant to note however that such an invariance is not invalidated by the SU(N) anomalies as
the contributions from the ψ and χ fermions cancel, see (3.24).

Now in the infrared, it is spontaneously broken and U(1)ψχ symmetry is realized par-
tially nonlinearly, as

π(x)→ π(x)− 4F
N∗

β , U(x)→ e−
4iβ
N∗ U(x) , (3.37)

see (3.31) and (3.36). If we assume that the fermions remaining massless in the infrared,
see table 2, in particular ψii, i = 1, 2, . . . , N , transform under U(1)ψχ as in (3.36):

ψii → ei
N−2
N∗ βψii , (3.38)

the effective potential in the infrared, the first term of (3.34), is indeed invariant. This shows
that U(1)ψχ symmetry is realized partially nonlinearly (3.37) and partially linearly (3.38)
at low energies.

But now the anomaly due to the ψii loops,

∆Leff = N − 2
N∗

β
1

16π2

N−1∑
j=1

e2
j F

(j)
µν F̃

(j)µν (3.39)

cannot be cancelled, as there are no other massless fermions left in the infrared theory.
Clearly such an argument is too naïve, and neglects the fact that the U(1)ψχ symmetry

in the infrared does not only involve the massless fermion, but also the pion, transforming
inhomogeneously as in (3.37). The answer to this apparent puzzle is that the low-energy
effective Lagrangian (3.30) actually contains an axion-like term

L(π,A(i)
µ ) = π(x) N − 2

4F
1

16π2

N−1∑
j=1

e2
j F

(j)
µν F̃

(j)µν (3.40)
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qµ ·

Jµψχ

Aσ`Aρ`

=

ψii

ψii

ψii

Aρ` Aσ`

+

π

Aσ`Aρ`

= 0

Figure 1. In UV, the absence of the gauge anomaly in the U(1)ψχ symmetry is due to the
cancellation of anomalies from the ψ and χ fermions (see (3.24)). At low energies it is secured by
the cancellation between the contribution of the ψii loops (i = 1, 2, . . . , N − 1) and the pion pole
term. The requirement that the sum of the two cancel, is nothing but the π → A`A` amplitude
given by (3.40).

which transforms under (3.37) as

∆L(π,A(i)
µ ) = −N − 2

N∗
β

1
16π2

N−1∑
j=1

e2
j F

(j)
µν F̃

(j)µν (3.41)

cancelling exactly the anomaly due to the ψii loops, (3.39), ensuring the U(1)ψχ invariance
of the system.

The conclusion is that the effective low-energy Lagrangian contains an axion-like
term, (3.40), besides the standard terms, explicit in (3.34). Another, equivalent way to
reach the same conclusion is to consider various three-point functions,∫

d4x eiq·x〈0|T{Jµψχ(x)Aν` (y)Aλ` (0)}|0〉 , ` = 1, 2, . . . , N − 1 , (3.42)

multiplying it by qµ and taking the limit qµ → 0. See figure 1
Let us now consider the anomalous, but unbroken U(1)an symmetry. As we noted

already L(eff) is not invariant under it. The effect of the U(1)an anomaly however is not
exhausted in the explicit breaking of U(1)an symmetry in V(x). As the U(1)an charge of
the low-energy, massless fermions is well defined, see (3.26) and table 2, it manifests itself
also through the massless ψ fermion loops,

Jµan = i
N∑
i=1

ψ̄iiσ̄
µψii , ∂µJ

µ
an = 1

16π2

N−1∑
j=1

e2
j F

(j)
µν F̃

(j)µν . (3.43)

Such an anomaly has a natural interpretation as a remnant of the original strong
anomaly (3.26) in the UV theory. The original strong anomaly divergence equation has
turned into the anomalous divergences due to the weak U(1)N−1 gauge interactions of the
low-energy theory.

To summarize, the symmetry realization pattern of various U(1) symmetries in the
ψχη model is subtly different from the one in QCD (the U(1)A problem and the massive
η meson) [44]–[50], in QCD with the electromagnetic interactions (π0 → 2γ decay through
the ABJ anomaly), or in QCD with Peccei-Quinn symmetry [51–53] (with an extra scalar
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or heavy quarks, giving rise to the axion and its coupling to the topological density of
QCD), even though, here and there, we see some analogous features.

4 The generalized anomalies

The assumption of dynamical Abelianization and its possible consequences studied in sec-
tion 3 are certainly consistent with the conventional ’t Hooft anomaly matching require-
ment, as reviewed above. We now check such physics scenario in the ψχη model, against
more stringent consistency requirements arising from the mixed anomalies involving some
higher symmetries. Let us recapitulate the symmetry of the system,

SU(N)× Ũ(1)×U(1)ψχ × SU(8)
ZN ×Z8/N∗

, (4.1)

where

U(1)ψχ : ψ → ei
N−2
N∗ βψ , χ→ e−i

N+2
N∗ βχ ,

Ũ(1) : ψ → e2iγ ψ , χ→ e−2iγ χ , η → e−iγ η , (4.2)

and

Z8/N∗ = SU(8) ∩ (Ũ(1)×U(1)ψχ) ,
ZN = SU(N) ∩ Ũ(1) . (4.3)

We wish now to find out if new, stronger consistency conditions on the realization of these
symmetries arise by making full use of the global structure of the symmetry group, eq. (4.1),
i.e., by gauging some 1-form center symmetries, such as ZN and/or Z8/N∗ . To do so,
however, it is necessary to make use of symmetries which are not broken by the color SU(N)
or the weak SU(8) gauge interactions, including the nonperturbative effects (instantons).
Gauging the 1-form Z8/N∗ symmetry involves necessarily gauging the Ũ(1) symmetry,
which is already broken by the SU(8) instantons, see eq. (4.2). It would not be a simple
task to disentangle the effects of the new anomalies due to the gauging of a discrete center
symmetry, from the conventional anomalies due to the SU(8) instantons. Such a precaution
appears to be relevant, because we are here interested in possible new mixed anomalies on
continuous symmetries Ũ(1) and U(1)ψχ or on some of their discrete subgroups.

These considerations lead us to preclude the idea of gauging the 1-form Z8/N∗ symme-
try, and below we shall focus on the color-flavor locked 1-form ZN center symmetry, gauge
it in conjunction with some 0-form U(1) symmetries of the model, and examine whether
such a simultaneous gauging would suffer from some topological obstructions (generalized
’t Hooft anomalies).

4.1 Calculation of the mixed anomalies

The global structure of the symmetry of the gauge groups reproduced in (4.1) ∼ (4.3)
means that it should be possible to introduce a more faithful way the redundancies in the
summation over the gauge field configurations are eliminated. In our context, this brings

– 13 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
0

us to consider effectively a projective SU(N)/ZN group as the strong gauge group, and
with its 2-form B

(2)
c fields carrying a fractional ’t Hooft fluxes

1
8π2

∫
Σ4

(B(2)
c )2 ∈ Z

N2 . (4.4)

The way this is done concretely has been explained in [20]-[36], by introducing the 1-form
ZN gauge field, and imposing the condition (4.5) for a ZN gauge field. As our ZN center
symmetry is a color-flavor locked symmetry, to render it properly a 1-form symmetry one
must accompany the SU(N) Wilson loop with a Ũ(1) holonomy (Aharonov-Bohm) loop
for the fermions. See also the related discussion (vii) in section 4.2 below.

Taking these points into account now we introduce the gauge fields as

• ac: the SU(N) color gauge field;

• af : the SU(8) flavor gauge field;

• Ã: the gauge field for Ũ(1);

• Aψχ: the gauge field for U(1)ψχ;

• B
(1)
c , B(2)

c : ZN gauge field.

The pairs of gauge fields
(
B

(1)
c , B

(2)
c
)
for the ZN 1-form symmetry satisfy the constraints9

N B(2)
c = dB(1)

c . (4.5)

Following the by now well-understood procedure for gauging a 1-form discrete symmetry,
one also introduces redundant U(N) gauge fields

• ãc: the U(N) color gauge field;

where
ãc = ac + 1

N
B(1)

c . (4.6)

The central idea is that one then imposes the invariance under the 1-form gauge transfor-
mations

B(2)
c → B(2)

c + dλc , B(1)
c → B(1)

c +Nλc ,

ãc → ãc + λc , (4.7)

where λc is a 1-form U(1) gauge function.10 The Ũ(1) and U(1)ψχ gauge fields Ã and Aψχ
transform under these as (see (2.12), (2.5))

Ã→ Ã− λc , Aψχ → Aψχ . (4.8)
9The suffices are to indicate the 1-form or 2-form nature of these gauge fields, e.g., B(1) = Bµdx

µ, etc.
10In the standard gauging of a 0-form U(1) symmetry, ψ → eiλψ; Aµ → Aµ + i

e
∂µλ, λ(x) is a 0-form

gauge function.
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The requirement of the invariance under the 1-form gauge transformations (4.7)–(4.8) re-
alizes the elimination of the redundancies, (4.3).

The (1-form) gauge invariant Dirac operators are accordingly

d+RS

(
ãc −

1
N
B(1)

c

)
+ 2

(
Ã+ 1

N
B(1)

c

)
+ N − 2

N∗
Aψχ , (4.9)

acting on ψ,

d+RA∗

(
ãc −

1
N
B(1)

c

)
− 2

(
Ã+ 1

N
B(1)

c

)
− N + 2

N∗
Aψχ , (4.10)

acting on χ, and

d−
(
ãc −

1
N
B(1)

c

)
+ af −

(
Ã+ 1

N
B(1)

c

)
, (4.11)

acting on η. Note that written this way the expression inside each bracket is invariant
under (4.7)–(4.8). In the above we have introduced a (hopefully) self-evident notation for
SU(N) algebras in symmetric and anti-antisymmetric representations adequate for the ψ
and χ fields. By construction the combination ãc − 1

NB
(1)
c belongs to the SU(N) algebra.

Before proceeding, it is useful to record the relation between Ã, Aψχ and the straight-
forward Aψ, Aχ, Aη gauge fields associated with the U(1)ψ, U(1)χ, U(1)η fermion number
symmetries:

ψ → eiαψψ , χ→ eiαχχ , η → eiαηη . (4.12)

They can be read off from (4.9)–(4.11):

Aψ = 2 Ã+ N − 2
N∗

Aψχ , Aχ = −2 Ã− N + 2
N∗

Aψχ , Aη = −Ã . (4.13)

The gauge field tensors felt by the fermions corresponding to (4.9)–(4.11) are:

RS(F (ã)−B(2)
c ) + 2 (dÃ+B(2)

c ) + N − 2
N∗

dAψχ ,

RA∗(F (ã)−B(2)
c )− 2 (dÃ+B(2)

c )− N + 2
N∗

dAψχ ,

RF∗(F (ã)−B(2)
c ) + Ff(af)− (dÃ+B(2)

c ) . (4.14)

The anomalies are compactly expressed by a 6D anomaly functional

A6D =
∫ 2π

3!(2π)3

{
trc

(
RS(F̃c −B(2)

c ) + 2 (dÃ+B(2)
c ) + N − 2

N∗
dAψχ

)3

+ trc

(
RA∗(F̃c −B(2)

c )− 2 (dÃ+B(2)
c )− N + 2

N∗
dAψχ

)3

+ trc,8
(
−(F̃c −B(2)

c ) + Ff(af)− (dÃ+B(2)
c )

)3
}
. (4.15)
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Expanding the 6D anomaly functional (4.15), one finds

2π
3!(2π)3

∫ {
[(N+4)−(N−4)−8]trc(F̃c−B(2)

c )3}
+ 2πN

3!(2π)3

∫
tr8 (Ff(af))3

+ 1
8π2

∫
trc(F̃c−B(2)

c )2
{

(N+2)
[
2(dÃ+B(2)

c )+N−2
N∗

dAψχ

]
+(N−2)

[
−2(dÃ+B(2)

c )−N+2
N∗

dAψχ

]
+8[−(dÃ+B(2)

c )]
}

+N
1

8π2

∫
tr8 (Ff(af))2[−(dÃ+B(2)

c )]

+ 1
24π2

∫ {
N(N+1)

2

[
2(dÃ+B(2)

c )+N−2
N∗

dAψχ

]3

+ N(N−1)
2

[
−2(dÃ+B(2)

c )−N+2
N∗

dAψχ

]3

+ 8N [−(dÃ+B(2)
c )]3

}
, (4.16)

by making use of the known formulas for the traces of quadratic and cubic forms in different
representations. The terms in the first line, proportional to trc(F̃c −B(2)

c )3 trivially cancel
out, reflecting the anomaly-free nature of the SU(N) color group. Note also that the
third and fourth lines, namely the terms containing trc(F̃c−B(2)

c )2, completely cancel each
other, due to the fact that only anomaly-free combinations (Ũ(1) and U(1)ψχ) of the U(1)
symmetries are being considered. A further gauging of the 1-form center symmetry (by the
introduction of B(2)

c ) obviously does not affect this. Taking into account these cancellations
one arrives at

2πN
3!(2π)3

∫
tr8 (Ff(af))3 +N

1
8π2

∫
tr8 (Ff(af))2[− (dÃ+B(2)

c )]

+ 1
24π2

∫ {
N(N + 1)

2

[
2 (dÃ+B(2)

c ) + N − 2
N∗

dAψχ

]3

+ N(N − 1)
2

[
−2 (dÃ+B(2)

c )− N + 2
N∗

dAψχ

]3

+ 8N [− (dÃ+B(2)
c )]3

}
. (4.17)

4.2 Observations

The mixed anomalies involving the 0-form Ũ(1) and U(1)ψχ symmetries and the 1-from
discrete center symmetry ZN can now be found by studying the terms

∝ B(2)
c Ã , ∝ B(2)

c Aψχ , (4.18)

in the 5D WZW action, and considering the variations

δÃ = d δÃ(0) , δAψχ = d δA
(0)
ψχ , (4.19)

– 16 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
0

which correspond to the phase transformations of the fermions (4.2), with

δÃ(0) = γ , δA
(0)
ψχ = β , (4.20)

to give the anomalous variations of the partition function in the boundary 4D action
(the anomaly inflow). It turns out that the anomaly expression (4.17) contains quite a
remarkable set of interesting physics implications.

(i) The first line of (4.17) simply represents the SU(8)3 and Ũ(1) − [SU(8)]2 anomalies,
dressed by the 2-form gauge field B(2)

c . The associated matching of the conventional
anomalies in the UV and IR has already been discussed in section 3.1. As noted
in [17], once the standard ’t Hooft anomaly matching equations are satisfied for
continuous symmetries, the 1-form gauging (introduction of the B(2)

c fields and their
fractional fluxes) does not affect the UV-IR anomaly matching.

(ii) The terms proportional to (dÃ + B
(2)
c )3 in (4.17) cancel each other completely. This

means that the mixed anomaly of the form

dÃ(B(2)
c )2 (4.21)

is absent. There is no obstruction in gauging the Ũ(1) symmetry together with
the color-flavor locked ZN center symmetry. The Ũ(1) symmetry may well remain
unbroken.

(iii) The mixed anomaly of the form dAψχ(B(2)
c )2 is present: it is given by

− 4N2

N∗
dAψχ(B(2)

c )2 , (4.22)

which is equal to
N2(dAψ + dAχ)(B(2)

c )2 , (4.23)

in view of eq. (4.13). In other words, U(1)ψχ symmetry cannot be gauged consistently,
when the 1-form color ZN symmetry is gauged.
To the best of our knowledge, the last phenomenon in is new. In all studies on gener-
alized ’t Hooft anomaly matching studied so far [20]-[33], nontrivial mixed anomalies
concerned the possible breaking of some discrete symmetry. Here, we find that a
continuous U(1) symmetry is affected by a mixed 0-form-1-form anomaly. It appears
that this is a typical, rather than exceptional, phenomenon in chiral gauge theories.

(iv) The mixed anomaly (4.23) shows also that (ZN+2)ψ, (ZN−2)χ, are both broken by
the 1-form gauging of ZN . The action of a (ZN+2)ψ transformation, for instance, is
described by the variation in the 5D action

δAψ = d δA
(0)
ψ , δA

(0)
ψ = 2πk

N + 2 ; k ∈ Z (4.24)

which then yields the anomalous variation of the 4D action

δS = 1
8π2

∫
Σ4
N2(B(2)

c )2 2πk
N + 2 = 2πk

N + 2Z , (4.25)
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under
ψ → e

2πik
N+2ψ , (4.26)

where the fractional ’t Hooft flux (4.4) of our SU(N)/ZN theory has been taken into
account.

Note that even though a generic (ZN+2)ψ transformation changes the partition func-
tion, the effect of k = N +2 transformation is found to be trivial. This is as it should
be. By definition a (ZN+2)ψ “transformation” with k = N + 2 means ψ → ψ: it is
not a transformation at all. In other words, the coefficient N2 found above, (4.23),
is significant.

Similarly for (ZN−2)χ.

(v) However, a particular subgroup,

ZN∗ ⊂ (ZN+2)ψ × (ZN−2)χ , (4.27)

remains unaffected by the mixed anomaly involving the color-flavor locked 1-form ZN

symmetry. This can be seen as follows. The condition imposed for the conservation
by (4.23) is that

2πk
N + 2 + 2π`

N − 2 = 2π × integer . (4.28)

Such a condition can be solved by

k = N + 2
N∗

p , ` = N − 2
N∗

(N∗ − p) , p = 1, 2, . . . . , N∗ , (4.29)

that is

ψ → e2πi p/N∗ψ ; χ→ e−2πi p/N∗χ , p ∈ ZN∗ , N∗ = GCD(N + 2, N − 2) .
(4.30)

Note that the conservation of this ZN∗ subgroup is perfectly consistent with the
assumption that condensation 〈ψχ〉 6= 0 forms in the infrared, as was noted in sec-
tion 3.3, see (3.19).

(vi) We saw above (the point (iii)) that U(1)ψχ symmetry cannot be gauged consistently,
when the 1-form color ZN symmetry is gauged. However the form of the mixed
anomaly (4.22) shows that a global U(1)ψχ transformation gives a trivial phase
to the partition function, for its discrete subgroup, Z4/N∗ ⊂ U(1)ψχ, as defined
in (3.17), (3.18). This is perfectly consistent with the dynamical Abelianization, as
< ψχ > 6= 0 implies U(1)ψχ → Z4/N∗ , thus no residual anomaly matching condition
has to be satisfied.11

11We recall that Z4/N∗ ⊂ U(1)ψχ is also a subgroup of SU(8)× Ũ(1), thus it is naturally included in the
global IR group as written in (3.14).
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(vii) To understand better the situation, it is useful to see how this anomaly arises from the
fractionalization of the Ũ(1) fluxes and the more mundane U(1)ψχ− [Ũ(1)]2 anomaly.
As one gauges Z

(1)
N (i.e., “1-form ZN symmetry”), i.e. one considers SU(N)c×Ũ(1)

ZN
=

U(N) gauge bundles that are not SU(N)c × Ũ(1) gauge bundles, both the instanton
number and the fluxes of Ũ(1) are fractionalized. The U(1)ψχ − [SU(N)c]2 (strong)
anomaly vanishes identically, therefore the fractionalization of the SU(N)c instanton
number has no consequences on U(1)ψχ. However, the U(1)ψχ − [Ũ(1)]2 anomaly
does not vanish. In particular, by gauging Ũ(1) but not Z

(1)
N , one sees from the

U(1)ψχ − [Ũ(1)]2 anomaly that the partition function gets a phase,

Z → e−iβ
4N2
N∗
∫
dÃ∧dÃZ , (4.31)

under eiβ ∈ U(1)ψχ. This phase is trivial (2πZ) for Z4N2/N∗ ⊂ U(1)ψχ. By gauging
also Z

(1)
N , as the Ũ(1) fluxes fractionalizes,

1
2π

∫
dÃ = Z→ 1

2π

∫
dÃ+B(2)

c = 1
N
Z , (4.32)

the ’t Hooft anomaly free subgroup of U(1)ψχ is further reduced to Z4/N∗ .

(viii) The fact that Z4/N∗ is free of mixed anomalies is, by itself, an interesting consistency
check. This is because, being Z4/N∗ ⊆ SU(8)× Ũ(1), as SU(8)× Ũ(1) does not suffer
any mixed ’t Hooft anomaly with Z

(1)
N , also Z4/N∗ must be free of such anomaly.

Instead, from the calculation above, the fact that Z4/N∗ is free of mixed anomaly is
nontrivial: if the coefficient of the dAψχ

(
B

(2)
c

)2
term in (4.17) were different from

−4N2

N∗ , it would not hold.

(ix) (Z8)η and SU(8) itself, are neither broken by the standard instantons nor in the
presence of the 1-form gauge fields

(
B

(2)
c , B

(1)
c
)
.

5 Summary and discussion

In this work, we revisited the infrared dynamics of the chiral ψχη theory, assuming dy-
namical Abelianization caused by bifermion condensate in the adjoint representation of the
SU(N) gauge group. In the first part, the symmetries of the system are studied and the
working of the conventional ’t Hooft anomaly matching has been briefly reviewed, and the
possible form of the effective low-energy action is studied, by taking also into account also
of the strong anomaly.

In the second part of the work, we have checked these ideas against more stringent
constraints following the mixed-anomaly involving certain 0-form U(1) symmetries and 1-
form color-flavor locked ZN center symmetry. The results of the analysis, summarized in
section 4.2, tell us that the proposed infrared physics, characterized by dynamical Abelian-
ization, is consistent with the implications of the mixed anomalies and, perhaps, implied by
them. The comparison between the implications of the mixed anomalies and those expected
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Ũ(1) U(1)ψχ (ZN+2)ψ (ZN−2)χ SU(8)η ZN∗ Z4/N∗

Mixed Anomalies X X X X X X X

Dyn. Abel. X X X X X X X

Table 3. Dynamical Abelianization postulate of the present work is confronted with the implica-
tions of the mixed anomalies. X for a conserved symmetry, X for a broken symmetry. The discrete
ZN∗ symmetry is defined in (3.19), or in (4.27)–(4.30). Z4/N∗ is defined in (3.17).

from the assumption of the bifermion adjoint condensate and dynamical Abelianization, is
shown in table 3. It is seen that the pattern of the symmetry realization (breaking) in the
infrared, suggested by the mixed anomalies involving the gauged 1-form ZN symmetry, are
well reproduced by the dynamical Abelianization proposed in this work.

In this work we have examined the consistency of the hypothesis of dynamical Abelian-
ization, that a bifermion condensate forms in the infrared, of the form, (3.1), (3.2). It is
possible that a bifermion condensate in the adjoint representation forms, but with a differ-
ent symmetry breaking pattern, e.g.,

〈(ψχ)ij〉 = c

(N −m) δij , i, j = 1, . . . ,m
−m δij , i, j = m+ 1, . . . , N

c ∼ O(Λ3
0) . (5.1)

In this case, the strong gauge group would be broken as

SU(N)c → SU(m)c × SU(N −m)c′ ×U(1)e , (5.2)

where U(1)e is generated by T ∝ diag(N −m︸ ︷︷ ︸
n

,− m︸︷︷︸
N−m

). A quick look at the massless

spectrum expected from such a symmetry breaking shows that the system below the scale
Λ0, is basically a pair of ψχη models with SU(m) and SU(N−m) gauge groups, respectively.
The system is asymptotically free and continues to evolve towards the infrared. We shall
not pursue further such a tumbling-like scenario, but it is possible that at the end the
system flows into the full dynamical Abelianization, studied in section 3.

Even though we have focused our attention in this work on the ψχη theory for definite-
ness, there are other chiral gauge theories in which a bifermion condensate in the adjoint
representation might occur and in which dynamical Abelianization might be decisive in
determining the infrared physics. Possible examples are

(i) SU(N) theory (with N even), with odd number of fermions in the self-adjoint antisym-
metric order N/2 tensor representation, studied in [17, 27] ;

(ii) A generalization of the SU(N) ψχη model with a matter fermion content,

ψ{ij},m , χ[ij] , ηBj , m = 1, 2, B = 1, 2, . . . , N + 12 , (5.3)

or

2 +

¯

+ (N + 12) ¯
. (5.4)

studied in [16] , and
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(iii) SU(N) theories with fermions in the complex representation, N−4
k ψ{ij}’s and N+4

k

χ̄[ij],

N − 4
k

⊕ N + 4
k

¯

, (5.5)

(k being a common devisor of N − 4 and N + 4) studied recently [17, 36].

In all of them, the conventional ’t Hooft anomaly matching analysis is consistent with
dynamical Abelianization hypothesis, and in some cases, the preliminary analysis involving
the generalized symmetries and the mixed anomalies appears to give further support [17, 36]
for it. Still, in some of this class of models, the symmetry breaking pattern may be different
from dynamical Abelianization, allowing for more general types of infrared gauge theories.
We will come back to the discussion of these models in a separate investigation.
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A Chiral Ward-Takahashi identities and NG bosons

Let us briefly review the fate of a continuous, global symmetry, say Gf , when a condensate
forms in the infrared which is not invariant under it. Let the associated conserved current be
Jµ and charge Q. The field φ (elementary or composite) condenses and breaks Gf . The field
φ̃ (elementary or composite) is such that it is transformed by the Gf transformation into φ:

Q ≡
∫
d3xJ0 , [Q, φ̃] = φ , 〈φ〉 6= 0 . (A.1)

The Ward-Takahashi like identity

lim
qµ→0

iqµ
∫
d4x e−iq·x〈0|T{Jµ(x) φ̃(0)}|0〉 = lim

qµ→0

∫
d4x e−iq·x∂µ〈0|T{Jµ(x) φ̃(0)}|0〉 =

=
∫
d3x〈0|[J0(x), φ̃(0)]|0〉 = 〈0|[Q, φ̃(0)]|0〉 = 〈0|φ(0)|0〉 6= 0 . (A.2)

implies that the two-point function∫
d4x e−iq·x〈0|T{Jµ(x) φ̃(0)}|0〉 (A.3)

is singular at qµ → 0. Under the assumption that the Gf symmetry is broken sponta-
neously, such a singularity is due to a massless scalar particle in the spectrum. This
particle, known as Nambu-Goldstone (NG) boson (a “pion”, symbolically) must be
produced from the vacuum by the broken current Jµ:

〈0|Jµ(q)|π〉 = iqµFπ , 〈π|φ̃|0〉 6= 0 . (A.4)
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such that the two point function (A.3), when contracted by qµ, behaves as

lim
qµ→0

qµ · qµ
Fπ〈π|φ̃|0〉

q2 ∼ const . (A.5)

The constant Fπ represents the amplitude for the broken current to produce the pion from
the vacuum (the pion decay constant). The field φ̃ is known as the pion interpolating field.
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