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1 Introduction

Recently the ideas of generalized symmetries and higher-form gauging have been applied

to gain deeper insights on the infrared dynamics of some strongly-coupled 4D gauge the-

ories [1]–[20]. One of the key issues, which lead to many interesting consequences, is the

so-called Z
C
N center symmetry1 in SU(N) theories. Although the idea itself is a familiar

one,2 it becomes more powerful when combined with the idea of “gauging” such a discrete

center symmetry [1]–[20]. In some cases, this leads to mixed ([0-form]–[1-form]) ’t Hooft

anomalies; they carry nontrivial information on possible infrared dynamics of the system.

1Throughout the paper, a 1-form center symmetry will be indicated with a suffix C, to distinguish it

from various 0-form (conventional) discrete chiral symmetries.
2A precursor of the ideas is indeed the center symmetry Z

C
N in Euclidean SU(N) Yang-Mills theory at

finite temperature, which acts on the Polyakov loop. The unbroken (or broken) center symmetry by the

VEV of the Polyakov loop, is a criterion of confinement (or de-confinement) phase [21].
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The concept of gauging a discrete symmetry might sound a bit peculiar from the

point of view of conventional idea of gauging a global flavor symmetry, i.e., that of taking

the transformation parameters as functions of spacetime and turning it to a local gauge

symmetry. Here the gauging of a 1-form discrete symmetry means identifying the field

configurations related by it, and eliminating the associated redundancies. In the case of

the Z
C
N center symmetry in SU(N) gauge theory, gauging it effectively reduces the theory

to SU(N)/ZN theory [1]–[20]. We review below (section 2) how this procedure works for

the case of a subgroup, ZC
k ⊂ Z

C
N discrete center symmetry.

The aim of the present paper is to apply these new ideas to several simple SU(N) gauge

theories, which possess exact ZC
k color center symmetries (k being a divisor of N), and to

examine the implications of gauging these discrete Z
C
k center symmetries on their infrared

dynamics. In some cases our discussion is a simple extension of (or comments on) the

results already found in the literature; in most others the results presented here are new,

to the best of our knowledge. Here we discuss the following models: in section 3 the SU(N)

gauge theory with Nf copies of Weyl fermions in self-adjoint single column antisymmetric

representation; in section 4 the adjoint QCD discussed extensively in the literature; in

section 5 QCD-like theories with quarks in two-index representations of SU(N), and in

section 6 some chiral SU(N) theories with fermions in the symmetric as well as in anti-

antisymmetric representations but without those in the fundamental representation. We

conclude in section 7 with some general discussion. Notes on Dynkin indices for some

representations in SU(N) group can be found in appendix A.

2 Gauging a discrete 1-form symmetry

As the gauging of a discrete center symmetry and the calculation of anomalies under such

gauging are the basic tools of this paper and will be used repeatedly below, let us briefly

review the procedure here. The procedure was formulated in [4] and used in [5] for SU(N)

Yang-Mills theory at θ = π, based on and building upon some earlier results [1]–[3], and

then applied to other systems and further developed: see [6]–[10], and [13]–[19]. The details

and good reviews can be found in these references and will not be repeated here, except

for a few basics reviewed below.

We recall that in order to gauge a Z
C
k discrete center symmetry in an SU(N) gauge

theory (k being a divisor of N), one introduces a pair of U(1) 2-form and 1-form Z
C
k gauge

fields (B
(2)
c , B

(1)
c ) satisfying the constraint [4]

kB(2)
c = dB(1)

c . (2.1)

This constraint satisfies the invariance under the U(1) 1-form gauge transformation,

B(2)
c 7→ B(2)

c + dλc, B(1)
c 7→ B(1)

c + kλc, (2.2)

where λc is the 1-form gauge function, satisfying the quantized flux

1

2π

∫

Σ2

dλc ∈ Z . (2.3)
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The SU(N) dynamical gauge field a is embedded into a U(N) gauge field,

ã = a+
1

k
B(1)

c , (2.4)

and one requires invariance under U(N) gauge transformation. The gauge field tensor F (a)

is replaced by

F (a) → F̃ (ã)−B(2)
c . (2.5)

This determines the way these Z
C
k gauge fields are coupled to the standard gauge fields

a; the matter fields must also be coupled to the U(N) gauge fields, such that the 1-form

gauge invariance, (2.2), is satisfied. For a Weyl fermion ψ this is achieved by writing the

fermion kinetic term as

ψ̄ γµ
(
∂ +R(ã)−

n(R)

k
B(1)

c

)

µ

PL ψ , (2.6)

with R(ã) appropriate for the representation to which ψ belongs, and n(R) is the N -ality

of the representation R. PL is the projection operator on the left-handed component of the

Dirac spinor. This whole procedure effectively eliminates the Z
C
k redundancy and defines

a SU(N)/Zk theory.

Also, in order to study the anomaly of Uψ(1) symmetry (or of a discrete subgroup

of it), ψ → eiαψ, we introduce an external Uψ(1) gauge field Aψ, and couple it to the

fermion as

ψ̄ γµ
(
∂ +R(ã)−

n(R)

k
B(1)

c +Aψ

)

µ

PL ψ . (2.7)

It is easy now to compute the anomalies following the standard Stora-Zumino descent

procedure [42, 43], see also [16]. For simplicity we write the expressions for a single fermion

and for an Abelian symmetry, but these can be readily generalized. A good recent review

of this renowned constructions can be found in [44]. According to this procedure, the

anomaly can be evaluated starting from a 6D (six-dimensional) Abelian anomaly [42, 43]3

1

24π2
trR

(
F̃ −B(2)

c + dAψ

)3

=
D(R)

24π2
tr
(
F̃ −B(2)

c )3 +
2T (R)

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAψ + . . . . (2.8)

Let us recall that, in the standard quantization (i.e., in the absence of the 1-form discrete

symmetry gauging),

B(1)
c , B(2)

c → 0 , F̃ (ã) → F (a) , (2.9)

and the above reduces to

D(R)

24π2
trF 3 +

2T (R)

8π2
trF 2 ∧ dAψ + . . . . (2.10)

3D(R) is the value of the symmetric trace of the product of three generators normalized to the one evalu-

ated in the fundamental representation; T (R) is the Dynkin index of the representation R, see appendix A.

Throughout, the simplified differential form notation is used, e.g., F 2 ≡ F ∧F = 1
2
FµνF ρσdxµdxνdxρdxσ =

1
2
ǫµνρσF

µνF ρσd4x, etc.

– 3 –
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By using the identity [42, 43]

trF 3 = d

{
tr

(
a(da)2 +

3

5
(a)5 +

3

2
a3da

)}
(2.11)

(also trF 2 = d {tr(ada + 2
3a

3)}) the first term leads to the SU(N) gauge anomalies. The

second term gives the boundary term

2T (R)

8π2

∫

Σ5

trF 2 ∧Aψ (2.12)

which, after variations

Aψ ≡ dA
(0)
ψ , A

(0)
ψ → A

(0)
ψ + δα (2.13)

yields, by anomaly inflow, the well-known 4D anomaly,

δS
δA

(0)
ψ

=
2T (R)

8π2

∫
trF 2 δα = 2T (R)Z δα , (2.14)

where Z represents the integer instanton number, leading to the well-known result that the

discrete subgroup

Z2T (R) ⊂ Uψ(1) (2.15)

remains unbroken by instantons.

With the 1-form gauging in place, i.e., with (B
(2)
c , B

(1)
c ) fields present in eq. (2.8), Uψ(1)

symmetry could be further broken to a smaller discrete subgroup, due to the replacement,

trF 2 → tr
(
F̃ −B(2)

c

)2
. (2.16)

In fact,4

1

8π2

∫

Σ4

tr
(
F̃ −B(2)

c

)2
=

1

8π2

∫

Σ4

{trF̃ 2 −N(B(2)
c )2} : (2.17)

the first term is an integer;5 the second term is

−
N

8π2

∫

Σ4

(
B(2)

c

)2
= −

N

8π2k2

∫

Σ4

(
dB(1)

c ∧ dB(1)
c

)
=

N

k2
Z , (2.18)

which is in general fractional.

3 Models with self-adjoint chiral fermions

We first consider a class of SU(N) gauge theories (N even) with left-handed fermions in

the N
2 fully antisymmetric representation. This representation is equivalent to its complex

conjugate (as can be seen by acting on it with the epsilon tensor) and so does not contribute

to the gauge anomaly. In these models there is a 1-form Z
C
N
2

center symmetry and we are

particularly interested in understanding how this mixes in the ’t Hooft anomalies with the

other 0-form symmetries present.

4Observe that B
(2)
c is Abelian, ∝ 1N , and that trF̃ = N B

(2)
c .

5The combination
1

8π2

∫

Σ4

{trF̃ 2 − trF̃ ∧ trF̃}

is the second Chern number of U(N) and is an integer. The second term of the above is also an integer as
(

N
k

)2
is.
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3.1 SU(6) models

Let first examine in detail the case N = 6 with Nf flavors of Weyl fermions in the repre-

sentation

20 = . (3.1)

As will be seen below, this (SU(6)) is the simplest nontrivial case of interest. The first

coefficient of the beta function is

b0 =
11N − 6Nf

3
= 22− 2Nf , (3.2)

so up to Nf = 10 flavors are allowed for the theory to be asymptotically free. In all these

models, as will be explained in the following, there is a U(1)ψ global symmetry broken

by the usual ABJ anomaly and instantons to a global discrete Z
ψ
6Nf

which is then further

broken by the 1-form gauging to Z
ψ
2Nf

. Note that the latter breaking should be understood

in the sense of a mixed ’t Hooft anomaly: there is an obstruction to gauging such a Z
C
N
2

discrete center symmetry, while trying to maintain the global Zψ
6Nf

symmetry.

3.1.1 Nf = 1

Let us further restrict ourselves to SU(6) theory with a single left-handed fermion in the

representation, 20. This model was considered recently in [18]. A good part of the analysis

below indeed overlaps with [18]; nevertheless, we discuss this simplest model with certain

care, in order to fix the ideas, to recall the basic techniques and notations, and to discuss

physic questions involved.

There are no continuous nonanomalous symmetries in this model. There is an anoma-

lous U(1)ψ symmetry whose nonanomalous subgroup is the Z
ψ
6 symmetry given by

Z
ψ
6 : ψ → e

2πi
6

jψ , j = 1, 2, . . . , 6 . (3.3)

The system possesses also an exact center symmetry which acts on Wilson loops as

Z
C
3 : ei

∮
A → e

2πi
6

kei
∮
A , k = 2, 4, 6 , (3.4)

and which does not act on ψ.

This is an example of generalized symmetries (in this case, a 1-form symmetry), which

have received a considerable (renewed) attention in the last several years. In particular,

the central idea is that of gauging a discrete symmetry (such as Z
C
3 here), i.e., that of

identifying field configurations related by those symmetries, and effectively modifying the

path-integral sum over them. If a center Z
C
k symmetry is gauged, SU(N) gauge theory

is replaced by SU(N)/Zk theory. The basic aspects of such a procedure were reviewed in

section 2.

Let us now apply this method to our simple SU(6) toy model, to study the fate of

the unbroken Z
ψ
6 symmetry (3.3), in the presence of the Z

C
3 gauge fields. The Abelian 6D

– 5 –
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anomaly takes the form6

1

24π2
tr20

(
F̃ −B(2)

c − dAψ

)3

=
6

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAψ + . . .

=
6

8π2
trF̃ 2 ∧ dAψ −

6N

8π2
(B(2)

c )2 ∧ dAψ + . . . (3.5)

where Z
C
3 gauge fields satisfy

3B(2)
c = dB(1)

c , (3.6)

invariant under the U(1) 1-form gauge transformation,

B(2)
c 7→ B(2)

c + dλc , B(1)
c 7→ B(1)

c + 3λc , (3.7)

1

2π

∫

Σ2

dλc ∈ Z . (3.8)

The factor 6 in (3.5) is twice the Dynkin index of 20 (see appendix A). Aψ is a U(1) gauge

field, formally introduced to describe the Z
ψ
6 discrete symmetry transformations.

The first term in (3.5) is clearly trivial, as

1

8π2

∫
trF̃ 2 ∈ Z , Aψ = dA

(0)
ψ , δA

(0)
ψ =

2πZψ
6

6
. (3.9)

This corresponds to the standard gauge anomaly that breaks U(1)ψ −→ Z
ψ
6 .

The second term in (3.5) shows that δA
(0)
ψ gets multiplied by

−
6N

8π2

∫
(B(2)

c )2 = −6N

(
1

3

)2

Z = −6
2

3
Z . (3.10)

The crucial step used here is the flux quantization of the B
(2)
c field

1

8π2

∫
(B(2)

c )2 =

(
1

3

)2

Z , (3.11)

which follows from (3.6)–(3.8).7 The global chiral Zψ
6 symmetry

δA
(0)
ψ =

2πℓ

6
, ℓ = 1, 2, . . . , 6 (3.12)

is therefore reduced to a Z
ψ
2 invariance obtained restricting to the elements ℓ = 3, 6,

Z
ψ
6 −→ Z

ψ
2 . (3.13)

This agrees with what was found by [18]. This implies that a confining vacuum with mass

gap, with no condensate formation and with unbroken Z
ψ
6 , is not consistent.

6The trace tr without specification of the representation means that it is taken on the fundamental, N .
7The factor 3 is replaced by k in the case of Z

C
k discrete center gauging considered below for other

systems.

– 6 –
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Strictly speaking, it is not quite correct to say that the flavor symmetry of the model

is Z
ψ
6 , eq. (3.3), since Z

ψ
2 ⊂ Z

ψ
6 (i.e., ψ → −ψ) is shared with the color Z

C
2 ⊂ Z

C
6 . The

correct symmetry is

Z
ψ
6

Z2
∼ Z

ψ
3 . (3.14)

However our conclusion is not modified: (3.13) is actually equivalent to

Z
ψ
3 −→ 1 , (3.15)

in the vacuum with unbroken Z
color-flavor
2 . This feature must be kept in mind in all our

analysis below: the crucial point is that in this paper we gauge only a subgroup of discrete

color center group, which does not act on the fermions.8

The breaking Z
ψ
6 → Z

ψ
2 implies a threefold vacuum degeneracy, if the system confines

(with mass gap) and if in IR there are no massless fermionic degrees of freedom on which

Z
ψ
6 /Z

ψ
2 can act.9 A possible explanation naturally presents itself. As the interactions

become strong in the infrared, it is reasonable to assume that bifermion condensate

〈ψψ〉 ∼ Λ3 6= 0 (3.16)

forms. As the field ψ is in 20 of the gauge group SU(6), a Lorentz invariant bifermion

composite can be in one of the irreducible representations of SU(6), appearing in the

decomposition

⊗ = ⊕ ⊕+ . . . . (3.17)

The most natural candidate would be the first, 1, but it can be readily verified that such

a condensate vanishes by the Fermi-Dirac statistics. Another possibility is that ψψ in the

adjoint representation gets a VEV, signaling a sort of dynamical Higgs mechanism [24–26].

Even though such a condensate should necessarily be regarded as a gauge dependent ex-

pression of some gauge invariant VEV (see below), it unambiguously signals10 the breaking

of global, discrete chiral symmetry as

Z
ψ
6 → Z

ψ
2 , (3.18)

with broken Z
ψ
6 /Z

ψ
2 acting on the degenerate vacua. Four-fermion, gauge-invariant con-

densates such as

〈ψψψψ〉 6= 0 , or 〈ψ̄ψ̄ψψ〉 6= 0 , (3.19)

8The situation is subtler if one tries to gauge the full color center group, see [20].
9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly

matching may be achieved with a topological field theory or by a CFT in the IR.
10Note that the global symmetry group Z

ψ
6 commutes with the color SU(6): there is no way a gauge

transformation eliminates the nontrivial properties of the condensate under Zψ
6 .
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might also form, first of which also breaks Zψ
6 in the same way. The condensate (3.16) thus

leads to threefold vacuum degeneracy, consistently with (3.13) implied by the Z
ψ
6 − Z

C
3

mixed anomaly.

Let us pause briefly to make a few comments on dynamically induced Higgs phase. As

in any system where the Higgs mechanism is at work, some (elementary or composite) scalar

field gets a nonvanishing, gauge noninvariant (and gauge dependent) vacuum expectation

value (VEV). In a weakly coupled Higgs type model, there is a potential having degenerate

minima, and the vacuum, which necessarily breaks the gauge invariance, induces the Higgs

phase, with some gauge bosons becoming massive. Also, in such a model, apparently gauge-

dependent phenomena can be naturally re-interpreted in a gauge-invariant fashion.11

Here the situation is basically the same. One is indeed assuming that an effective com-

posite scalar ∼ ψψ forms by strong interactions, which then condenses. It corresponds to

the non-gauge-invariant VEV of a scalar field in a potential model. In contrast to a weakly

coupled Higgs models, however, the effective scalar composite particle is still strongly cou-

pled and is not described by a simple potential. Therefore, a gauge-invariant rephrasing of

the phenomenon may not be straightforward. Apart from this, there is nothing unphysical

about assuming gauge non-invariant bifermion condensate:12 it is analogue of the Higgs

VEV 〈φ〉 in the standard electroweak theory.

As a final remark, it may help to remember also that the Higgs mechanism itself was

first discovered in the context of superconductivity ([27, 28], see also [29]): the Cooper

pair condenses due to the interactions between the electrons and the lattice phonons. The

Cooper pair, having charge 2, is not a gauge invariant object. It is the first example in a

physical theory of what we call dynamical Higgs mechanism, in the sense that the effective

Higgs scalar (the Cooper pair) is a composite, gauge noninvariant field.13

The infrared system depends also on the kind of bi-fermion ψψ condensates which

actually form. The “MAC” (most attractive channel) criterion [24] suggests condensation

of a ψψ composite scalar in the adjoint representation. It is then possible that the infrared

physics is described by full dynamical Abelianization [25, 26]: the low-energy theory is an

Abelian U(1)5 theory. Although the infrared theory looks trivial, the only massless infrared

degrees of freedom being five types of non-interacting photons, the system might be richer

actually. There is a remnant of the Z6 symmetry of the UV theory, which is a threefold

vacuum degeneracy. Domain walls would exist which connect the three vacua, and on

which nontrivial infrared 3D physics can appear (we shall not elaborate on them here).

11For instance, the Higgs VEV of the form 〈φ〉 =
(

0
v/

√
2

)

found in any textbook about the standard

electroweak theory, is just a gauge dependent way of describing a minimum of the potential V (φ†φ), so is

the statement such as the left hand fermion being equal to ψL = ( νL
eL ). A similar reinterpretation of the W

and Z bosons is also straightforward.
12In this respect we differ from the interpretation given in [18]. Indeed there is a long history of studies

in strongly interacting chiral gauge theories based on such ideas, starting from [24]. See also [25, 26] and

references cited therein.
13This brief comment is meant only to remind the reader that there is nothing unusual in having a

composite, gauge noninvariant field getting a VEV, to break the gauge (and/or flavor) symmetry of a

given system. Of course, conventional superconductivity is not a good model for strongly interacting gauge

theories as the ones we are interested in here.

– 8 –
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It is interesting to check also the (conventional) [Zψ
6 ]

3 anomaly matching constraint,

following [22, 23]. The matching condition for a [ZN ]3 discrete symmetry is

AIR = AUV +mN , for odd N ,

AIR = AUV +mN +
nN3

8
, for even N , (3.20)

where m,n ∈ Z.14 In our case N = 6, N3

8 = 27 and it must be that

AIR −AUV = 0 mod 3 (3.21)

if Zψ
6 is to remain unbroken. However, AUV

(
[Zψ

6 ]
3
)
= 20 = 2 mod 3 6= 0 in our system,

where 20 is the color multiplicity. Therefore a confining vacuum with no condensates

with mass gap, and with unbroken Z
ψ
6 (AIR = 0), would not be consistent. On the other

hand, the condensate formation (3.16), a spontaneous breaking Z
ψ
6 −→ Z

ψ
2 and associated

threefold vacuum degeneracy, is perfectly consistent with the [Zψ
2 ]

3 anomaly matching

condition. Consideration of Zψ
6 [grav]2 anomaly leads to the same conclusion.

We find thus that the consideration of the 1-form Z
C
3 center symmetry gauging (3.13)

and that of the conventional [Zψ
6 ]

3 or Z
ψ
6 [grav]2 anomaly matching requirement, give a

consistent indication about the infrared dynamics of our system.

3.1.2 Nf = 2

We now move to discuss SU(6) theory with more than one Weyl fermions in 20. For two

flavors the global symmetry is

Gf = SU(2)×Z
ψ
12 . (3.22)

As before there is a 0-form and 1-form mixed anomaly

Z
ψ
12 [Z

C
3 ]

2 , (3.23)

and the discrete chiral symmetry is broken by the 1-form gauging as

Z
ψ
12 −→ Z

ψ
4 . (3.24)

In this case the bi-fermion scalar condensate

〈ψ[AψB]〉 6= 0 , (3.25)

can be formed which is gauge-invariant, and leaves SU(2) invariant. Let us assume that

such a condensate indeed is formed. The bi-fermion condensate (3.25) breaks the discrete

chiral symmetry

Z
ψ
12 −→ Z

ψ
2 , (3.26)

14The difference between the even N and odd N cases is due to the possibility that a single fermion ψ

with charge N/2 can get a Majorana mass term for even N (which does not break the ZN symmetry). Such

a fermion provides a N3

8
contribution to the [ZN ]3, therefore the anomaly matching conditions for massless

fermions is weakened. For further details see [23].
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implying a six-fold vacuum degeneracy. The latter is stronger than (3.24) but is consistent.

The SU(2) triangle anomaly vanishes so there are no associated matching constraints:

neither massless baryons nor NG bosons are required, and expected to occur. The Witten

SU(2) anomaly is also matched between the UV (6 doublets) and the IR (0 doublet).

Strictly speaking the symmetry of the Nf = 2 system is not (3.22), but

Gf =
SU(2)×Z

ψ
12

Z2 ×Z2
∼

SU(2)

Z2
×Z

ψ
6 , (3.27)

where one of the factors in the denominators is due to the overlap with the Zcolor
2 , the other

being a Z2 shared between SU(2) and Z
ψ
12. A similar observation was made in the Nf = 1

case, in section 3.1.1. As discussed in the previous case, and as will be in all other cases

discussed below, none of our conclusions is modified by this more careful consideration of

the symmetry group, as eq. (3.24) and eq. (3.26) are equivalent to

Z
ψ
6 −→ Z

ψ
2 , (3.28)

and

Z
ψ
6 −→ 1 , (3.29)

respectively, in the presence of unbroken SU(2) and Z
color
2 (confinement).

As for the conventional discrete anomaly matching, in the UV there is a discrete 0-form

Z
ψ
12 [SU(2)]

2 (3.30)

anomaly. This is due to the SU(2) instanton effects, which gives the phase variation of the

partition function,

20
2πk

12
= 2π

5

3
k , k = 1, 2, . . . , 12 , (3.31)

breaking the chiral symmetry as

Z
ψ
12 −→ Z

ψ
4 (3.32)

since only the transformations with k = 3, 6, 9, 12 leave the partition function invariant.

One may wonder how such a breaking is described in the IR, where no massless fermions

are present, and SU(2) is unbroken. The answer is that the condensate (3.25) breaks the

discrete chiral symmetry as (3.26), which is stronger than (3.32).

We consider also the constraints following from the [Zψ
12]

3 anomaly. This time an

unbroken Z
ψ
12 in the IR requires the anomaly matching (3.20)

AUV = AIR + 12m+ 63 n , m, n ∈ Z , (3.33)

that is,

AUV −AIR = 0 mod 12 . (3.34)

The UV anomaly is

AUV = 4 mod 12 , (3.35)
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therefore the [Zψ
12]

3 anomaly consideration is consistent with the assumption of the breaking

Z
ψ
12 −→ Z

ψ
4 and with consequent threefold degeneracy of the vacuum. This is also consistent

with result of the 1-form gauging of the center ZC
3 symmetry and the mixed anomaly (3.23).

To conclude, it is possible that actually a bi-fermion gauge-invariant condensate (3.25)

forms, breaking the discrete symmetry, as Zψ
12 −→ Z

ψ
2 . It is however also possible that the

bi-fermion condensate vanishes, and e.g., some four-fermion condensates are formed. In

that case, the discrete symmetry breaking pattern would coincide with what is implied by

the conventional and mixed anomalies associated with the discrete Z
ψ
12 symmetry (3.30)

and (3.23).

3.1.3 Nf = 3

For three fermions in 20 the symmetry is

Gf = SU(3)×Z
ψ
18 . (3.36)

The 1-form gauging of the Z
C
3 center symmetry yields the discrete symmetry breaking

Z
ψ
18 −→ Z

ψ
6 . (3.37)

In this case, a gauge-invariant bi-fermion condensate,

〈ψ[AψB]〉 , A,B = 1, 2 , (3.38)

would break the continuous symmetry as

SU(3) −→ SU(2) . (3.39)

There are 8− 3 = 5 NG bosons, which saturate the anomalies of the spontaneously broken

SU(3)/ SU(2) symmetries. There are no triangle SU(2)3 anomalies. No massless baryons

are required and expected to occur in the infrared theory. The discrete Z
ψ
18 symmetry

would be broken by the condensate (3.38) as

Z
ψ
18 −→ Z

ψ
2 , (3.40)

implying a nine-fold vacuum degeneracy.

Again, let us check Z
ψ
18 [SU(3)]

2 (to be matched mod N = 18) and [Zψ
18]

3 anomalies.

Actually, since SU(3) is broken to SU(2) by bi-fermion condensate, we shall study the

Z
ψ
18 [SU(2)]

2. As

AUV

(
Z

ψ
18 [SU(2)]2

)
= 20 = 2 mod 18 , (3.41)

the Zψ
18 [SU(2)]

2 anomaly matching is consistent with what is implied by the ψ2 condensate

formation (3.38).

As for [Zψ
18]

3, as N is even we must have the equality

AIR = AUV + 18m+ 93 n = AUV + 9 k , m, n, k ∈ Z , (3.42)

i.e., an equality modulo 9, if Zψ
18 is to remain unbroken in the infrared. But

AUV = 2 · 20 = 4 mod 9 . (3.43)
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The consideration of Z
ψ
18 [SU(2)]

2 and [Zψ
18]

3 anomaly matching is consistent with the

assumption of the bi-fermion condensate (3.38) (the reduction Z18 −→ Z2) and with con-

sequent nine-fold degeneracy of the vacua. The 1-form center symmetry gauging and the

mixed anomaly alone, give instead a weaker condition (3.37).

3.1.4 Nf = 4

The symmetry of the Nf = 4 model is

Gf = SU(4)×Z
ψ
24 . (3.44)

The 1-form gauging of ZC
2 breaks the discrete chiral symmetry as

Z
ψ
24 −→ Z

ψ
8 . (3.45)

In this case, the bi-fermion condensate (3.25) of the form,

〈ψ[AψB]〉 6= 0 , A,B = 1, 2 (3.46)

or

〈ψ[AψB]〉 6= 0 , (A,B = 1, 2) , 〈ψ[CψD]〉 6= 0 , (C,D = 3, 4) , (3.47)

if it occurs, break the symmetry as

SU(4)×Z
ψ
24 −→ SU(2)× SU(2)×Z

ψ
2 . (3.48)

There are 15− 6 = 9 NG bosons. Again no massless baryons are required.

Thus for Nf = 4, the discrete Z
ψ
24 would be broken to Z

ψ
8 due to the 1-form center

gauging, whereas it would be broken more strongly to Z
ψ
2 , if the condensate (3.46) or (3.47)

is to form.

As for the conventional discrete anomaly is concerned, it has an anomaly at UV:

AUV

(
Z

ψ
24 [SU(2)]

2
)
= 20 = −4 mod 24 , (3.49)

implying a discrete symmetry breaking to Z
ψ
4 and a six-fold vacuum degeneracy, at least.

This does not exclude that it is broken more strongly, as expected from the bi-fermion

condensate formation.

As for the [Zψ
24]

3, there is an UV anomaly

AUV

(
[Zψ

24]
3
)
= 4 · 20 . (3.50)

This must match to the IR modulo gcd
(
24, 24

3

8

)
= 24, a requirement satisfied by the

reduction of the symmetry to Z
ψ
4 .
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3.1.5 5 ≤ Nf ≤ 10

For larger Nf , the symmetry of the system is

Gf = SU(Nf )×Z
ψ
6Nf

. (3.51)

For illustration let consider the case Nf = 5. The discrete Z
ψ
30 symmetry is broken by the

1-form gauging to Z
ψ
10, implying some condensates to occur in the infrared. A condensate

of the form, (3.38), would break the global symmetry as,

SU(5)×Z
ψ
30 −→ SU(2)× SU(3)×Z

ψ
2 . (3.52)

It would be a hard problem to find a set of massless baryons saturating the anomaly

triangles associated with this low-energy symmetries.

It is possible, however, that the system instead chooses to produce condensates of

the form,

〈ψ[AψB]〉 6= 0 , A,B = 1, 2 ; 〈ψ[CψD]〉 6= 0 , C,D = 3, 4 . (3.53)

In this case the symmetry breaking pattern is

SU(5)×Z
ψ
30 −→ SU(2)× SU(2)×Z

ψ
2 , (3.54)

and the low-energy theory is described by 24 − 6 = 18 massless NG bosons. No massless

baryons are required, and are expected to appear.

Finally, let us check the conventional anomalies involving Z
ψ
30. In the UV, the anoma-

lies are

AUV

(
Z

ψ
30 [grav]

2
)
= 5 · 20 = 100 6= 0 mod 30 ,

AUV

(
[Zψ

30]
3
)
= 5 · 20 = 100 6= 0 mod 30 , (3.55)

and would not match in the UV and IR, implying a (at least) partial breaking of Zψ
30.

However, if the discrete symmetry is reduced to Z
ψ
2 by the bi-fermion condensates, then

the UV Z
ψ
2 anomalies vanish

AUV

(
Z

ψ
2 [grav]2

)
= 5 · 20 = 100 = 0 mod 2 ,

AUV

(
[Zψ

2 ]
3
)
= 5 · 20 = 100 = 0 mod 2 , (3.56)

and no contradiction arises.

3.2 SU(N) generalizations

We now consider the general case of SU(N) (N even) theory with Nf left-handed fermions

ψ in the self-adjoint, totally antisymmetric, one-column (of height n = N
2 ) representation.

The first coefficient of the beta function is

b0 =
11N − 2NfTR

3
. (3.57)
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For simplicity, we shall limit ourselves to the single flavor (Nf = 1) case below. The

generalization to general Nf is quite straightforward. For SU(N) one finds that the twice

Dynkin index (see appendix A) is given by

2TR =

(
N − 2

(N − 2)/2

)
: (3.58)

2TR and d(R) are given for some even values of N in table (3.59).

N 4 6 8 10 12

2TR 2 6 20 70 252

d(R) 6 20 70 252 924

. (3.59)

Thus SU(4), SU(6), SU(8), SU(10) models with Nf = 1 are asymptotically free, SU(12)

and higher are not. We shall limit ourselves to some of the asymptotically free theories.

ψ is neutral with respect to the ZC
N
2

symmetry, therefore the system possesses an exact

1-form:

Z
C
N
2

: ei
∮
A → e

2πi
N

k ei
∮
A , k = 2, 4, . . . N . (3.60)

At the same time, the anomaly-free global discrete symmetry is:

Z2TR
: ψ → e

2πi
2TR

j
ψ , j = 1, 2, . . . 2TR . (3.61)

We are interested to find out how this discrete symmetry is realized in the infrared, and

what the 1-form gauging of the center symmetry has to tell about it.

We introduce a 1-form gauge fields (B
(2)
c , B

(1)
c ) such that

N

2
B(2)

c = dB(1)
c . (3.62)

The anomaly can be evaluated from the Stora-Zumino 6D Abelian anomaly [43]

1

24π2
trR

(
F̃ −B(2)

c − dAψ

)3

=
2TR

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAψ + . . .

=
2TR

8π2
trF̃ 2 ∧ dAψ −

6N

8π2
(B(2)

c )2 ∧ dAψ + . . . (3.63)

so that the 5D effective action reads,

S5D =
2TR

8π2
trF̃ 2 ∧Aψ −

6N

8π2
(B(2)

c )2 ∧Aψ + . . . . (3.64)

The first term is clearly trivial, as

1

8π2

∫
trF̃ 2 ∈ Z, Aψ = dA

(0)
ψ , (3.65)

and

δA
(0)
ψ =

2πk

2TR
, k = 1, 2, . . . , 2TR , (3.66)
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which corresponds to the Z2TR
transformation of the ψ field in four dimensional action.

As for the second term of (3.64), as

−
2TR N

8π2

∫
(B(2)

c )2 ∈ −2TRN

(
2

N

)2

Z = −2TR
4

N
Z (3.67)

the phase of the partition function is transformed by

−
2πk

2TR
2TR

4

N
Z = −2πk

4

N
Z , k = 1, 2, . . . , 2TR , (3.68)

under Z2TR
: one sees that the 1-form gauging of the center ZC

N/2 has the effect of making

Z2TR
anomalous, in general. Stated differently, there is a mixed ’t Hooft anomaly between

the 1-form Z
C
N
2

gauging and 0-form Z2TR
symmetry. Its consequence depends on N in a

nontrivial fashion:

(i) For N = 4, the mixed anomaly disappears, as

4

N
= 1 . (3.69)

(ii) For N = 4ℓ, ℓ ≥ 2,
4

N
=

1

ℓ
, (3.70)

therefore the discrete symmetry is broken to

Z
ψ
2TR

−→ Z
ψ
2TR
ℓ

(3.71)

generated by

ψ → e
2πi
2TR

k
ψ , k = ℓ, 2ℓ, 3ℓ, . . . , 2TR . (3.72)

Note that for N = 4ℓ, 2TR is an integer multiple of ℓ (see appendix A).

(iii) For N = 4ℓ+ 2,

2TR ·
4

N
= 2TR ·

2

2ℓ+ 1
, (3.73)

therefore the breaking of the discrete symmetry is

Z
ψ
2TR

−→ Z
ψ
2TR
2ℓ+1

; (3.74)

only the transformations

Aψ = dA
(0)
ψ , δA

(0)
ψ =

2πk

2TR
, k = 2ℓ+ 1, 4ℓ+ 2, . . . , 2TR (3.75)

remain invariant. Note that for N of the form, N = 4ℓ+2, 2ℓ+1 is a divisor of 2TR

(see appendix A).
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Concretely, for SU(4) there are no mixed anomalies. SU(6) case has been studied in

detail above: the discrete symmetry (for Nf = 1) is broken as (3.13) by 1-form gauging.

For SU(8) the effect of the 1-form center symmetry gauging is

Z
ψ
20 −→ Z

ψ
10 , (3.76)

and for SU(10) is

Z
ψ
70 −→ Z

ψ
14 . (3.77)

The Fermi statistics allows, for N multiple of 4, (e.g., N = 4 or N = 8), a bi-fermion

condensate

〈ψψ〉 , (3.78)

which is gauge invariant. If such a condensate indeed forms the discrete symmetry is broken

more strongly, as

Z
ψ
20 −→ Z

ψ
2 . (3.79)

For N of the form, N = 4ℓ+2, ℓ ∈ Z, a bi-fermion Lorentz invariant condensate cannot

be gauge invariant. As discussed in SU(6) case, it is possible that in these cases dynamical

Higgs phenomenon occurs, with gauge noninvariant bi-fermion condensate in the adjoint

representation of SU(N). The system can dynamically Abelianize. The discrete symmetry

is again broken to Z
ψ
2 .

Finally, let us check the conventional anomalies involving Z
ψ
2TR

. In the UV, the anoma-

lies are

AUV

(
Z

ψ
2TR

[grav]2
)
= 1 · d(R) 6= 0 mod 2TR ,

AUV

(
[Zψ

2TR
]3
)
= 1 · d(R) 6= 0 mod 2TR , (3.80)

except for N = 4 (see table (3.59)). Thus the conventional discrete anomaly matching

requirement implies that some condensate forms in the infrared, breaking Z
ψ
2TR

sponta-

neously. The assumption of bi-fermion condensate and consequent spontaneous breaking

of Zψ
2TR

, (3.79), is compatible with the discrete anomaly matching condition.

Let us discuss these results from the point of view of the fractional instantons. If no

matter fields are present in the system, one can compactify the R4 space on a 4-torus T4 and

insert one unit of ’t Hooft flux in the first 2-torus (x1, x2) and another unit in the second 2-

torus (x3, x4). This object [45]–[47], sometimes called “toron”, has topological charge equal

to 1
N that of an ordinary instanton. In general we can insert n12 units of ’t Hooft flux in

the first 2-torus and n34 units in the second and this object has topological charge n12n34
N .

If the instanton breaks a certain chiral symmetry to a discrete subgroup U(1) −→ ZM this

is due to the presence of M fermion zero modes in the instanton background. A toron has a

smaller amount of zero modes, precisely M
N due to the index theorem and thus the discrete

symmetry is broken further to ZM
N
. It is known [9, 13] that gauging the 1-form center

symmetry is equivalent to putting the theory on a nontrivial background with fractional

instanton number.

Here we are interested in theories with matter fields, but with some residual center

symmetry. This means that fractional instantons can be constructed, but not of the one
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of the minimal charge. For the SU(N) (N even) theory with Nf left-handed fermions ψ

in the self-adjoint representation the remaining center symmetry is ZC
N
2

which means that

only even numbers of fluxes are allowed on each 2-torus. With n12 = n34 = 2 units of

fluxes we have a toron with charge 4
N . This can be combined with any integer number of

instanton charge to construct the minimal possible instanton charge gcd (4,N)
N and this is

4
N = 1

ℓ for N = 4ℓ and 2
N = 1

2ℓ+1 when N = 4ℓ+ 2. The symmetry is then broken as

U(1)ψ −→ Z
ψ
2TRNf

−→ Z
ψ

2TRNf
gcd (4,N)

N

(3.81)

first by the ABJ anomaly and instantons, and then by the gauging of the 1-form symmetry.

This result agrees with what was found above by use of the Z
C
N
2

gauge fields (B
(2)
c , B

(1)
c ).

More about these issues at the end, see Discussion (section 7).

4 Adjoint QCD

SU(N) theories with Nf Weyl fermions λ in the adjoint representation have been the object

of intense study, and our comments here will be brief. In this model, the color center 1-

form Z
C
N symmetry is exact, therefore can be entirely gauged. The system possesses also

a nonanomalous 0-form discrete chiral symmetry,

Z
λ
2NfN

: λ → e
2πi

2NfN
k
λ , k = 1, 2, . . . , 2NfN . (4.1)

We introduce a set of gauge fields

• Aλ: Z
λ
2NfN

1-form gauge field, to formally describe (4.1);

• B
(2)
c : ZC

N 2-form gauge field.

The Abelian 6D anomaly is

1

24π2

∫
tradj

(
F̃ −B(2)

c − dAλ

)3

=
2NNf

8π2

∫
tr(F̃ −B(2)

c )2 ∧ dAλ + . . .

=
2NNf

8π2

∫
trF̃ 2 ∧ dAλ −

2N2Nf

8π2

∫
(B(2)

c )2 ∧ dAλ . . . . (4.2)

As

Aλ = dA
(0)
λ , δA

(0)
λ ∈

2πi

2NNf
Z (4.3)

the first term is trivial (conserves Zλ
2NNf

); the second term gives

∆S(δA
(0)
λ ) ∈

2πi

N
Z , (4.4)

breaking the chiral discrete symmetry as

Z
λ
2NNf

−→ Z
λ
2Nf

(4.5)

– 17 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
8

in agreement with [5, 7, 10]. In this case the matter fields have no charge under the center

of the gauge group and so the torons can have the minimal topological charge 1
N of that

of the instanton, hence the breaking (4.5).

Let us briefly discuss the case of SU(2), Nf = 2 theory. The discrete chiral symmetry

Z
λ
8 is in this case broken by the 1-form Z

C
2 gauging to as

Z
λ
8 −→ Z

λ
4 , (4.6)

with

Z
λ
4 : λ → e

2πi
8

k λ , k = 2, 4, 6, 8 . (4.7)

In particular it means that the discrete chiral transformations

λ → e±
2πi
8 λ , (4.8)

which is an invariance of the standard SU(2) theory, becomes anomalous under the gauging

of ZC
2 , i.e., in the quantum SU(2)/Z2 theory.

A familiar assumption about the infrared dynamics of this system is [11] that a con-

densate

〈λ{IλJ}〉 6= 0 , SUf (2) −→ SOf (2) (4.9)

(I, J = 1, 2 being the flavor SUf (2) indices) forms in the infrared. It would break the

discrete chiral symmetry as Zλ
8 → Z

λ
2 , which leaves four-fold degenerate vacua. Note that

this symmetry breaking is stronger than that would follow from the 1-form gauging, (4.6).

The fact that the vacuum breaks the symmetry further with respect to what is expected

from (4.6) is a common feature, seen also in the previous section 3, and is perfectly ac-

ceptable.

Anber and Poppitz (AP) [10] however propose that the system instead develops a

four-fermion condensate of the form

〈λλλλ〉 6= 0 , with 〈λλ〉 = 0 , (4.10)

in the infrared, which breaks Z
λ
8 spontaneously to Z

λ
4 , leaving only doubly degenerate

vacua with unbroken SUf (2) symmetry. They assume that massless baryons of spin 1
2

B ∼ λλλ (4.11)

which is necessarily a doublet of unbroken SUf (2), appear in the infrared spectrum. It

is shown that all the conventional ’t Hooft and Witten anomaly matching conditions are

met by such a vacuum and with such low-energy degrees of freedom. The action of the

broken Z
λ
8/Z

λ
4 is seen to be realized in the infrared as a transformation between the two

degenerate vacua,

〈λλλλ〉 → −〈λλλλ〉 . (4.12)

Most significantly Anber and Poppitz note that the above hypothesis is consistent with

what is expected from the gauging of the 1-form Z
C
2 center symmetry, (4.6), this time just

with the minimal amount of breaking necessary.
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Let us check the conventional anomalies associated with the discrete symmetry in the

Anber-Poppitz scenario. Assuming the condensates of the form (4.10), the anomalies asso-

ciated with the unbroken Z
λ
4 symmetries must be considered. The anomalies Zλ

4 [SUf (2)]
2

and Z
λ
4 [grav]

2 have been already verified in [10] to match in the UV and in the IR, therefore

only the [Zλ
4 ]

3 anomaly remains to be checked. In the UV λ contributes

AUV

(
[Zλ

4 ]
3
)
= Nf · d(adj) = 2 · 3 = 2 mod 4 , (4.13)

whereas in the IR the baryons B gives

AIR

(
[Zλ

4 ]
3
)
= Nf · 33 = 2 · 27 = 2 mod 4 , (4.14)

therefore the matching works.

As in any anomaly-matching argument, these considerations only tell that a particular

dynamical scenario (in this case, (4.10)–(4.12)) is consistent, but not that such a vacuum is

necessarily realized. It would be important to establish which between the familiar SOf (2)

symmetric vacuum and the proposed SUf (2) symmetric one, is actually realized in the

infrared, e.g., by using the lattice simulations.

The adjoint QCD has been discussed extensively in the literature, by compactifying one

space direction to S1 and by using controlled semi-classical analysis [30], by direct lattice

simulations [31], and more recently, by applying the 1-form center symmetry gauging and

using mixed anomalies [5, 7, 10]. For more general approach, see [11], and for more recent

work on adjoint QCD, see [13, 14].

For Nf = 1 the system reduces to N = 1 supersymmetric Yang-Mills theory, where a

great number of nonperturbative results are available [35–38]. Note that for Nf = 1 SU(N)

theory, the breaking of the discrete symmetry (4.5) due to the 1-form gauging implies an

N fold vacuum degeneracy, in agreement with the well-known result, i.e., the Witten index

of pure N = 1 SU(N) Yang-Mills.

Another possibility is to start from the N = 2 supersymmetric SU(2) Yang-Mills

theory, where many exact results for the infrared effective theory are known [32–34]. It

can be deformed to N = 1 theory by a mass perturbation, yielding a confining, chiral

symmetry breaking vacua. For the exact calculation of gauge fermion condensates 〈λλ〉

from this viewpoint, see [40, 41]. The pure N = 2 theory can also be deformed directly to

N = 0 [12], to give indications about Nf = 2 adjoint QCD.

5 QCD with quarks in a two-index representation

Consider now SU(N), N even, with Nf pairs of “quarks” in symmetric (or antisymmetric)

representations. Namely the left-handed matter fermions are either

ψ, ψ̃ = ⊕ ¯ (5.1)

or

ψ, ψ̃ = ⊕
¯

(5.2)
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(the quarks in standard QCD are in ⊕ ¯ ). The first beta function coefficients are

b0 =
11N − 2Nf (N ± 2)

3
. (5.3)

The k = N
2 element of the center ZN does not act on ψ’s, i.e., there is an exact

Z
C
2 ⊂ Z

C
N (5.4)

center symmetry.15 On the other hand, there is a discrete axial symmetry

Z
ψ
2Nf (N±2) : ψ → e

2πi
2Nf (N±2) ψ , ψ̃ → e

2πi
2Nf (N±2) ψ̃ , (5.5)

preserved by instantons. The ± signs above refer to two cases eq. (5.1) and eq. (5.2),

respectively.

Let us consider for simplicity Nf = 1 and consider a 1-form gauging of the exact ZC
2 .

The external background fields are

• Aψ: Z
ψ
2(N±2) 1-form gauge field,

• B
(2)
c : ZC

2 2-form gauge field.

The last satisfies

2B(2)
c = dB(1)

c , B(1)
c → B(1)

c + 2λ , B(2)
c → B(2)

c + dλ . (5.6)

The 6D anomaly is

1

24π2
trRψ

(
F̃ −B(2)

c − dAψ

)3
+

1

24π2
trRψ̃

(
F̃ −B(2)

c + dAψ

)3
+ . . .

= −
2(N ± 2)

8π2
tr(F̃ −B(2)

c )2 ∧ dAψ + . . .

= −
2(N ± 2)

8π2
trF̃ 2 ∧ dAψ +

2N(N ± 2)

8π2
(B(2)

c )2 ∧ dAψ + . . . (5.7)

Now

2(N ± 2)

8π2

∫
trF̃ 2 ∈ 2(N ± 2)Z , (5.8)

Aψ = dA
(0)
ψ , δA

(0)
ψ ∈

2π

2(N ± 2)
Z2(N±2) , (5.9)

so the first term is trivial. By using

1

8π2

∫
(B(2)

c )2 =
1

4
Z , (5.10)

15This aspect has been considered by Cohen [48], in particular in relation with the possible existence of

an order parameter for confinement.
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the second term gives an anomaly

A = 2π
N

4
Z . (5.11)

This means that for N = 4ℓ there is no anomaly, whereas for N = 4ℓ+2 the 1-form gauging

breaks the discrete symmetry as

Z
ψ
2(N±2) −→ Z

ψ
N±2 (5.12)

with the subgroup

Z
ψ
N±2 : ψ → e

2πi
2(N±2)

ℓ
ψ , ψ̃ → e

2πi
2(N±2)

ℓ
ψ̃ , ℓ = 2, 4, . . . 2(N ± 2) (5.13)

that remains nonanomalous.

We can construct a toron with n12 = n34 = N
2 units of fluxes and thus topological

charge N
4 . For N multiple of 4 this is not fractional and thus we have no mixed anomaly;

for N = 4ℓ + 2, it can be combined with a suitable number of instantons to obtain the

minimal possible fractional charge 1
2 and this explains the breaking (5.12).

These results are consistent with the assumption that in the IR the condensate

〈ψψ̃〉 6= 0 (5.14)

forms, even though the bi-fermion condensate itself (5.14) breaks the discrete symmetry

more strongly,

Z
ψ
2(N±2) −→ Z

ψ
2 . (5.15)

6 Chiral models with N−4
k

ψ{ij}’s and N+4
k

χ̄[ij]’s

Let us consider now SU(N) gauge theories with Weyl fermions in the complex representa-

tion, N−4
k ψ{ij}’s and N+4

k χ̄[ij],

N − 4

k
⊕

N + 4

k

¯
, (6.1)

where k is a common divisor of (N − 4, N + 4) and N ≥ 5. With this matter content the

gauge anomaly cancels. Asymptotic freedom requirement

11N −
2

k
(N2 − 8) > 0 , (6.2)

leaves a plenty of possibilities for (N, k). Two particularly simple models which we analyze

in the following are:

(i) (N, k) = (6, 2): SU(6) theory with

⊕ 5
¯

; (6.3)

(ii) (N, k) = (8, 4): SU(8) model with

⊕ 3
¯

. (6.4)
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6.1 SU(6) theory with 21 ⊕ 5 × 15∗

Classical continuous flavor symmetry group is

SU(5)×U(1)ψ ×U(1)χ . (6.5)

The chiral anomalies are:

U(1)ψ [SU(6)]2 =
T

T
= N + 2 = 8 ,

U(1)χ [SU(6)]
2 =

5T¯

T
= 5(N − 2) = 20 , (6.6)

meaning that the charges with respect to the unbroken U(1)ψχ ⊂ U(1)ψ × U(1)χ symme-

try are

(Qψ, Qχ) = (5,−2) . (6.7)

The system has unbroken discrete groups also:

U(1)ψ −→ Z
ψ
8 , U(1)χ −→ Z

χ
20 . (6.8)

One might wonder if a subgroup of Z
ψ
8 × Z

χ
20 is contained in U(1)ψχ. In fact, U(1)ψχ

transformations

ψ → e5iαψ , χ → e−2iαχ , (6.9)

with

α =
2πk

40
, k = 1, 2, . . . , 40 , (6.10)

generate the subgroup

ψ → e
2πi
8

kψ , χ → e−
2πi
20

kχ (6.11)

of Zψ
8 ×Z

χ
20. The anomaly-free symmetry subgroup of U(1)ψ ×U(1)χ is

U(1)ψχ ×Z
ψ
8 ×Z

χ
20

Z40
∼ U(1)ψχ × Z4 (6.12)

(see (6.26) and (6.27) below). Actually, by considering the overlap with color center and

SUf (5) center, the correct anomaly-free symmetry group is:16

SU(5)×U(1)ψ ×U(1)χ

Z
C
6 × Z

f
5

−→
SU(5)×U(1)ψχ × Z4

Z
C
6 × Z

f
5

. (6.13)

Let us first check the ’t Hooft anomaly matching condition with respect to the con-

tinuous global symmetries, assuming that the vacuum possesses the full symmetry, (6.13).

The anomaly coefficients in the UV are

repr dim TF (r) [SU(5)]3 U(1)ψχ [SU(5)]
2 [U(1)ψχ]

3

21 0 0 0 2625

¯
15 · 5 1

2 15 1
2 · (−2) · 15 = −15 −600

16Here we do not gauge the full denominator of the global group, but only the exact subgroup of the

center symmetry. This will be done, for a simpler chiral gauge theory, in [20].
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and so in total:

AUV

(
[SU(5)]3

)
= 15 ,

AUV

(
U(1)ψχ [SU(5)]

2
)
=

1

2
· (−2) · 15 = −15 ,

AUV

(
[U(1)ψχ]

3
)
= 21 · 53 − 15 · 23 · 5 = 2025 . (6.14)

Let us investigate whether the system can confine without any condensates forming.

We ask if color-singlet massless “baryon” states can be formed which would saturate the

above anomalies. The only (simple) possibility is to contract the color as

¯
⊗

¯
⊗

¯
= (·) + . . . (6.15)

that is,

Bγ,I,J,K = ǫijlmnoχ
α,I
ij χβ,J

lm χγ,K
no ǫαβ (6.16)

where Greek letters are spin, small Latin are color, big Latin are flavor. A priori these can

belong to different SU(5) flavor representations,

⊗ ⊗ = + + + . (6.17)

Actually the first (completely antisymmetric) and the last (completely symmetric) are

both excluded by the statistics. We are left with a mixed representation . Its anomaly

content is

repr dim TF (r) [SU(5)]3 U(1)ψχ [SU(5)]
2 [U(1)ψχ]

3

40 11 16 11 · (−6) = −66 40 · (−6)3 = −8640

Clearly these baryons cannot reproduce the anomalies (6.14) due to the fermions in the UV

theory. We conclude that if the system confines in the IR, with a gapped vacuum (vacua),

the global symmetry (6.12) must be broken spontaneously, at least partially.

Let us check whether the 1-form gauging of a center symmetry can give any useful

information. In our system the surviving exact center symmetry is ZC
2 ⊂ Z

C
6 :

Z
C
2 : ei

∮
A → e

2πi
2

k ei
∮
A , k = 1, 2 . (6.18)

We gauge this 1-form symmetry and study its effects on the discrete symmetries, by intro-

ducing the fields

• Aψ: Z
ψ
8 1-form gauge field,

• Aχ: Z
χ
20 1-form gauge field,

• B
(2)
c : ZC

2 2-form gauge field.
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The last satisfies

2B(2)
c = dB(1)

c , B(1)
c → B(1)

c + 2λ , B(2)
c → B(2)

c + dλ . (6.19)

The 6D anomaly functional is

1

24π2
tr

(
F̃ −B(2)

c − dAψ

)3
+

1

24π2
tr¯

(
F̃ −B(2)

c − dAχ

)3

= −
8

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAψ −

20

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAχ + . . . . (6.20)

The relevant part of the 5D WZW action is

−
8

8π2

[∫
trF̃ 2 − 6 (B(2)

c )2
]
Aψ −

20

8π2

[∫
trF̃ 2 − 6 (B(2)

c )2
]
Aχ . (6.21)

Z
ψ
8 and Z

χ
20 transformations are expressed by the variations

Aψ = dA
(0)
ψ , δA

(0)
ψ =

2πk

8
; Aχ = dA(0)

χ , δA(0)
χ = −

2πℓ

20
, (6.22)

(k ∈ Z8, ℓ ∈ Z20). The integration over closed 4 cycles give

1

8π2

∫
trF̃ 2 ∈ Z ,

1

8π2

∫
(B(2)

c )2 ∈
Z

4
. (6.23)

Therefore one finds that both Z
ψ
8 and Z

χ
20 are broken by the 1-form Z

C
2 gauging:

Z
ψ
8 −→ Z

ψ
4 , Z

χ
20 −→ Z

χ
10 . (6.24)

δA
(0)
ψ =

2πk

8
, k = 2, 4, . . . , 8 , δA(0)

χ = −
2πℓ

20
, ℓ = 2, 4, . . . , 20 . (6.25)

Such a result suggests a nonvanishing condensate of some sort to form in the infrared, and

breaks the global symmetry at least partially.

Actually, a more careful analysis is needed to see which bifemion condensates may occur

in the infrared, in order to satisfy the mixed-anomaly-matching condition. The division by

Z40 in the global symmetry group, (6.12), is due to the fact that the subgroup (6.11) is

inside the nonanomalous Uψχ(1). The quotient

Z4 ∼
Z20 ×Z8

Z40
(6.26)

also forms a subgroup, which can be taken as

ψ → e2πi
2k
8 ψ = e2πi

k
4ψ ; χ → e−2πi 5k

20χ = e−2πi k
4χ , (6.27)

or as

δA
(0)
ψ =

2πk

4
, δA(0)

χ = −
2πk

4
, k = 1, 2, 3, 4 , (6.28)

in (6.21), (6.22).
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The action of Z40 on the 4D partition function can be obtained by setting k = ℓ =

1, 2, . . . , 40, in eq. (6.22), or the chiral transformations, eq. (6.27). The anomaly is propor-

tional to

−

(
8 ·

2πk

8
− 20 ·

2πk

20

)
1

8π2

[∫
trF̃ 2 − 6 (B(2)

c )2
]
= 0 : (6.29)

i.e., Z40 remains nonanomalous, even after 1-form gauging of ZC
2 is done.

On the other hand, Z4 is affected by the gauging of the center Z
C
2 symmetry.

From (6.28) and (6.21) one finds that the 4D anomaly is given by

− 3 · 2πk
1

8π2

[∫
trF̃ 2 − 6 (B(2)

c )2
]
= 2πk ·

(
Z+ 3 · 6 ·

Z

4

)
. (6.30)

Clearly Z4 is reduced to Z2 (k = 2, 4) by the 1-form gauging of ZC
2 .

Having learned the fates of the discrete symmetries

Z20 ×Z8 ∼ Z40 ×Z4 (6.31)

under the gauged 1-form center symmetry Z
C
2 , let us discuss now what their implications

on the possible condensate formation in the infrared are. Restricting ourselves to the three

types of bifermion condensates,

ψχ , ψψ, χχ , (6.32)

the MAC criterion might suggest some condensates in the channels

A : ψ
( )

ψ
( )

forming ;

B : χ

( ¯ )
χ

( ¯ )
forming

¯

;

C : ψ
( )

χ

( ¯ )
forming adjoint representation ; (6.33)

with the one-gluon exchange strengths (N = 6) proportional to,

A :
2(N2 − 4)

N
−

(N + 2)(N − 1)

N
−

(N + 2)(N − 1)

N
= −

2(N + 2)

N
;

B :
2(N + 1)(N − 4)

N
−

(N + 1)(N − 2)

N
−

(N + 1)(N − 2)

N
= −

4(N + 1)

N
;

C : N −
(N + 2)(N − 1)

N
−

(N + 1)(N − 2)

N
= −

N2 − 4

N
, (6.34)

i.e., 16/6, 28/6, 32/6, respectively. Among these the last channel is most attractive, and it

is tempting to assume that the only condensate in the infrared is

〈(ψχ)adj〉 6= 0 . (6.35)
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However, the mixed anomalies studied above require that at least two different types of

condensates be formed in the infrared. The breaking of Z8 (acting on ψ), Z20 (acting on χ),

and of Z4 (acting on both ψ and χ but not on the composite ψχ), precludes the possibility

that only one type of condensate, for instance, (6.35), is formed. Assuming that any two

of the condensates (6.33) or all of them, are formed, the discrete symmetries Z8, Z20, and

Z4 are all broken to Z2 and consistency with the implication of the 1-form gauging of ZC
2

is attained.

Actually, we cannot logically exclude the possibility that only one condensate (one

of (6.33)) is formed,17 part of the color and flavor symmetries survive unbroken, and the

associated massless composite fermions in the infrared might induce, through its own mixed

anomalies, breaking of the remaining unbroken part of discrete symmetries which is “not

accounted for” by the unique bifermion condensate. There are however too many unknown

factors in such an argument (which symmetry breaking pattern, which set of massless

baryons, etc.), to justify a more detailed discussion on this point.

In any case, we conclude that the color symmetry is broken at least partially (dynamical

Higgs phase), together with (part of) flavor symmetry. Other than this, the information

we possess at the moment is unfortunately not powerful enough to indicate in more detail

the infrared physics of this system.18

6.2 SU(8) theory with 36 ⊕ 3 × 28∗

The classical continuous favor symmetry of this model is

U(1)ψ ×U(1)χ × SU(3) . (6.36)

A nonanomalous U(1)ψχ ⊂ U(1)ψ ×U(1)χ symmetry has associated charges:

(Qψ, Qχ) = (9,−5) . (6.37)

The system has nonanomalous discrete groups:

U(1)ψ −→ Z
ψ
10 , U(1)χ −→ Z

χ
18 . (6.38)

To check the overlap between Z10 ×Z18 and U(1)ψχ set

e2πi9αψ = e
2πi
10

mψ , e−2πi5αχ = e
2πi
18

nχ . (6.39)

If we write α = k
90 we get k = m+ 10ℓ and −k = n+ 18m (k, ℓ,m ∈ Z). This has solution

for each m + n even. This means that if m + n is even k can be chosen such that the

Uψχ transformation cancel the discrete transformation. If instead m + n is odd k can be

17The possibility of symmetric vacuum with no condensate formation has been already excluded.
18Just for completeness, let us comment also on the conventional matching condition for the discrete Z4

symmetry, independently of the Z4 −Z
C
2 mixed anomalies discussed above. If Z4 is to remain unbroken in

the infrared, (3.20) requires for N = 4, that AIR−AUV = 0 mod 4. But AUV

(

[Z3
4]
)

= 21−5·15 = −54 6= 0,

mod 4, so a unique confining vacuum with mass gap (no condensates) is not consistent with the conventional

[Z4] anomaly matching conditions either. On the other hand, such a vacuum have been already excluded

on the basis of the standard anomaly matching conditions involving Uψχ(1) and SU(5).
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chosen to erase only one of them, e.g., choose k to cancel m and take n− k to be 9. So the

anomaly free symmetry group is:

SU(3)×U(1)ψχ ×Z2 (6.40)

where Z2 act as:

ψ → −ψ

χ → χ
or

ψ → ψ

χ → −χ
(6.41)

the two representation are equivalent because a U(1)ψχ transformation takes the former to

the latter.

The anomaly coefficients in the UV are:

AUV

(
[SU(3)]3

)
= 28 ,

AUV

(
U(1)ψχ [SU(3)]

2
)
=

1

2
· (−5) · 28 = −140 ,

AUV

(
[U(1)ψχ]

3
)
= 36 · 93 − 28 · 3 · 53 = 15744 . (6.42)

In our system no gauge invariant spin 1
2 baryons can be formed by using three fundamental

fermions. Barring the possibilities that some massless baryons made of more than three

fermion components, perhaps with gauge fields, saturate such anomalies, one is forced to

conclude that SU(3)×U(1)ψχ symmetry is broken in the infrared.

Let us first check the 1-form symmetry: this system has an exact ZC
2 center symmetry.

As usual we can introduce:

• Aψ: Z
ψ
10 1-form gauge field,

• Aχ: Z
χ
18 1-form gauge field,

• B
(2)
c : ZC

2 2-form gauge field,

where again:

2B(2)
c = dB(1)

c , B(1)
c → B(1)

c + 2λ , B(2)
c → B(2)

c + dλ . (6.43)

The anomaly polynomial is:

1

24π2
tr

(
F̃ −B(2)

c − dAψ

)3
+

1

24π2
tr¯

(
F̃ −B(2)

c − dAχ

)3

= −
10

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAψ −

18

8π2
tr
(
F̃ −B(2)

c

)2
∧ dAχ + . . . . (6.44)

The relevant part of the 5D WZW action is therefore

−
10

8π2

[∫
trF̃ 2 − 8 (B(2)

c )2
]
Aψ −

18

8π2

[∫
trF̃ 2 − 8 (B(2)

c )2
]
Aχ . (6.45)
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The integration over closed 4 cycles give this time

1

8π2

∫
trF̃ 2 ∈ Z ,

1

8π2

∫
(B(2)

c )2 ∈
Z

4
. (6.46)

Note that, in contrast to all other cases studied in this paper (except for the SU(4) model

in section 3.2), the 1-form gauging of the exact ZC
2 center symmetry this time does not lead

to the mixed anomalies, i.e., does not imply breaking of the discrete Zψ
10 or Z

χ
18 symmetries.

It does not give any new information on the infrared dynamics.

Because of the difficulties in satisfying the conventional ’t Hooft anomaly constraints,

one is led to believe that the symmetry of the model (6.40) is spontaneously broken in

the infrared, by some condensate. It is possible that the vacuum (or vacua) is (are) char-

acterized by four-fermion condensates, but the simplest scenario seems to be dynamical

Abelianization, triggered by a bi-fermion condensate,

〈ψχ〉 (6.47)

in color contraction

⊗
¯

= + . . . , (6.48)

i.e., in the adjoint representation of color SU(8). The global symmetries could be broken as

SU(3)×U(1)ψχ ×Z2 −→ SU(2)×U(1)′ψχ , (6.49)

where U(1)′ψχ is an unbroken combination of SU(3) and U(1)ψχ. In this case the system may

dynamically Abelianize completely [25, 26]. The conventional ’t Hooft anomaly conditions

are satisfied by the fermion components which do not condense and remain massless, in a

simple manner, as in the model considered in the previous subsection.

7 Discussion

In this paper symmetries and dynamics of several gauge theories which possess an exact

center symmetry have been studied. Let us consider a general setup which includes all the

cases studied here. We consider an SU(N) gauge theory with matter content consisting

of Weyl fermions ψi in representations Ri and multiplicities Nf,i with i = 1, . . . , nR where

nR is the number of different representations (in the cases discussed nR has been at most

2). We consider only cases in which the gauge anomaly cancels and where b0 is positive

(asymptotically free theories). Each U(1)ψi global symmetry is broken due to instantons as

U(1)ψi −→ Z
ψ
2TRi

Nf,i
. (7.1)

Every representation of SU(N) has a certain N -ality associated to it; that is the way

ψi transforms under the center of the gauge group Z
C
N and corresponds to the number of

– 28 –



J
H
E
P
0
1
(
2
0
2
0
)
0
4
8

boxes in the Young tableaux modulo N . Let n(Ri) be the N -ality of the representation Ri.

For example the fundamental representation has N -ality 1, the two-index representations

have N -ality 2 and the adjoint has N -ality 0. We then consider the greatest common

divisor between N and all the N -alities of the various representations

k = gcd
(
N,n(R1), n(R2), . . . , n(RnR)

)
. (7.2)

If k is greater than 1, then we have a nontrivial 1-form center symmetry Z
C
k . A toron can

be constructed with n12 = n34 = N
k units of ’t Hooft fluxes and it has topological charge

equal to
n12 n34

N
=

1

N

N2

k2
=

N

k2
(7.3)

that of the instanton. This can be combined with some integer (instanton) number to yield

the minimal possible topological charge

1

k̃
=

gcd
(
N2

k2
, N

)

N
. (7.4)

To see this, set

N = k n , n ∈ Z , (7.5)

then

k̃ =
N

gcd
(
N2

k2
, N

) =
kn

gcd (n2, kn)
=

k

gcd (n, k)
∈ Z . (7.6)

Now the toron charge is

N

k2
=

n

k
=

n/ gcd(n, k)

k/ gcd(n, k)
=

m

k/ gcd(n, k)
=

m

k̃
, m ≡

n

gcd(n, k)
∈ Z , (7.7)

where m and k̃ are coprime. Combining this with some instanton number q, one has

∃p, ∃q ∈ Z ,
N

k2
· p+ q =

m

k̃
· p+ q =

mp+ k̃q

k̃
=

1

k̃
, (7.8)

due to Bézout’s lemma.

If this is a fractional number, i.e. if k̃ is an integer larger than 1, we have general-

ized (mixed) anomalies of the type Z
ψ
2TRi

Nf,i
[ZC

k ]
2, and the discrete symmetry is further

broken as

Z
ψ
2TRi

Nf,i
−→ Z2TRi

Nf,i/k̃
. (7.9)

That k̃ is a divisor of 2TR can be shown, case by case, by using the formulas given in

appendix A, as has been verified in all cases encountered.

Note that the existence of a nontrivial center symmetry does not necessarily imply

the presence of generalized (mixed) anomalies, as k and k̃ may be different. We have seen

three examples in this paper, the SU(4) model in subsection 3.2, SU(4ℓ) cases in section 5,

and the SU(8) chiral model in subsection 6.2, where k̃ = 1 and where no mixed anomalies

arise.
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In all cases studied in the paper the presence of some bi-fermion condensates would

explain the anomaly matching by breaking the discrete chiral symmetry down to a suffi-

ciently small subgroup. Most of the time this subgroup is smaller than the minimal one

required, e.g., from matching of the mixed anomalies. In any event, the use of mixed and

conventional ’t Hooft anomaly matching constraints in general provides us with significant,

if not decisive, indications about the infrared dynamics of the theories.
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A The Dynkin index of some SU(N) representations

The Dynkin index TR is defined by

tr
(
taRt

b
R

)
= TR δab , (A.1)

where taR are the generators of SU(N) in the representation R. Summing over a = b,

one gets

d(R)C2(R) = TR (N2 − 1) ,
∑

a

taRt
a
R = C2(R)1d(R) , (A.2)

where d(R) is the dimension of the representation and C2(R) is the quadratic Casimir. For

the fundamental representation one has

C2(F ) =
N2 − 1

2N
, d(F ) = N , TF =

1

2
, (A.3)

and for the adjoint,

C2(adj) = N , d(adj) = N2 − 1 , Tadj = N ; (A.4)

these two are quite familiar. For a rectangular Young tableau the quadratic Casimir is19

C2(

k︷ ︸︸ ︷
f, . . . , f , 0, . . . ) =

kf(N + f)(N − k)

2N
, (A.5)

where f is the number of the boxes in a row and k the number of rows.

For the order n-antisymmetric representation, f = 1, k = n, it is

C2(R) =
n(N − n)(N + 1)

2N
. (A.6)

Taking into account the multiplicity

d(R) =
N(N − 1) · · · (N − n+ 1)

n!
=

N !

n!(N − n)!
, (A.7)

19See for example the book of Barut and Raczka [49], p. 259 (apart from a factor 1/2 which is included,

so that C2(F ) = (N2 − 1)/2N for the fundamental). See also [50] for reference.
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the Dynkin index of totally antisymmetric single column representation of height n is

given by

TR =
(N − 2)(N − 3) · · · (N − n)

2(n− 1)!
. (A.8)

For the special cases (of relevance in section 3) with N = 2n even, we have

C2(R) =
N(N + 1)

8
, d(R) =

(
N

N/2

)
, (A.9)

and

2TR =

(
N − 2

N/2− 1

)
=

(
2n− 2

n− 1

)
. (A.10)

By using this expression it is easy to see that for N = 4ℓ, n = 2ℓ, 2TR is a multiple of ℓ,

whereas for N = 4ℓ+2, 2TR contains 2ℓ+1 as a divisor. To prove it, note that the general

combinatoric number
(
m

r

)
=

m(m− 1) . . . (m− r + 1)

r!
=

m!

r!(m− r)!
, (A.11)

is always an integer. But (
m

r

)
=

(
m

r − 1

)
·
m− r + 1

r
(A.12)

and both
(
m
r

)
and

(
m
r−1

)
are integers. Therefore m − r + 1 is a divisor of

(
m
r

)
. Applying

this for N = 4ℓ one finds that

2TR =

(
4ℓ− 2

2ℓ− 1

)
(A.13)

has a divisor 2ℓ hence ℓ. For N = 4ℓ+ 2,

2TR =

(
4ℓ

2ℓ

)
(A.14)

has a divisor, 2ℓ+ 1.

For the symmetric representation of rank 2, f = 2, k = 1, so

C2(R) =
(N + 2)(N − 1)

N
. (A.15)

By taking into account the multiplicity,

d(R) =
N(N + 1)

2
, (A.16)

one finds

2TR = 2
d(R)C2(R)

N2 − 1
= N + 2 . (A.17)

For the symmetric representation of rank m, f = m, k = 1, so

C2(R) =
m(N +m)(N − 1)

2N
. (A.18)
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By taking into account the multiplicity,

d(R) =
(N +m− 1)!

m! (N − 1)!
, (A.19)

one finds

2TR =
d(R)C2(R)

N2 − 1
=

(N +m)!

(N + 1)! (m− 1)!
. (A.20)

2TR is a multiple of m, as can be shown following a similar consideration as (A.11)–(A.14).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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