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Abstract

In the world of complex systems, which are omnipresent in various domains
including economics, biology, and human-engineered systems, understand-
ing their behavior poses significant challenges. The crux of comprehending
these systems lies in the effective analysis of the data they produce, whose
methodologies are provided by data science. However, a notable challenge
in this realm is the confrontation with partial information which, if not
addressed judiciously, can lead to biased interpretations or misconceptions.

This thesis is structured into five main chapters: the first provides a
broad introduction to the main topics of this work. The second chapter
studies opinion dynamics across various social media platforms by defin-
ing an opinion dynamics model on a multiplex network, highlighting the
interplay of multiple platforms in shaping opinions. It underscores the im-
portance of considering the different network layers, corresponding to social
media platforms, when analyzing how users interact and shape their opin-
ions. I find that empirical studies focusing on a single platform, neglecting
interactions on other layers, can result in misleading conclusions. Moreover,
by considering the richer picture given by this multi-platform opinion dy-
namics model, segregation of extreme from moderate users emerges. The
subsequent chapter concerns the Generalized Maximum Entropy Principle
(GMEP), a general principled technique for treating partial information.
I will introduce the uninformativeness axiom, which when applied to the
Uffink-Jizba-Korbel or the Hanel-Thurner families of entropies selects only
Rényi entropy as viable, bridging the consistency between the GMEP and
the Maximum Likelihood (ML) principles. I will also showcase the po-
tential of ML in estimating the entropic parameter characterizing Rényi
entropy, providing numerical examples supporting my theoretical findings.
The fourth chapter regards nonlinear data compression, where I will intro-
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duce a generalized Arithmetic Coding scheme to encode sequences in order
to minimize the exponential average codeword length. Moreover, I will pro-
vide a simple yet general justification for the employment of the exponential
average, instead of the linear one. Namely, if the main interest is to reduce
the probability of exceeding a given codewords’ length threshold, I find that
the exponential average is the target quantity to minimize. All my theo-
retical findings will be supported and confirmed by applications on both
simulated i.i.d. and real correlated data. In the last chapter, I will briefly
summarize my results.

In essence, this thesis addresses the challenges posed by complex sys-
tems to data science, offering insights and methodologies to treat complex-
systems-generated data, which are often fragmentary.
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Chapter 1

Introduction

Many systems arising from human interactions and behavior, such as those
emerging in the realms of economics and social sciences, as well as ecological,
biological or communication systems, pose big challenges in terms of their
description and comprehension. The reason is that they are composed by a
huge number of units interacting in a nonlinear and often non-stationary
fashion, exhibiting particular properties such as self-organization, emer-
gence of power-law distributions, spontaneous order, nonlinear feedbacks
and phase transitions [1, 2, 3, 4]. Such intricacy has led to the coining of
the term Complex Systems to aptly describe the nature of these systems.
The basis for our understanding of complex systems is the analysis of the
data generated by their behavior. Designing effective experiments, collecting
data, visualizing them, extracting meaningful information, recognizing noise
and designing models are all tasks for which data science provides tools [5].
It encompasses a broad spectrum of methodologies, from statistical learning
to data compression, equipping us with instruments necessary to tease out
meaningful insights from the data.

However, in many instances, the data we gather from complex systems
are only partial, representing only a fraction of the intricate web of inter-
actions and components. Such partial information poses the risk of intro-
ducing biases, misconceptions, or oversimplifications that may distort our
understanding of the system under consideration [6, 7]. It is, therefore, im-
perative to approach the analysis with caution, considering that data might
not be exhaustive and that unobserved correlations can exist. Ignoring or
downplaying the potential influence of these hidden dependencies could lead
to skewed interpretations and misguided decisions.

A powerful tool to approach the challenges posed by having access to
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partial observation is the Maximum Entropy Principle. Originating from
the realm of physics [8], this principle has found its rigorous footing in infor-
mation theory and a fertile application terrain in the domain of data science,
particularly within the confines of statistical inference [9, 10]. Its strength
lies in its unbiased approach. The maximum entropy principle allows to as-
sign a probability distribution to the microscopic states of a system, which
is compatible with the available macroscopic data and maximally non com-
mittal with respect to missing information [8]. Its applicability ranges from
constructing appropriate null models to test hypotheses, to probabilistically
reconstruct the properties of systems based on limited or fragmented infor-
mation [11]. Central to this technique is the maximization of an entropy
functional. In its classical formulation, such functional is represented by the
Shannon entropy, which quantifies the inherent randomness of system’s re-
alizations [12]. Its theoretical foundations lie on the four Shannon-Khinchin
(SK) [13] axioms or the five Shore-Johnson (SJ) [9] axioms, so, while it is
undeniably useful and appropriate in many situations, its applicability is
bounded by the conditions imposed by these axioms. In practice, many
complex systems do not respect all the SK or SJ axioms because of the
aforementioned dependencies. This incompatibility has motivated the ex-
ploration of entropies beyond the classical Shannonian framework [10, 14].
In fact, by relaxing some of the traditional axioms, scholars have obtained
generalized definitions of entropy, finding resonances across physics, infor-
mation theory, and statistical inference. Among the generalized entropies,
two names stand out, both for their distinct approaches and their broad ap-
plications: Rényi entropy [15] and Tsallis entropy [16]. These two entropies
provide unique perspectives and tools, and are appropriate in situations
where the classical Shannon entropy might fail.

Another pivotal challenge in data science revolves around the effective
storage and transmission of data generated by complex systems. Examples
include time series, quantum systems, and human-engineered system, as well
as specialized applications like DNA coding or transmissions with limited
buffer capacity [17, 18, 19, 20]. In the context of data compression, Shannon
entropy has been a pillar, representing the minimum attainable average
codeword length (i.e. length of a symbol or sequence after compression).
Nonetheless, in many of these applications, it is more desirable to minimize
a generalized average codeword length. Specifically, the emphasis shifts
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towards the exponential average (whose precise meaning will be clarified
later), where the Shannon entropy is replaced by the Rényi entropy, the
latter being the lowest achievable exponential average codeword length.

In this work I will cover the challenges posed by complex systems to
Data Science by analyzing three distinct aspects. First, I will give an ex-
ample on how partial information can lead to deceptive conclusions in the
realm of opinion dynamics. Then, I will outline the Generalized Maximum
Entropy Principle, a more general and principled method to deal with such
partial information. Furthermore, I will introduce, validate and motivate
a nonlinear compression algorithm which achieves the Rényi entropy with
arbitrary precision. The rest of the thesis is structured as follows.

In Chapter 2, based on [21], I will provide exhaustive evidence of how
partial information can lead to misleading conclusions. The focal point
of this chapter is the study of how the interplay of various social media
platforms shapes opinion dynamics. While a multitude of research predom-
inantly focuses on users’ interactions within a single platform (for instance,
Facebook), such approach may overlook the fact that users distribute their
attention (or time) across multiple platforms. The evolution of their opin-
ions and believes is then shaped by interactions on various platforms, not
just one. To encapsulate this complex interplay, I will introduce a model of
opinion dynamics on a multiplex network, where each layer corresponds to
a social platform. Herein, I will explore how opinions evolve due to users
interacting on different social media. I will challenge a study from Facebook
which posits that their recommendation algorithm, promoting like-minded
content, has negligible influence on political attitudes. This study suggests
that political polarization may not be caused by an homophilic recommenda-
tion system. However, I will show that the existence of numerous platforms
with distinct algorithms can perpetuate polarization. For instance, while
Facebook might be diversifying its content, strong homophilic recommenda-
tion systems on another platform (like Twitter) can sustain polarized views.
Hence, even if one platform shifts its approach, the broader ecosystem of
interconnected platforms can maintain certain biases and trends. Moreover,
the multiplex opinion dynamics model unveils a segregation of users among
different platforms, where the extremes separate from the moderates. This
effect, which is in qualitative agreement with the literature, shows how the
picture enriches by considering the different layers over which interactions

4



can take place.
In Chapter 3, based on [22], I will focus on the practical approach for

handling partial information, delving into the problem of inferring statis-
tical properties of systems when only partial information about them is
available. I will present a brief review of the classical maximum entropy
principle. This principle inherently assumes that if two separate pieces of
information pertain to distinct parts of a system, these parts are then sta-
tistically independent. However, such assumption often falls short in the
realm of complex systems. As a result, generalized entropy families are intro-
duced to account for these intricacies. Within this context, I will introduce
an uniformativeness axiom: namely, no entropic parameter characterizing
generalized entropies can be inferred from a uniform probability distribu-
tion. This axiom, when applied to an entropic family, distinctly identifies
a member from within that family. When applied to the widely recognized
Uffink-Jizba-Korbel or Hanel-Thurner entropy families, it selects the Rényi
entropy. This axiom serves a dual purpose — not only does it pinpoint the
Rényi entropy, but it also retrieves the consistency between the maximum
entropy and maximum likelihood principles. Moreover, I will illustrate how
the maximum likelihood principle can be adeptly employed to estimate the
entropic parameter that characterizes Rényi entropy.

In Chapter 4, based on [23], I will delve into the intricate matter of non-
linear data compression. While the conventional objective in encoding is to
minimize the average length of encoded symbols (i.e. codewords), aiming at
achieving a value close to the Shannon entropy, there are situations where
the goal can shift towards minimizing the Kolmogorov-Nagumo exponen-
tial average codeword length. The optimum in such scenarios is given by
the Rényi entropy. I will introduce an operational scheme, built upon a
generalized version of the well-established Arithmetic Coding algorithm, to
encode sequences of symbols in order to minimize the exponential average
codeword length. I will provide rigorous analytical proofs, demonstrating
that the proposed algorithm achieves the Rényi entropy with vanishing er-
ror. The chapter will be enriched with comprehensive examples, shedding
light on the method’s efficacy, regarding both i.i.d. and correlated symbols,
the latter coming from real English language. Moreover, I will provide a
further explanation for minimizing the exponential average. In particular,
if the encoder’s priority is to minimize the probability that the codewords’
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length exceed a certain threshold, the exponential average emerges naturally
due to its connection with the cumulant generating function of the source
distribution, in turn related to the probability of large deviations.

Finally, in Chapter 5, I will briefly review the main results of my work.
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Chapter 2

Social media battle for attention:
opinion dynamics on competing networks

This chapter is based on: A. Somazzi, G. M. Ferro, D. Garlaschelli, and S. A.
Levin. Social media battle for attention: opinion dynamics on competing networks.
Available at https://arxiv.org/abs/2310.18309.

In the age of information abundance, attention is a coveted resource. Social me-
dia platforms vigorously compete for users’ engagement, influencing the evolution
of their opinions on a variety of topics. With recommendation algorithms often
accused of creating “filter bubbles”, where like-minded individuals interact pre-
dominantly with one another, it’s crucial to understand the consequences of this
unregulated attention market. To address this, we present a model of opinion dy-
namics on a multiplex network. Each layer of the network represents a distinct
social media platform, each with its unique characteristics. Users, as nodes in this
network, share their opinions across platforms and decide how much time to allo-
cate in each platform depending on its perceived quality. Our model reveals two key
findings. i) When examining two platforms — one with a neutral recommendation
algorithm and another with a homophily-based algorithm — we uncover that even if
users spend the majority of their time on the neutral platform, opinion polarization
can persist. ii) By allowing users to dynamically allocate their social energy across
platforms in accordance to their homophilic preferences, a further segregation of
individuals emerges. While network fragmentation is usually associated with “echo
chambers”, the emergent multi-platform segregation leads to an increase in users’
satisfaction without the undesired increase in polarization. These results under-
score the significance of acknowledging how individuals gather information from a
multitude of sources. Furthermore, they emphasize that policy interventions on a
single social media platform may yield limited impact.
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2.1 Introduction

In our contemporary landscape, online social networks have evolved into piv-
otal platforms for the acquisition of political news [24, 25]. These modern
communication platforms have several advantages for democracy: they sim-
plify access to information, boost citizen participation, enable individuals to
express their views, counteract misinformation, and enhance transparency
and responsibility in political actions. Ideally, individuals can tap into so-
cial media to encounter a range of ideological perspectives and consequently
make more informed choices [26, 27, 28]. An extensive literature, empirical
[29, 30, 31, 32, 33, 7] and theoretical [34, 35, 36, 37], pertains to how so-
cial media influence opinion dynamics, fostering (or not) the appearance of
“echo-chambers” where individuals are mainly connected with like-minded
peers. Echo chambers are often believed to stem from the recommendation
systems utilized by social media platforms, which tend to link individuals
with similar views. This phenomenon contributes to the rise of opinion po-
larization [31]. Furthermore, these automated algorithms interact with the
cognitive limitations of individuals, who tend to gravitate towards informa-
tion that aligns with their existing beliefs and actively avoid contradictory
information [38]. It is thus crucial to distinguish between the influence of
algorithms and inherent human tendencies when examining the genesis of
echo chambers. A recent empirical study [7] has shown how increasing the
amount of cross-cutting content on Facebook does not significantly alter
political opinions, thereby suggesting that social media recommendation al-
gorithms may not contribute to opinion polarization. They note however
that political information on Facebook is mainly incidental (6.7% of the to-
tal news consumption), and thus people might get political information from
other sources. More in general, the above cited studies focus on the effect
of only one social media platform, while contemporary news consumption is
characterized by its reliance on a multitude of sources [39]. People exhibit
different news repertoires depending on a variety of needs [40, 41, 42]. Sev-
eral scholars [43, 44, 45] stress that an adequate study of political opinions
must consider the interplay between news repertoires and political commu-
nication processes.

Here, we answer to the following question: what are the implications of
social media platforms competing for users’ attention on opinion dynamics?
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To address this, we develop a model of opinion dynamics which integrates
three main ingredients. i) People can connect on different platforms, each
platform represented by a layer in a multiplex network. These networks differ
in their recommendation algorithms (a single parameter representing its
homophily) and in their political focus. ii) Users’ opinions evolve according
to a well-known non-linear model [37], on the basis of interactions taking
place on the multiplex. Opinions depend on the social interaction strength,
issue controversy and the heterogeneous activity profile on social media.
iii) Users allocate their time among the different social media platforms,
depending on their personal preferences and limited information processing.

Our model provides two pivotal insights. Firstly, when considering two
platforms — one governed by a neutral recommendation algorithm and the
other by a homophily-centric algorithm — we find that even with a user ma-
jority on the neutral platform, opinion polarization can endure. Secondly, as
users dynamically allocate their social engagement across platforms based on
their (strong or weak) homophilic inclinations, agents manifest a pronounced
separation across platforms. While most associate network fragmentation
with “echo chambers”, this emergent multi-platform segregation boosts user
satisfaction without increasing polarization. These findings highlight the im-
portance of recognizing the multifaceted avenues through which individuals
assimilate information.

2.2 Results

As detailed in Sec. 2.4, we consider a system composed by Γ social plat-
forms populated by N agents (see Fig. 2.1) having continuous opinions
xi(t) ∈ (−∞,+∞), i = {1, ...N}. The opinions evolve according to xi̇ =
−xi+

∑︁Γ
γ=1

(︁
K(γ)∑︁N

j=1A
(γ)
ij (t) tanh (cxj)

)︁
, a generalization of a well-known

model [46]. In absence of social interactions, i.e. the second addend on the
r.h.s. equals zero, all opinions relax to x∗ = 0. This assumption allows
us to study the network influence on opinions, isolating it from the other
possible causes of polarization such as identity politics [47], cognitive biases
[48, 35] and economic inequality [49]. The tanh(cx) term reflects the fact
that the opinion change for each interaction is limited. The parameter c rep-
resents how controversial a topic is. For c high enough, all opinions equally
contribute to the dynamics since | tanh(cx)| saturates to 1, meaning that
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people are maximally susceptible to be socially influenced. On the other
hand, if c is very small, only users with extreme opinions are effectively able
to influence others. The platform-dependent parameter K(γ) represents the
social interaction strength. The larger K(γ), the larger opinions change as
a consequence of given interactions. Its platform-dependence captures the
idea that, for a given topic, users may consider a platform more “appropri-
ate” than another. For instance, since the exposure to political content on
Facebook is often incidental [7], while users tend to consume more political
news on Twitter [50, 51], it is reasonable to assume that, in the realm of
politics, Facebook social interaction strength K(FB) is lower than Twitter
K(TW ). This results in users giving less credit to the political news they are
exposed on Facebook.

Figure 2.1: Opinion dynamics on a multiplex network. Dashed lines indicate that
the same nodes (users) are shared among the layers. In this example, every active
user (blue dots) contacts m = 2 passive users (yellow dots). A passive user can
reciprocate a link with probability r (see Sec. 2.4). A user can be both active and
passive on the same platform (green dots), or not engaging at all in social media
activity (white dots).

The opinion dynamics model evolves on a multiplex directed network,
where each layer represents a single social platform, as pictured in Fig 2.1.
At every time step (see Sec. 2.4 and Appendix 2.6.1 for further details), user
i can be active (news producer), passive (news consumer) or both with prob-
ability ai, pi and aipi respectively. Conditional on being active (resp. pas-
sive), user i chooses a platform γ with probability ρ(γ)

i . Note that he might
be active on platform γ and passive on platform γ′, each with probability ρ(γ)

i

and ρ(γ′)
i , respectively. Active users on a platform/layer contact passive users
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on the same platform/layer. The probability that a γ-active user i contacts a
γ-passive user j on platform γ at time t is q(γ)

ij (t) ∝ |xi(t)−xj(t)|−β
(γ) , lead-

ing to A(γ)
ji (t) = 1. The exponent β(γ) represents the degree of homophily of

the recommendation engine of platform γ.
The model with a single platform (Γ = 1) has been studied in [46].

Figure 2.2 shows the main qualitatively different dynamics that the model
exhibits, as a function of the different parameters, obtained initializing the
opinions uniformly in [−1,+1]. Specifically, when K(1) = K is small, social
interaction is negligible and opinions relax to 0 (Fig. 2.2(a)). If instead
social coupling is relevant (K = 3), but no homophilic recommendation
engine is present (β = 0), a one-side radicalization appears where all the
opinions have the same sign (Fig. 2.2(b)). When both K and β are big
enough, opinions split into two opposite sides. The intuition is that with
β ̸= 0 agents tend to connect only with like-minded peers, an interaction
which further polarizes users’ stance. This effect makes it even more likely to
connect with like-minded individuals; this vicious cycle fosters polarization
(a more exhaustive phase diagram for the single-platform model is reported
in [46]). Note that this phase manifests only if opinions are initialized with
different signs. Otherwise, there is no range of parameters which leads to
polarization.

As anticipated in Sec. 2.1, we ask whether polarization can persist when
users spend a tiny fraction of their time on politically-oriented social media
with an homophilic recommendation engine, while engaging the rest of their
time on a politically neutral platform. To explore this scenario, we consider
Γ = 2 platforms and stationary and homogeneous allocation probabilities,
i.e. ρ

(γ)
i (t) = ρ(γ) for all i and for γ = {1, 2}. Clearly, ρ(1) + ρ(2) = 1.

Both the assumptions of stationarity and homogeneity will be later relaxed.
Platform 1 has a set of parameters such that, if users were only there, opin-
ions would converge to neutral consensus (β(1) = 0 and K(1) small). On
the other hand, platform 2 is assumed to adopt an homophilic recommen-
dation engine, which translates in β(2) ̸= 0. The social interaction strength
K(2) is left as a varying parameter, meaning that platform 2 could have ex-
hibited both neutral consensus or polarization if it were the only platform,
depending on its value. We are then interested in exploring the opinion
dynamics for different values of ρ(1) and K(2). The former represents how
long users engage on platform 1 (the “politically neutral” platform); the lat-
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Figure 2.2: (a) Neutral consensus, all opinions converge to zero (K = 0.3, β = 0).
(b) (One-sided) radicalization (K = 3, β = 0). (c) Opinion polarization, in which
opinions split into two opposite sides (K = 3, β = 2). Topic controversiality and
reciprocity were set to c = 3 and r = 0.5.

ter captures how “polarizing” platform 2 is. We define the rescaled vector
of opinions at equilibrium as x = { x

(eq)
1

K(1)ρ(1)+K(2)ρ(2) , . . . ,
x

(eq)
N

K(1)ρ(1)+K(2)ρ(2) } in
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order to compute a set of three metrics which allow us to distinguish differ-
ent opinion phases. In particular, such metrics are the standard deviation
of the opinions σ(x), the absolute value of the average opinion |µ(x)| and
the absolute value of the average opinions’ sign |⟨sign(x)⟩|. In Figure 2.3
we show the results of our analysis for β(1) = K(1) = 0 and β(2) = 3. We
can observe three main phases. i) Neutral Consensus (σ(x) ≈ 0, µ(x) ≈ 0),
observable when platform 2 is not polarizing enough (i.e. K(2) not high
enough) w.r.t. the time spent on the neutral platform 11. ii) Radicalization
(|µ(x)| >> 0, ⟨sign(x)⟩ = 1) is evident by the fact that all opinions share the
same sign. Such phase is driven by an initial relaxation towards xi(t) ≈ 0 ∀i
due to the neutral platform. Then, when close to 0, opinions start to share
the same sign and are progressively amplified by the polarizing (now, rather,
radicalizing) platform. iii) Polarization (σ(x) >> 0, ⟨sign(x)⟩ < 1) emerges
if platform 2 can sustain diverging opinions, i.e. if K(2) is big enough to
off-set the time users spend on the neutral platform ρ(1). The take home
message is that polarization can persist even when users spend most of their
time on a politically neutral platform (ρ(1) > 0.5), thus suggesting the im-
portance of considering that users gather information from different sources.
In Fig. 2.5 of the Appendix 2.6.2, we show a similar phase diagram for a
different value β(2). The qualitative picture remains the same.

The above results are obtained by assuming that users’ taste for social
media platforms may depend on factors which are not captured in the model
(e.g. better user interface), therefore we had an homogeneous and station-
ary allocation probability ρ = {ρ(1), ρ(2)}. Hereafter, we suppose that users
dynamically choose their Social Media Repertoire (SMR), depending on the
perceived political quality of platforms. Based on the psychological theory of
optimal distinctiveness [52], we imagine that each user looks for a trade-off
between assimilation (homophily) and differentiation (debate). As detailed
in Sec. 2.4.3, we capture such desired balance into the (user-dependent)
parameter ϕi, which represents the desired fraction of “far” opinions (i.e.
contributing to differentiation) user i wants to be exposed to. In particular,
inspired by bounded confidence theory [53], user i considers “far” opinions
those x such that |xi − x| > r. The others are considered “close” opinions,
contributing to assimilation. Thus, while in bounded confidence theory users

1The neutral consensus phase can have both |⟨sign(x)⟩| ≈ 0 and |⟨sign(x)⟩| ≈ 1, as the
opinions never really reach exactly 0.
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Figure 2.3: Allocation diagram. In all the four panels, on the horizontal axis
the social interaction strength of the polarizing platform, and on the vertical axis
the time spent on the neutral platform. (a) Standard deviation of the opinions;
(b) Absolute value of average opinion; (c) Absolute value of average opinions’ sign;
(d) Phase diagram. Panel (d) is obtained through “filtering” panels (a)-(b)-(c)
according to the conditions detailed in the main text. In short: i) NC corresponds
to σ(x) ≈ 0 and µ(x) ≈ 0). ii) R corresponds to |µ(x)| >> 0 and ⟨sign(x)⟩ = 1.
iii) P corresponds to σ(x) >> 0 and ⟨sign(x)⟩ < 1.
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do not engage with peers having far opinions, we relax this hypothesis by
introducing ϕi, which can be seen as user i’s desired probability to contact
a distant peer. The idea is to capture the observed desire of debate. Indeed,
as reported in [54], despite the general tendency for social media networks to
form homogeneous communities, networks formed through reply-to messages
reveal a users’ stance heterophily, with individuals using replies more often
to express divergent opinions. We define the utility (i.e. satisfaction) of each
user as Ui(t) = −(fi(t) − ϕi)2, where fi(t) is the fraction of distinctiveness
experienced by user i, which is compared to the desired one. Clearly, fi(t)
depends on the SMR of user i (i.e. ρi(t) = {ρ(γ)

i (t)}Γγ=1), since user’s expo-
sure to distinctiveness and assimilation depends on the connections formed
on each platform, which in turn depend on his allocation probability. We
assume therefore that user i dynamically updates ρi(t) in order to maximize
his Ui(t) (see Sec. 2.4.3 and Appendix 2.6.1 for additional details).

In the context of platforms’ battle for users’ attention, social media are
interested in maximizing users’ satisfaction (which translates in higher ac-
tivity, thus revenue). We will now show how a market populated by two
platforms achieves higher average satisfaction without the undesired draw-
back of increasing polarization. This is surprising, as one would expect
that the additional degree of freedom increases social fragmentation, thus
increasing polarization.

Suppose that each platform can vary its characteristics by tuning its
β(γ)2. First, we consider a single platform (i.e. Γ = 1) and consider
K = c = 3, r = 2 and ϕi = 0.2 ∀i. In this setting, the highest single-platform
average utility ⟨U⟩1 is reached in β∗ = 3, i.e. ⟨U⟩Γ=1(β∗) = ⟨U⟩1. On the
other hand, a market populated by Γ = 2 platforms can result in an higher
satisfaction. Figure 2.4 summarizes our results by showing the variation of
average utility and standard deviation in passing from Γ = 1 to Γ = 2 for
different values of β(1) and β(2). In particular, we define ∆⟨U⟩(β(1), β(2)) =
⟨U⟩Γ=2(β(1), β(2))− ⟨U⟩1 and ∆σ(x;β(1), β(2)) = σΓ=2(x;β(1), β(2))− σ1(x),
where σ1(x) = σΓ=1(x;β∗). Even if in the figure we reported, for the sake
of completeness, the values corresponding to β(1) = 0 or β(2) = 0, in the
following discussion we are going to neglect those points. The reason is
that they correspond to a radicalized regime, which is highly undesired in

2We assume that K(γ) = K for all γ, implying that they all have the same political
focus.
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Figure 2.4: Relative increment passing from Γ = 1 to Γ = 2 platforms of (a)
satisfaction and (b) opinions’ standard deviation. Neglecting the first row and the
last column (β(1) = 0 or β(2) = 0), which correspond to a radicalized regime,
for “moderate” values of homophilic algorithm (e.g. β(1) = 1 and β(2) = 2), an
increased satisfaction (≈ 40%) is clear. Moreover, in such points, the standard
deviation relative increse in negligible (≈ 0%). For very high values of homophilic
recommendations (e.g. β(1) = 5 and β(2) = 5), the satisfaction drops significantly
while the standard deviation increases, making this the worst possible scenario.

a democracy, which lies on dialogue and debate. Thus, restricting the at-
tention to(β(1), β(2)) ∈ [1, 5]2, the average utility increases for many couples
of values with respect to the best possible single-platform average utility.
The reason is that users can dynamically change their SMR, thus allocat-
ing their time among platforms to satisfy their desired differentiation ϕ.
Moreover, focusing our attention on the point (β(1) = 2, β(2) = 1) (or,
by symmetry, (β(1) = 1, β(2) = 2)), which is arguably very close to the
two-platform optimum, we can see that the corresponding variation of po-
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larization is almost zero, i.e. ∆σ(x; 2, 1) ≈ 0. As we show in Fig. 2.6,
the explanation for higher satisfaction without increasing polarization is the
emerging quasi-segregation between moderate and extreme opinions. The
moderate individuals, in absence of the extreme ones who populate another
platform, get radicalized less, effectively reducing polarization. This is in
qualitative agreement with findings on media habits and opinion stance,
where individuals at both the left and right ends of the spectrum tend to be
clustered around a single media source3 [55]. So, by focusing only on users’
satisfaction, the competition of platforms brings notable benefits. Finally,
the points for which satisfaction decreases with respect to Γ = 1 are those
where both β(1) and β(2) are large enough. In this regime, users connect
only to very close peers, and can not find an alternative, cross-cutting plat-
form. Thus, they cannot satisfy their desire for differentiation encapsulated
in ϕ = 0.2. In Appendix 2.6.4 Fig. 2.7 we show an alternative situation,
where ϕ = 0.1. In that case, users’ desire for differentiation is too low and
maximizing the utility leads to an increased polarization.

2.3 Discussion

Online social networks have become crucial for political news consumption
[24, 25]. Existing studies [29, 30, 31, 32, 33, 7, 34, 35, 36, 37] explore the im-
pact of recommendation algorithms on opinion dynamics, with some findings
on Facebook’s limited influence [29, 7]. However, news consumption spans
various platforms [39], and individual preferences [40] play a role. It is
thus crucial to consider the interplay between news repertoires and political
communication processes to understand political opinions fully.

Here we show that when examining two platforms — one with a low
political focus and a neutral recommendation algorithm, and another more
politically oriented with a homophily-based algorithm — even if users spend
the majority of their time on the neutral platform, opinion polarization can
persist. This result casts some doubts on the generality of conclusions drawn
from the recent study on the impact of Facebook recommendation algorithm
on political opinions [7], which shows that people’s political attitudes did
not significantly change when they were exposed to more diverse content.

3Note however that there are some important differences between liberals and conser-
vatives that the model cannot capture
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Indeed, the consumption of political news on Facebook is incidental (low
political focus), and the polarization might originate from (little) time spent
on other news sources.

When we allow users to dynamically optimize their satisfaction by ad-
justing their SMR, the further segregation of individuals brought by multiple
platforms leads to an increase of global satisfaction without, unexpectedly,
an increase of polarization, with respect to the single platform case. In fact,
more active (i.e. more extreme) users separate from users with “low” ac-
tivity (i.e. more moderate), thus the latter are no longer influenced by the
former, resulting in a reduced (or, at least, not increased) polarization.

While our multiplatform opinion dynamics model offers a comprehensive
framework for understanding interactions across diverse platforms, it is im-
perative to acknowledge the inherent constraints and nuances that underpin
its design. The following considerations delve into these aspects, shedding
light on both the model’s robustness and areas that warrant further refine-
ment. In the first place, while our model describes social media platforms,
there exist traditional media not captured by it, which influence users’ opin-
ions. Broadcasting platforms such as TVs and radios are an example, con-
tributing to opinion formation in a way which is structurally and temporally
different from social media. With reference to our model, they would act as
hub nodes in the network of interactions, each diffusing a certain opinion to
other nodes. However such nodes, unlike “normal” ones, do not change (or,
rather, change very slowly) their opinions over time. Thus, effectively, tradi-
tional platforms can be seen as idiosyncratic relaxation terms in Eqn. 2.1, as
opposed to having all opinions relax to zero xi(∞) = x∗ = 0 when K(γ) = 0
for all γ. The interplay between these two sources of information is left for
future studies.

Regarding how users are affected by peers, while we assume that they
converge (i.e. their opinions approach each other when interacting), other
models [36, 56, 57, 58] consider also the presence of “polarizing” nodes,
whose opinions move away if exposed to those of opposite sign. Since this
characterization does not qualitatively change our results, we neglect it. In
fact, as we have shown, both polarization and consensus emerge without the
introduction of this additional feature.

Our last assumption is the conservation of activity over time, i.e.
ai(t) = ai ∀i, t. In modeling users’ satisfaction across platforms, it would be

19



reasonable to require that users’ activity (which corresponds to users’ en-
gagement on social platforms) could decrease if they are not able to reach a
certain degree of satisfaction (i.e. a certain value of their utility). However,
modeling such behavior would require a clear definition of what a decreasing
activity really mean — do users move their attention to traditional media?
Do they allocate their SMR on a not-considered social platform? Or do
they literally stop consuming news? — We believe that it is reasonable to
assume the considered system (which, we note, can be made arbitrary large
by increasing N and/or Γ) as an isolated social system, in which social en-
ergy (i.e. users’ activity) is conserved4. In fact, it is possible to think that
our model is valid in a span of time T in which activities remain constant,
meaning that they change on a time scale much greater than T .

Finally, we want to stress how β(γ) encapsulates the role of the recom-
mendation engine of platform γ. Typically, recommendation systems aim
to infer users’ needs, tastes and preferences, on the basis of their behavior
on the platform, in order to suggest them the “best” product [60]. In terms
of social media platforms, recommendation systems try to connect people
who are “similar” according to some metric. Obviously, different platforms
collect different kind of users’ data, deploy different recommendation algo-
rithms and have different purposes. Such dissimilarities translate into a
non-homogeneous degree of recommendations’ homophily. We imagine that
the distances between users, evaluated by the recommendation algorithms
by considering the huge amount of data social media collect, can be projected
into 1-dimensional distances between political opinions, further distorted by
the degree of homophily β(γ). Such assumption is based on the well-known
phenomenon of issue alignment [61, 62, 46], i.e. individuals are much more
likely to have a certain combination of opinions than others. On this note,
an interesting extension of the model would be to consider a multi-topic
opinion dynamics on a multiplex network; the idea would be that on a given
layer/platform it might be more likely to talk about a topic than another.

4Although note that daily time spent on social media by internet users worldwide has
been steadily increasing from 2012 to 2023[59].
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2.4 Model

We consider a system of N agents, where each agent i has a one-dimensional
continuous opinion variable xi(t) ∈ (−∞,+∞). The sign of xi describes the
agent’s stance (e.g. being pro or against abortion). The absolute value of xi
quantifies the strength of this opinion: the larger |xi|, the more extreme the
stance of agent i. Moreover, we also consider that agents can interact on
Γ different platforms. Each agent allocates his “time” in these Γ platforms.
In the following sections we detail how opinions and interaction networks
evolve and how each agent divides his attention among the platforms (see
Appendix 2.6.1 for a detailed outline of the model simulation).

2.4.1 Opinions update

The opinion dynamics is driven by the interactions among agents, captured
by a system of N coupled ordinary differential equations,

xi̇ = −xi +
Γ∑︂
γ=1

(︂
K(γ)

N∑︂
j=1

A
(γ)
ij (t) tanh (cxj)

)︂
. i ∈ {1, ..N} (2.1)

K(γ) > 0 represents the social interaction strength among agents on platform
γ. The tanh (cx), with c > 0, embodies the fact that an agent i influences
others in the direction of his own opinion, but such influence is “bounded”.
The term A

(γ)
ij (t) is the entry of the N × N temporal Adjacency matrix

A(γ)(t) corresponding to platform γ.

2.4.2 Network update

At every time step, user i can actively engage with the social media on
platform γ with probability aiρ

(γ)
i , and/or passively engage on platform γ′

with probability piρ(γ′)
i

5. Active users contact users that are passive on the
same platform, meaning that the opinions of the former affect the opinions
of the latter. For example, if j is active on γ and contacts i, who is passive on
γ, then A

(γ)
ij = 1. The term ai (resp. pi) is called activity (resp. passivity).

Moreover, ρ(γ)
i represents the probability that user i, conditional on being

active/passive, chooses platform γ. Of course,
∑︁Γ

γ=1 ρ
(γ)
i = 1. We assume

5Note that we can have γ = γ′.
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that ai ∈ [ϵ, 1] for all i, and that the activities are distributed according to a
power law F (a) ∼ a−η. Moreover, we assume for simplicity that pi = 1 ∀i.

The temporal adjacency matricesA(γ)
ij (t) are assumed to evolve according

to an activity-driven (AD) temporal network [63]. At each time step, each
γ-active user contacts m γ-passive users. It is further assumed that these
links are reciprocated with probability r. The probability q(γ)

ij that agent i
contacts agent j on platform γ is given by the following expression:

q
(γ)
ij = |xi − xj |−β

(γ)∑︁
k∈P(γ) |xi − xk|−β(γ) (2.2)

where P(γ) is the set of γ-passive users and β(γ) ≥ 0 captures the degree of
homophily of γ’s recommendation algorithm.

2.4.3 SMR update

While for a part of our results we considered ρ
(γ)
i = ρ(γ) homogeneous and

constant in time, we also developed a model for which it changes on the basis
of the observations of each user. In particular, we suppose that users allocate
their “social energy” among platforms depending on their perceived quality.
Grounded on the well-known psychological theory of optimal distinctiveness
[52], individuals desire a balance of between assimilation (homophily) and
differentiation (debate)(see [64] for an example of discrete opinion dynamics
with optimal distinctiveness preferences). Borrowing from bounded confi-
dence theory [65], an agent with opinion x considers those with opinion in
[x− r, x+ r] contributing to assimilation, while the others to differentiation.
Formally, if α(γ)

i (t) (resp. δ
(γ)
i (t)) is the number of in-degree connections

contributing to assimilation (resp. differentiation) on γ at time t for user i6,
we define his utility as:

Ui(tn) = −(fi(tn)− ϕi)2

= −
(︄ ∑︁

γ

∑︁n
m=n−L+1 δ

(γ)
i (tm)∑︁

γ

∑︁n
m=n−L+1 δ

(γ)
i (tm) +

∑︁
γ

∑︁n
m=n−L+1 α

(γ)
i (tm)

− ϕi

)︄2

.

(2.3)
6αγ

i (t) + δγ
i (t) is always equal to the total in-degree of node i.
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Here fi(t) is the experienced distinctiveness, while ϕi the desired one. The
parameter L encapsulates the time window over which users perceive the
distinctiveness (which, in time units, is τ = Ldt), thus representing their
“memory”. For example, consider Γ = 2, L = 1 and ϕ = 0.5. If user i is
connected to user j on platform 1 with |xj−xi| < r, and to user k on platform
2 with |xk − xi| > r at time tn, then it follows that δ(1)

i (tn) = α
(2)
i (tn) = 0

and δ
(2)
i (tn) = α

(1)
i (tn) = 1. Thus, fi(tn) = ϕi = 0.5 and Ui(tn) = 0 is

maximized.
It remains to specify how users maximize their utility. They can only con-

trol the fraction of time spent on each platform γ, proportional to ρ(γ)
i (tn).

We assume that users update their platform allocation every L steps, i.e.
their preferences stay constant during the time interval over which assimi-
lation and differentiation are experienced7. For this reason, each user can
estimate the quality of platforms given her current preferences. Such esti-
mates are in turn used to update the platform allocation, on the basis of an
anticipated utility. It is reasonable to assume that each user acts as if the as-
similation and differentiation experienced on each platform are proportional
to the time spent on it. For this reason, it is possible to write:

n∑︂
m=n−L+1

δ
(γ)
i (tm) = Lω

(γ)
δi

(tn)ρ(γ)
i (tn),

n∑︂
m=n−L+1

α
(γ)
i (tm) = Lω(γ)

αi
(tn)ρ(γ)

i (tn).
(2.4)

Here, ω(γ)
δi

(tn) and ω(γ)
αi (tn) are the differentiation and the assimilation slopes

estimated by the user i. Formally, defining ρ = (ρ(1), . . . , ρ(Γ)), each user
aims to maximize:

Û i(ρ, tn) = −
(︄

ωδi
(tn) · ρ

ωδi
(tn) · ρ + ωαi(tn) · ρ − ϕi

)︄2

, (2.5)

where ωδi
(tn) = (ω(1)

δi
(tn), . . . , ω(Γ)

δi
(tn)) is the vector of differentiation slopes

estimated using user’s previous interactions (an analogous definition holds
for the assimilation slopes ωαi(tn)). Û i(ρ, tn) is the utility estimated by user

7In other words, users gather experience before changing their mind about a given
social media.
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i at time tn. He assumes that it represents his future satisfaction (i.e. for
t > tn) depending on how he reallocates his ρi(tn+1). His assumption lies
on hypothesizing that the slopes ωαi and ωδi

are roughly constant in time
(which, instead, can vary due to the reallocation of all the other agents).
User i updates then according to:

ρi(tn+1) =

⎧⎨⎩ρi(tn) if n/L /∈ N

argmaxρ Û i(ρ, tn) otherwise.
(2.6)

Clearly, the utility of user i depends not only on his ρi, but also on how the
other users have allocated their time on social media. Let us stress that in
our model, users can only decide whether to be on a particular platform,
but the connections are decided entirely by the recommendation algorithm.
A justification for this comes from the work of [66], which shows that on
Facebook the number of new links per day increased abruptly after the in-
troduction of a “who to follow” recommendation algorithm. In other words,
the individual agency in choosing connections is negligible with respect to
the volume of content suggested by the platform itself.

2.4.4 Combined dynamics

We focus on a regime in which the three processes described above have
different time scales. As already mentioned, we consider the network dy-
namics being much faster than the opinion dynamics. This is especially true
in online social media context. In particular, for each network update we
integrate Eq (2.1) for dt = 0.001. Moreover, the SMR dynamics lies be-
tween the two, representing the fact that the choice of the allocation among
platforms is faster than the opinion dynamics, but requires a significant
number of observations and interactions. Specifically, each user updates his
preferences ρi(tn) every L = 100 time steps. In short, every L = 100 net-
work updates each user modifies her allocation preferences, and every 1000
network updates the opinions evolve of a unit time.

2.5 Conclusions

Our study examines the impact of social media competition for users’ en-
gagement on opinion dynamics. First, we show that opinion polarization
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can persist as long as users spend a fraction of their time on a homophilic
platform, highlighting the importance of multi-sources news diets. Second,
we show that individual users’ preferences interact in a non-trivial way with
the recommendation algorithms in the presence of multiple platforms. The
model indeed predicts the observed relationship between news outlet pref-
erence and political ideology. Interestingly, a multi-platform setup may be
used to curb polarization while keeping user engagement intact. To this
end, it is paramount to experimentally investigate users preferences for di-
versity (estimates for ϕ), either via surveys or controlled experiments. This
avenue may help to shed light on healthy synergies between different social
media platforms. From the revenue point of view, synergies are already well-
known in this environment (think about users spending time on Whatsapp,
Instagram and Facebook without ever going out from the Meta universe).
Future research and efforts should thus gather cross-platform data, via sur-
vey [67, 51] or by experiments, in order to fully comprehend the subtle
mechanism of opinion formation in online environments.
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2.6 Appendix

2.6.1 Pseudo code

In each time step of the numerical algorithm the opinions, the temporal
matrix and the SMR are update according to the following steps:

1. Each user i is only active with probability ai(1−pi), only passive with
probability (1−ai)pi, active and passive with probability aipi and inert
with probability (1− ai)(1− pi).

2. If active (resp. passive), user i chooses the platform γ (resp γ′) on
which he actively (resp. passively) engages with probability ρ

(γ)
i (t)

(resp. ρ(γ′)
i (t)) Note that it could be γ = γ′.

3. If active on platform γ, agent i influences m distinct agents j ∈ P(γ)

— where P(γ) is the set of users passively engaged on platform γ —
chosen according to Eqn. (2.2). This influence is expressed by updating
the temporal adjacency matrix A(γ)

ji (tn) = 1.

4. With probability r the directed link is reciprocated, so that agent i
receives influence from j, i.e. A(γ)

ij (tn) = 1.

5. Opinions xi are updated by numerically integrating Eq. (2.1) using the
total adjacency matrix elements Aij(tn) =

∑︁Γ
γ=1A

(γ)
ij (tn).

6. Each user i collects the experienced assimilation and differentiation on
each platform at the time step tn as:

α
(γ)
i (tn) =

∑︂
j s.t. |xi−xj |<r

A
(γ)
ij (tn)

δ
(γ)
i (tn) =

∑︂
j s.t. |xi−xj |>r

A
(γ)
ij (tn).

7. If mod (tn, L) ̸= 0, then the SMR remains constant for all users
ρi(tn+1) = ρi(tn) ∀i. If mod (tn, L) = 0, each user updates his SMR
according to the following steps:

(a) estimate differentiation and assimilation slopes ωδi
(tn) and

ωαi(tn) according to Eqn. (2.4)
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(b) updates SMR according to ρi(tn+1) = argmaxρ Û i(ρ, tn), where
Û i(ρ, tn) is defined in Eq. (2.5). To perform the utility maximiza-
tion, we use a gradient descent algorithm on the Γ-dimensional
simplex, consisting of nGD iterations of learning rate ∆GD. In
particular, the following equation is iterated nGD times:

ρi(k + 1) = PΓ
(︁
ρi(k)−∆GD∇Û i(ρi(k), tn)

)︁
,

where PΓ is the projection on the Γ-dimensional simplex, k runs
from k = 0 to k = nGD − 1, ρi(0) = ρi(tn) and ρi(nGD) =
ρi(tn+1).

8. After each time step the temporal networks A(γ)
ij (tn) are deleted.

Of course, when we considered a homogeneous and stationary (HS) SMR,
steps 6. and 7. are ignored, i.e. ρi(tn) = ρi(t0) ∀i, t. As done in [37], we
integrate Eq. (2.1) using an explicit fourth-order Runge-Kutta method with
a time step of dt = 0.01 in the case of HS SMR, and dt = 0.001 in the case
of evolving SMR. In the latter, we also consider L = 100. This leads to a
timescale separation between the network dynamics, the SMR update and
the opinion evolution mentioned in Sec. 2.4.4.

We independently sampled activities {ai}Ni=1 from the power law F (a) =
(1−η)a−η/(1−ϵ1−η), with parameters η = 2.1 and ϵ = 0.01 [37]. We also set
pi = 1 ∀i. Moreover, we consider the following parameters’ values: N = 800,
r = 0.5 and c = 3.

Throughout all of our simulations, we start with initial opinions
{xi(0)}Ni=1 uniformly distributed in [−1, 1]. In the case of dynamical SMR,
we let the opinions evolve for nboot = 2000 steps before allowing users to
reallocate themselves (i.e. we ignore point 7. for the nboot steps before t0).
The reason is that we want to provide as input to our SMR update model an
opinions’ spectrum which is at (metastable, in the case of polarization) equi-
librium . We initialize ρi(tn) = 1/Γ ∀n ∈ {−nboot + 1, . . . , 0}. Then, at t0,
we “turn on” the SMR allocation described in point 7. of the pseudo-code.

2.6.2 Robustness of the phase diagram

Here we show the phase-diagram reported in the main text with β(2) = 2, i.e.
assuming the polarizing platform provides more cross-cutting content. By
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comparing Fig. 2.3 and Fig. 2.5, we can see that the green region shrinks as
β(2) decreases, in accordance with the meta-stability analysis of polarization
reported in [37].
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Figure 2.5: Phase diagram in the case β(1) = 0, β(2) = 2. The other parameters
are as in the corresponding Fig. 2.3 reported in the main text.

2.6.3 Multi-platform segregation

To understand the benefits of the multi-platform reported in the main text,
we define the following quantities.

f>γ (t) =
∑︁N

i=1 ρ
(γ)
i (t)H(ai − θ)∑︁N

i=1H(ai − θ)

f<γ (t) =
∑︁N

i=1 ρ
(γ)
i (t)H(θ − ai)∑︁N

i=1H(θ − ai)
,

(2.7)

where H is the Heaviside function. In words, f>γ (t) (resp. f<γ (t)) is the
“effective” share of users on platform γ whose activity is above (resp. below)
a threshold θ. The idea is to understand whether these two classes of users
exhibit qualitatively different behavior, notwithstanding their a-priori equal
preferences (i.e. ϕi = ϕ and ri = r for all users). Let us consider the
2 platform case reported in the main text, where β(1) = 2, β(2) = 1. In
Fig. 2.6, we plot f>1 (t) and f<1 (t) for θ = 0.1, which roughly divide the
activity profile in 90 % below the threshold and 10% above. Highly active
users deterministically prefer the more homophilic platform (f>1 ≈ 1), while
less active users tend to explore both, though they prevalently occupy the
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platform with more cross-cutting content (f<1 ≈ 0.3)
This is consistent with what we observe in reality, i.e. people with ex-

treme opinions tend to have a more restricted outlet of like-minded sources,
which further polarizes their view. On the other hand, more moderate users
typically exhibit a more diverse news diet.

0 1 2 3 4 5 6 7 8
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9 f >1 (t)
f <1 (t)

Figure 2.6: Effective share of users on platform 1 in the case where β(1) = 2, β(2) =
1. θ = 0.1, so that approximately 90% of individuals have ai < θ.

2.6.4 Robustness with respect to desired distinctiveness

Here, we want to show how satisfaction and opinions standard deviation
change with respect to the single-platform case for ϕ = 0.1. The main phys-
ical difference with respect to the case presented in the main text (where
ϕ = 0.2) is that here users have an “halved” desire for differentiation, mean-
ing that their maximal satisfaction requires a much high number of inter-
actions contributing to assimilation, with respect to those contributing to
differentiation. Figure 2.7 shows indeed how users’ utility is maximized in
those regimes for which they are more exposed to like-minded peers, i.e.
for high values of β(1) and β(2). However, in this case, maximizing users’
satisfaction leads to an increase in polarization, meaning that if users desire
high confirmation opinions tend to extremize.
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Figure 2.7: Relative increment of (a) satisfaction and (b) opinions’ standard
deviation, when passing from Γ = 1 to Γ = 2 platforms, for ϕ = 0.1. In this regime,
high values of both β(1) and β(2) lead to an increased users’ satisfaction but also in
an increased polarization (i.e. standard deviation).
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Chapter 3

Learn your entropy from informative data:
an axiom ensuring the consistent identification
of generalized entropies

This chapter is based on: A. Somazzi and D. Garlaschelli. Learn your entropy from
informative data: an axiom ensuring the consistent identification of generalized en-
tropies. Available at https://arxiv.org/abs/2301.05660.

Shannon entropy, a cornerstone of information theory, statistical physics and infer-
ence methods, is uniquely identified by the Shannon-Khinchin or Shore-Johnson ax-
ioms. Generalizations of Shannon entropy, motivated by the study of non-extensive
or non-ergodic systems, relax some of these axioms and lead to entropy families in-
dexed by certain ‘entropic’ parameters. In general, the selection of these parameters
requires pre-knowledge of the system or encounters inconsistencies. Here we intro-
duce a simple axiom for any entropy family: namely, that no entropic parameter
can be inferred from a completely uninformative (uniform) probability distribution.
When applied to the Uffink-Jizba-Korbel and Hanel-Thurner entropy families, the
axiom selects only Rényi entropy as viable. It also extends consistency with the
Maximum Likelihood principle, which can then be generalized to estimate the en-
tropic parameter purely from data, as we confirm numerically. Remarkably, in
a generalized maximum entropy framework the axiom implies that the maximized
log-likelihood always equals minus Shannon entropy, even if the inferred probability
distribution maximizes a generalized entropy and not Shannon’s, solving a series of
problems encountered in previous approaches.
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3.1 Introduction

The concept of entropy was introduced by Clausius in the thermodynamic
framework [68] and later adopted in statistical physics by Boltzmann and
Gibbs as a tool to describe macroscopic systems in terms of their prob-
abilities of occupancy of microscopic states [69, 70]. Within information
theory, Shannon axiomatically (re)derived the entropy as a quantification
of the uncertainty encoded in a probability distribution, applicable to
(among other things) the compressibility of sequences of symbols generated
by ergodic probabilistic sources [12]. This allowed Jaynes to subsequently
propose that the distribution that maximizes Shannon entropy, under the
constraints implied by the empirical information available about a real
system and realized via suitable Lagrange multipliers, provides the least
biased (maximally noncommittal) inferential description of the unknown
microscopic details of that system [8]. For systems whose physical entropy
coincides with the Gibbs-Shannon one, this maximum entropy construction
can be used to entirely reinterpret statistical physics from an information-
theoretic viewpoint. In modern research, statistical inference and model
identification based on entropy maximization are perfectly consistent with
Maximum Likelihood estimation methods and are at the heart of several
machine-learning techniques [71].

Several generalizations of Shannon entropy (the most popular of which
were motivated by the statistical physics of non-extensive and/or non-
ergodic systems) have been proposed in various contexts [72, 73, 74, 75, 76],
resulting in extended families of entropy that depend, besides the usual
‘structural’ parameters (the Lagrange multipliers), on extra ‘entropic’
parameters that label the specific member of the entropy family. For
a fixed choice of these parameters, one can still maximize the resulting
entropy and generalize the inference procedure. This is possible when
there is enough knowledge a priori about the system, so that the entropic
parameter can be set ‘by hand’ to the correct value. However, the physical
entropy and the information-theoretic one may in general no longer coincide
for non-extensive or non-ergodic systems [77]. Moreover, it is generally
not possible to maintain compatibility with the Maximum Likelihood
principle and, crucially, to infer the values of the entropic parameters purely
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from data without encountering inconsistencies, making the generalized
methodology inapplicable without prior knowledge of the correct entropy.

In this chapter we discuss and alleviate those inconsistencies by introduc-
ing an axiom that restricts the form of parametric families of information-
theoretic entropies. The axiom enforces a simple ‘uninformativeness’ re-
quirement and allows for the consistent inference of the entropic parame-
ters purely from the available data, as we show via analytical results and
numerical examples. The chapter is organized as follows. In Sec. 3.2 we
first review the theoretical background behind the axiomatic definitions of
entropy, the Maximum Entropy Principle, and the Maximum Likelihood
Principle. In Sec. 3.3 we then discuss the main contributions of the chapter,
i.e. the introduction of the new axiom and its implications for the selec-
tion of information-theoretic entropies from certain popular families, the
restoration of consistency with the Maximum Likelihood principle, and the
generalization of the latter in order to infer the entropic parameter(s) purely
from the data. Finally, in Sec. 3.4 we offer some concluding remarks.

3.2 Theoretical background

3.2.1 The Shannon-Khinchin axioms

Given a distribution (technically, a probability mass function) P =
(p(G1), . . . , p(GΩ)), where p(Gi) is the probability that the discrete ran-
dom variable G takes the i-th outcome (or ‘state’) Gi, Ω is the total number
of distinct outcomes, and clearly

∑︁Ω
i=1 p(Gi) = 1, Shannon entropy S[P ]

is axiomatically defined through the following four Shannon-Khinchin (SK )
axioms [13]:

• SK1 (continuity): S[P ] is continuous in the entries of P .

• SK2 (maximality): S[P ] is maximal when P is the uniform distribution
Pu ≡ (Ω−1, . . . ,Ω−1).

• SK3 (expansibility): S[P ] is expansible, i.e. it does not change if for the
variable G an (Ω+1)-th outcome with zero probability (p(GΩ+1) = 0)
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is added:

S[(p(G1), . . . , p(GΩ))] = S[(p(G1), . . . , p(GΩ), 0)].

• SK4 (separability): the entropy of the joint distribution R =(︁
r(G(1)

1 , G
(2)
1 ), . . . , r(G(1)

Ω(1) , G
(2)
Ω(2))

)︁
of two variables G(1) and G(2)

with marginal distributions P = (p(G(1)
1 ), . . . , p(G(1)

Ω(1))) and
Q =

(︁
q(G(2)

1 ), . . . , q(G(2)
Ω(2))

)︁
respectively, where p(G(1)

i ) =∑︁Ω(2)

j=1 r(G
(1)
i , G

(2)
j ) and q(G(2)

j ) =
∑︁Ω(1)

i=1 r(G
(1)
i , G

(2)
j ), separates as

S[R] = S[P ] + S[Q|P ].

Here S[Q|P ] is the conditional entropy of Q on P , de-
fined as S[Q|P ] =

∑︁Ω(1)

k=1 p(G
(1)
k )S[Q|k] with Q|k =(︁

r(G(1)
k , G

(2)
1 )/p(G(1)

k ), . . . , r(G(1)
k , G

(2)
Ω(2))/p(G

(1)
k )
)︁

denoting the condi-
tional distribution of the events in Q on the k-th event in P . Note that
in particular, if the two events are independent (Q = Q|k for all k),
then S[R] = S[P ]+S[Q], in which case separability becomes additivity.

It is possible to show that the only functional form of S[P ] respecting
the four SK axioms is Shannon entropy:

S1[P ] = −
Ω∑︂
i=1

p(Gi) ln p(Gi), (3.1)

where the subscript 1 will be justified later. The above expression is unique
up to a positive overall multiplicative factor k, which is inessential from the
information-theoretic point of view but is important for the identification
(when appropriate) with the physical entropy, in which case k carries phys-
ical units and coincides with Boltzmann constant. As required by SK2, the
maximum value of S1[P ] is attained by the uniform distribution Pu, leading
to Boltzmann entropy:

S1[Pu] = ln Ω. (3.2)

No distribution P can be such that S1[P ] > S1[Pu].
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3.2.2 The Maximum Entropy Principle

The informational entropy S1[P ] in Eq. (3.1) coincides (up to Boltzmann’s
constant) with the physical entropy derived by Gibbs [70], which in
turn generalizes Boltzmann entropy in Eq. (3.2) [69]. For ergodic and
short-range interacting systems, this equivalence is not coincidental and
is rooted in statistical inference, as Jaynes showed with the introduction
of the Maximum Entropy Principle (MEP) [8]. The MEP states that,
given only a set I of pieces of empirical information about a system (in the
physical situation, this typically means the knowledge of a few, macroscopic
conserved quantities such as the total energy and/or the total number of
particles), one should assign the possible microscopic states a probability
distribution P that maximizes the entropy. In other words, entropy can
be used as an inference functional whose maximization minimizes bias and
prevents arbitrariness.

In particular, consider a system with a set of Ω potential microstates
{Gi}Ωi=1 and assume that the available information I is encoded in the
empirical value C∗ = C(G∗) of a certain (scalar or vector) function C

of the microstate of the system, where G∗ is the ‘true’ (unobservable)
microstate. For the moment, let us assume that C∗ is the only observation
available (later, we will consider multiple independent observations of
the same variable). Since G∗ is unknown, the microstate is treated as a
random variable G. The MEP applied to S1[P ] identifies the maximum
entropy distribution for G, which we denote as P0 = (p0(G1), . . . , p0(GΩ))
or P1 = (p1(G1), . . . , p1(GΩ)), depending on whether C∗ is treated as a
‘hard’ or ‘soft’ constraint, respectively.

In the case of hard constraints (microcanonical ensemble), only a re-
stricted number ΩC∗ < Ω of microstates i for which C(Gi) matches C∗ ex-
actly are assigned a non-zero probability, which (due to SK2 and SK3 ) has
to be uniform over the restricted support, i.e. p0(Gi) = Ω−1

C∗ if C(Gi) = C∗

and p0(Gi) = 0 otherwise. The resulting entropy is

S1[P0] = ln ΩC∗ < S1[Pu]. (3.3)

Unfortunately, calculating ΩC∗ is generally a hard combinatorial problem,
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which makes the microcanonical ensemble not amenable to analytical
calculations. For this reason, soft constraints are considered more often in
the literature, as we also do in this chapter.

In the case of soft constraints (canonical ensemble), only the expected
value ⟨C⟩ of the observable is constrained to match C∗, i.e.

⟨C⟩ ≡
Ω∑︂
i=1

p(Gi)C(Gi) = C∗, (3.4)

thus allowing for the full set of Ω microstates, however with a non-uniform
probability p(Gi) yet to be determined. To find the specific probability
p1(Gi) maximizing S1 under the soft constraint above, one can introduce
the Lagrange multiplier θ (which has the same dimensionality as C), plus
an additional scalar multiplier α enforcing the normalization of P , and look
for the specific values (denoted as P1, θ1, α1) for which all the derivatives of
the Lagrangian function

L1[P ] ≡ S1[P ]− α
[︄ Ω∑︂
i=1

p(Gi)− 1
]︄
− θ · [⟨C⟩ − C∗] (3.5)

vanish (the notation θ · C indicates the scalar product). Setting
∂L[P ]/∂P |P1 = 0, i.e. ∂L[P ]/∂p(Gi)|p1(Gi) = 0 ∀i, leads to the functional
form of P1, which turns out to be the well-known Boltzmann-Gibbs distri-
bution with entries

p1(Gi, θ) = e−θ·C(Gi)

Z1(θ) , Z1(θ) =
Ω∑︂
j=1

e−θ·C(Gj), (3.6)

where Z1(θ) is the partition function, resulting from the normalization con-
straint

∂L[P1]
∂α

⃓⃓⃓⃓
α1

= 0 ⇒
Ω∑︂
i=1

p1(Gi, θ) = 1 (3.7)

which leads to
α1 = −1 + lnZ1(θ) (3.8)

independently of the value of θ.
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Importantly, P1 is not identified entirely, until the parameter θ is also
determined. This is attained by enforcing the vanishing of the remaining
derivatives, identifying the value θ1 realizing Eq. (3.4):

∂L[P1]
∂θ

⃓⃓⃓⃓
θ1

= 0 ⇒
Ω∑︂
i=1

p1(Gi, θ1)C(Gi) = C∗, (3.9)

where, if θ is a vector, the notation means again that all the derivatives of
L[P ] with respect to the components of θ vanish separately. The final solu-
tion to the MEP problem is therefore given by inserting θ1 into Eq. (3.6), and
we will denote it as P1(θ1) = (p1(G1, θ1), . . . , p1(GΩ, θ1)). The MEP with
soft constraints, which are appropriate when the observables are expected
to fluctuate, has been used successfully for inference and model selection
in many fields beyond physics, including network theory, neuroscience, eco-
nomics and biology [78, 11].

3.2.3 The Maximum Likelihood Principle

It is very important to realize that the MEP procedure outlined above has
deep connections and desirable consistencies with the Maximum Likelihood
(ML) principle, which applies to more general (not necessarily maximum-
entropy) parametric probability distributions and states that the optimal
parameter value θ∗ is the one maximizing the log-likelihood on the data G∗.
Our parametric model is the exponential family from Eq. (3.6) and the ML
principle would select the value

θ∗
1 = argmax

θ
ℓ1(θ), ℓ1(θ) ≡ ln p1(G∗, θ). (3.10)

As a first result, it is easy to show that the value θ∗
1 defined by Eq. (3.10)

coincides with the value θ1 defined by Eq. (3.9) [79, 80], i.e. θ∗
1 ≡ θ1 (in our

notation, the asterisk next to a parameter will always denote the ML value
of that parameter), i.e.

∂ℓ1(θ)
∂θ

⃓⃓⃓⃓
θ∗

1

= 0 ⇒
Ω∑︂
i=1

p1(Gi, θ∗
1)C(Gi) = C∗ (3.11)
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in analogy with Eq. (3.9). This means that the ML principle can be seen
as equivalent to the part of the Lagrangian optimization relative to θ.

Moreover, it is straightforward to show that the maximized log-likelihood
equals minus the entropy:

S1[P1(θ∗
1)] = −ℓ1(θ∗

1), (3.12)

which is the counterpart of Eq. (3.3) in the case of soft constraints. This
relationship is very important, because the maximized likelihood is at the
basis of model selection criteria [81, 82]: if alternative models (i.e. alter-
native parametric probability distributions) are compared against the same
empirical data, the model to be preferred (assuming all models have the
same complexity, e.g. the same number of parameters) is the one with
highest maximized likelihood. Then, Eq. (3.12) ensures that the ranking
of models based on ML is the same as the ranking based on minus their
entropy: the least uncertain (i.e. most informative) model has to be pre-
ferred. For models with different numbers of parameters and/or functional
forms, the ranking based on likelihood/entropy has to be revised by adding
a term controlling for the variable model complexity, leading to criteria such
as AIC, BIC, the Minimum Description Length, etc. [81, 82] (for simplicity,
we will not consider this situation here). Also note that, when the maximum
entropy distribution P1(θ∗

1) is inserted into Eq. (3.5), we get

L1[P1(θ∗
1)] = S1[P1(θ∗

1)] = −ℓ1(θ∗
1), (3.13)

so that the Lagrangian, evaluated at P1(θ∗
1), coincides with minus the

maximized log-likelihood and can therefore be used to rank alternative
models as well. All the above results indicate that the MEP can be used as
a model selection criterion, exactly as the ML principle, by ranking models
based on their realized entropy.

It is also important to consider the case when there are M independent
observations {C∗

m}Mm=1 about the system, which technically means that there
are M independent and identically distributed (i.i.d.) realizations {G∗

m}Mm=1
of the microstate G (recall that G is treated as a random variable), on each of
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which the quantity C∗
m = C(G∗

m) (m = 1,M) is observed. Clearly, since the
system being observed multiple times is one, the probability distribution
characterizing it must still be specified by a single value of the Lagrange
multiplier θ coupled to the quantity C. It should at this point be noted that
the principle that identifies how to optimally combine the M observations
{C∗

m}Mm=1 in order to estimate θ is not the MEP, but the ML one. Indeed,
the ML principle applied to the joint log-likelihood

∑︁M
m=1 ln p1(G∗

m, θ), or
equivalently to the average log-likelihood ℓ1(θ) ≡

∑︁M
m=1 ln p1(G∗

m, θ)/M ,
can be formulated by replacing Eq. (3.10) with

θ∗
1 = argmax

θ
ℓ1(θ), ℓ1(θ) ≡

∑︁M
m=1 ln p1(G∗

m, θ)
M

. (3.14)

It is easy to show that the condition ∂ℓ1(θ)/∂θ|θ∗
1

= 0 identifying θ∗
1 leads

to the well-known result

⟨C⟩ = 1
M

M∑︂
m=1

C∗
m (3.15)

where the (arithmetic) sample average of the M observations has emerged.
So, in order to find the ML parameter value θ∗

1, one should replace Eq. (3.4)
with Eq. (3.15), or equivalently redefine C∗ in Eq. (3.4) as the sample average
of {C∗

m}Mm=1. In plain words, the sample average is ‘produced’ by the ML
principle. On the contrary, within the MEP construction, there is no way of
‘telling’ Eqs. (3.5) and (3.9) what, in case of M observations, the meaning
and definition of C∗ should be. So in this case the ML principle is more
informative than the MEP; this is another reason why one wants the entropy
to be fully consistent with what the ML principle leads to. In particular,
it is easy to show that, due to the independence of the M samples, the
maximized average log-likelihood ℓ1(θ∗

1) is still equal to minus the entropy:

S1[P1(θ∗
1)] = −ℓ1(θ∗

1), (3.16)

generalizing Eq. (3.12). Note that there is no microcanonical counterpart
of Eq. (3.16), since Eq. (3.3) cannot be generalized to the case M > 1,
unless all the M values {C∗

m}Mm=1 are identical. Indeed the microcanonical
ensemble cannot be constructed, because by definition it cannot account
for different realizations of the values of the constraints: in case of different
observations of the same constraints, only the canonical ensemble is feasible.
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The above discussion clarifies that it is important that the entropy is
consistent with the maximized log-likelihood, because the ML principle is
needed both for model selection and for the determination of how multiple
observations of the same system should be combined in order to optimally
estimate the parameters.

3.2.4 The Shore-Johnson axioms

An alternative axiomatic definition of an entropy functional, whose max-
imization in presence of a set I of pieces of information should lead to a
probability distribution P = ◦I with certain properties, was proposed by
Shore and Johnson (SJ ) through the following axioms [9]:

• SJ1 (uniqueness): given I, P = ◦I is unique.

• SJ2 (invariance): if Γ[·] is a coordinate transformation (change of
variables), then Γ[◦I] = ◦(Γ[I]).

• SJ3 (system independence): given two independent systems A and
B, it should not matter whether one accounts for distinct pieces of
information about them separately (in terms of marginal probabilities)
or jointly (in terms of a joint probability). This means ◦(IA ∧ IB) =
(◦IA)(◦IB), where IA ∧ IB denotes the union of the available pieces of
information IA and IB about A and B respectively.

• SJ4 (subset independence): it should not matter whether one treats an
independent subset of system states in terms of a separate conditional
density or in terms of the full system density. Consider a partition of
the system’s states into disjoint subsets {Λk}k such that

⋃︁
k Λk = Ω,

for each k of which there is a piece of information Ik available. Then
(◦I)Λk

= ◦Ik ∀k, where I =
⋀︁
k Ik is the total information, and PΛk

=
(pΛk

(G1), . . . , pΛk
(GΩ)), where pΛk

(Gi) = p(Gi|Gi ∈ Λk) denotes the
conditional distribution relative to the subset Λk.

• SJ5 (maximality)1: with no information available (I = ∅), P = ◦I is
1Actually, Shore and Johnson defined the maximality axiom only implicitly. Indeed,

starting from the principle of minimum cross-entropy, they introduced the MEP as its
equivalent in the case where the prior distribution is uniform. For this reason, even if
not explicitly axiomatized, they considered the posterior P to be equal to the uniform
distribution (i.e. the same as the prior) when no information is available.
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the uniform distribution Pu.

Shore and Johnson claimed that Shannon entropy is the only inference
functional compatible with their axioms, a statement suggesting the equiv-
alence of the SK and the SJ axioms. However, it was later clarified [10, 14]
that Shore and Johnson’s conclusion was due to an additional hidden as-
sumption they made inadvertently when formally using SJ3 in their rea-
soning. Specifically, they considered a situation where distinct pieces of
information IA and IB are known about two systems A and B, and implied
that the resulting joint probability factorises as ◦(IA ∧ IB) = (◦IA)(◦IB),
thereby applying SJ3 even if the independence of the two systems is not
guaranteed (having only disjoint pieces of information about two systems
does not guarantee that the two systems are independent) [10, 14]. The
presence of this additional assumption implies that Shannon entropy is in
fact the desired functional only when systems are independent: if this is not
the case, then the resulting maximum entropy distribution is no longer ‘max-
imally non committal with respect to missing information’, as Jaynes’ MEP
demands it to be [8], because there is actually no ‘information’ available
about the (in)dependence of the systems.

3.2.5 Generalized entropies

Uffink [10] showed that, if Shore and Johnson’s proof is correctly revisited
without the extra unjustified assumption, the entropy resulting from the
SJ axioms is not uniquely determined and is actually an entire generalized
family S

(f)
q [P ], given by any increasing function f of a certain functional

Uq[P ] that we will call the Uffink functional, i.e.

S(f)
q [P ] = f(Uq[P ]), Uq[P ] =

(︃ Ω∑︂
i=1

pq(Gi)
)︃ 1

1−q

(3.17)

for some parameter q > 0. For a given f , each entropy in the family is
identified by the parameter q, which we will therefore call the ‘entropic
parameter’. Note that an entropic parameter plays a different role with
respect to other structural parameters entering the entropy, such as θ in
the Shannon case discussed above. Clearly, Shannon entropy is one of the
possible members of this family. Indeed, taking f(x) = ln x, one can show
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that

lim
q→1

S(ln)
q [P ] = lim

q→1
lnUq[P ]

= −
Ω∑︂
i=1

p(Gi) ln p(Gi)

= S1[P ]. (3.18)

In other words, Shannon entropy formally corresponds to q = 1, justifying
the subscript adopted in Eq. (3.1) (note instead that the subscript in the
uniform distribution P0 used in Sec. 3.2.2 to describe the microcanonical
distribution under hard constraints has nothing to do with the case q = 0,
which is inadmissible). Notably, Jizba and Korbel [14, 83] showed that an
entropy of the type f(Uq[P ]) can also be obtained from the SK axioms,
provided that SK4 is relaxed to a generalized separability condition where
the sum is replaced by the so-called Kolmogorov-Nagumo sum2, previously
introduced in the context of generalized arithmetics [84, 85]. This shows
that the SJ axioms are actually equivalent to a specific generalization of
the SK ones. The generalization of SK4 has been a matter of discussion
in the statistical physics literature for decades, as it relates to the subject
of non-extensive (or rather non-additive) thermodynamics [72]. We will
call any entropy of the form f(Uq[P ]) an Uffink-Jizba-Korbel (UJK ) entropy.

Several other generalized families of entropy resulting from relaxations of
the SK or SJ axioms have been proposed [74, 75]. A notable example is the
so-called (c, d)-entropies Sc,d[P ] introduced by Hanel and Thurner [86, 76]
by replacing SK4 with the assumption of trace-form (or more in general
composable) entropies, i.e. entropies that can be written as (functions of) a
sum over the states {Gi}Ωi=1 of the system. In particular, an entropy S(P )
is trace-form if it can be written as a sum

∑︁Ω
i=1 g (p(Gi)) for some function

2Considering a bijection f−1 : M ↦→ N ⊂ R, the generalized arithmetics is defined as
follows:

x ⊕ y = f(f−1(x) + f−1(y)),
x ⊖ y = f(f−1(x) − f−1(y)),
x ⊗ y = f(f−1(x)f−1(y)),
x ⊘ y = f(f−1(x)/f−1(y)).
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g. Note that Shannon entropy is in this class, with g(x) = −x ln x. More
generally, a composable entropy can be written as a function h of such a
sum, i.e.

S
(h,g)
c,d [P ] = h

(︄ Ω∑︂
i=1

g (p(Gi))
)︄
, (3.19)

where the entropic parameters (c, d) are determined by how the entropy
scales with the number Ω of accessible configurations [73, 86]. In particular,
one considers the transformations Ω → λΩ, Ω → Ω1+a and identifies c and
d from the following limiting ratios:

lim
Ω→∞

S
(h,g)
c,d [(p(G1), ...., p(GλΩ))]

S
(h,g)
c,d [(p(G1), ...., p(GΩ)]

= λ1−c, (3.20)

lim
Ω→∞

S
(h,g)
c,d [(p(G1), ...., p(GΩ1+a)]

S
(h,g)
c,d [(p(G1), ...., p(GΩ))]

Ωa(c−1) = (1 + a)d. (3.21)

Different choices of h and g may result in the same values of the entropic pa-
rameters, in which case the corresponding entropies are considered asymp-
totically equivalent [73]. Therefore in this case the entropic parameters
identify equivalence classes of entropies with the same asymptotic proper-
ties. We will call the entropies that respect SK1-SK3, plus Eq. (3.19), the
Hanel-Thurner (HT ) entropies.

3.2.6 How to identify the correct entropy?

On UJK entropies, HT entropies and in principle any generalized entropy
family, it is important to ensure that the MEP can be reformulated
consistently as a tool to construct probability distributions starting from
observations of the system. This procedure is sometimes called the Gener-
alized Maximum Entropy Principle (GMEP). However, a number of serious
conceptual and practical problems are currently open.

First, while it is still possible, for a fixed value of the entropic pa-
rameter(s), to identify the functional form of the probability distribution
maximizing the generalized entropy under certain ‘soft’ constraints, it is
no longer guaranteed in general that the enforcement of these constraints
remains consistent with the application of the ML principle to the Lagrange
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multipliers and that the entropy retains a role for model selection as
in Eq. (3.12). Only for certain generalized entropies this consistency is
retrieved, but not for all of them, as we show later with some notable
examples. Since the ML principle is agnostic with regard to the form of the
probability distribution, and even more so to the type of entropy the latter
maximizes, this inconsistency raises suspicion. Unfortunately, its possible
origin is poorly discussed in the literature.

Second, fundamental problems arise when considering the determination
of the entropic parameters themselves, or in other words of the ‘correct’ en-
tropy in a parametric family. In particular, two main approaches have been
proposed. One approach requires some a priori knowledge of the system
(e.g. how certain properties of the entropy or of the system change with the
number of accessible configurations [86, 73, 87]) as in Eqs. (3.20) and (3.21),
implying that, in absence of such knowledge, the entropic parameters cannot
be consistently derived purely from data as the other parameters (in this
approach, the knowledge of the entropic parameter is viewed as a different
type of information, besides the information obtained by the empirical
measurement). Another approach does allow for the entropic parameters
to be inferred from data, again invoking some form of maximization of the
generalized entropy [88, 89]. However, as we show below, this requirement
conflicts with the ML principle, if the latter is extended to the estimation
of the entropic parameters themselves. Finally, several analyses estimate
the entropic parameter(s) by assuming a certain form of the entropy and
fitting the resulting maximum-entropy probability on empirical distribu-
tions [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. As we will
show, this approach does not guarantee consistency between the maximized
likelihood and the original entropy. Moreover, maximum-entropy distri-
butions, even when optimally fitted to the data, do not uniquely identify
the entropy they maximize, because they also maximize any other entropy
functional that is a monotonic function of that entropy. This point becomes
particularly critical when such monotonic function depends on the entropic
parameter(s) themselves, as we will show below.
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3.3 One axiom to rule them all

The above limitations make the GMEP either inapplicable in practice with-
out prior knowledge of the correct entropic parameter(s), or inconsistent
with the ML principle and the information-theoretic consequences of SJ3
under independence. In the rest of this section, which contains our main
results, we show that a possible solution to this problem can be achieved
starting from a seemingly different viewpoint, i.e. by imposing an additional
axiom that somehow ‘aligns’ all entropies in a given family and therefore al-
lows to select the most likely member of the family purely from data (if
the latter contain information) and without prior knowledge of the system’s
properties. Remarkably, the introduction of this simple requirement solves
all the inconsistencies discussed in Sec. 3.2.6.

3.3.1 The uninformativeness axiom

We now introduce the axiom. Unlike the SK or SJ ones, this axiom applies
not to an individual entropy in a generalized parametric family, but rather
to the entire family. Indeed the axiom does not represent yet another gener-
alization of the SK or SJ ones, but rather an ‘auxiliary’ requirement to be
added precisely when any such generalization is made, to restrict the form
of the resulting entropic family.

• Uninformativeness Axiom: In a parametric family of information-
theoretic entropies, the value of the entropy attained by the uniform
distribution Pu should not depend on the value of the entropic param-
eter(s).

Clearly, if the axiom is applied to families that include Shannon entropy
S1 as a particular case, it implies that all members of the family attain
the same value S1[Pu] = ln Ω when applied to Pu. This requirement equips
generalized entropies with a universal scale and meaning. As we show
below, our axiom provides certain guarantees when the inference procedure
is extended to the identification of the entropic parameters themselves. On
one hand, the axiom ensures that no entropic parameter can be inferred
from a completely uninformative (i.e. uniform) distribution, irrespective of
how the parameter estimation procedure is conceived. On the other hand,
when informative (non-uniform) data are available, the axiom ensures
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consistency with a generalized ML principle and model selection approach
where all parameters, including the entropic one, can be identified from
empirical observations, without prior knowledge of the system. Note
that, in general, the physical entropy characterizing the real system may
be different from the information-theoretic one identified by our axiom;
nonetheless, our axiom ensures that the maximum entropy distribution that
best describes the physical observations can be identified consistently from
the information-theoretic entropy, without prior knowledge of the physical
entropy itself.

Note that, as required by SK2 and SJ5, for a given value of q the Uffink
functional in Eq. (3.17) is maximized by Pu. This requirement comes from
a ‘horizontal’ perspective, in the sense that it holds for each q-entropy in
the family. Our axiom, on the other hand, provides a ‘vertical’ perspective:
among all the q-entropies, none of them has to be preferred when applied
to Pu. In other words, the axiom ensures the uninformativeness role of the
uniform distribution not only for a specific entropy in the family, but across
all of them. Since SK2 and SJ5 ensure that no entropy can exceed the value
it attains on Pu, the axiom establishes a sort of common reference frame or
universal scale, which allows to compare different entropies in a parametric
family consistently. In particular, it ensures that all entropies in a para-
metric family that respects SK2 or SJ5 and includes Shannon entropy as
a particular case attain values in the same interval [0, ln Ω], irrespective of
the value of the entropic parameter(s). We will show that this guarantee
ensures that the entropic parameter(s) can be estimated via a model se-
lection approach purely from the input data, if the latter are informative
(non-uniformly distributed).

3.3.2 Application to important entropy families

We now discuss some consequences of imposing the uninformativeness
axiom to popular entropy families.

We start with the UJK entropies S(f)
q [P ] under the requirement that the

family should include Shannon entropy as a particular case. The entropy
S

(f)
q [P ] = f(Uq[P ]), when evaluated on the uniform probability distribution
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Pu = (Ω−1, . . . ,Ω−1), returns the value

S(f)
q [Pu] = f (Uq[Pu]) = f(Ω) for q ̸= 1. (3.22)

Our axiom requires that S(f)
q [Pu] is independent of q, which implies that f

should be independent of q. For q = 1, technically S(f)
q [P ] is only defined as

the limit
lim
q→1

S(f)
q [P ] = f

(︃
lim
q→1

Uq[P ]
)︃
, (3.23)

where we have used the q-independence of f . If we require that, when
P = Pu, this limit coincides with what Shannon entropy returns on Pu, i.e.
S1[Pu] = ln Ω, then we need a function f such that

lim
q→1

S(f)
q [Pu] = f

(︃
lim
q→1

Uq[Pu]
)︃

= ln Ω, (3.24)

i.e. f(x) = ln x. Therefore, combining Eqs. (3.22) and (3.24) we obtain
f(x) = ln x for all q, i.e. the only viable UJK entropy is Rényi entropy [15]

Sq[P ] ≡ S(ln)
q [P ] = lnUq[P ] = 1

1− q ln
Ω∑︂
i=1

pq(Gi), (3.25)

where, since the entropy above is the only ‘surviving one’ in the family
S

(f)
q [P ], we have removed the superscript from the resulting S(ln)

q [P ]. From
Eq. (3.18) we can confirm that this entropy reduces to Shannon entropy in
the limit q → 1, a well-known result for Rényi entropy. This entropy is such
that, on the uniform distribution Pu,

Sq[Pu] = ln Ω, (3.26)

which does not depend on q, as demanded by our axiom. Therefore the
only viable UJK entropy is Rényi entropy. In general, other UJK entropies
do not respect our axiom.

An important counterexample is Tsallis entropy [16], defined as

STsallis
q [P ] ≡ S(lnq)

q [P ] = 1
1− q

(︃ Ω∑︂
i=1

pq(Gi)− 1
)︃

(3.27)
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and obtained from the so-called ‘q-logarithm’ f(x) = lnq(x) ≡ (x1−q −
1)/(1− q) (not to be confused with the ordinary logarithm of x to base q):
indeed, when evaluated on Pu, this entropy takes the q-dependent value

STsallis
q [Pu] = Ω1−q − 1

1− q = lnq(Ω). (3.28)

From the point of view of our axiom, such q-dependence is a contradiction:
different values of q should not artificially attach different degrees of
informativeness to an intrinsically uninformative distribution. Seen from
another point of view, this contradiction arises from the q-dependence of
the function f defining Tsallis entropy from the Uffink functional Uq[P ]:
such q-dependence is not admitted by our axiom because f(Uq[Pu]) should
not depend on q. Note that the q-independence of the function f defining
the UJK entropy f(Uq[Pu]) is a nontrivial consequence of our axiom, as it
arises as necessary only when comparing entropies obtained for different
values of q (if only a single value of q were considered, nothing would
prevent f from being specified by that value of q). In particular, our
axiom would demand q = 1 in order to have STsallis

q [Pu] = S1 [Pu], i.e.
the only viable Tsallis entropy is Shannon entropy. We should stress at
this point that the inadmissibility of Tsallis entropy under our axiom is
not in contradiction with the many successful empirical applications of the
so-called q-exponential or Tsallis distribution maximizing Tsallis entropy
for fixed q [72, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103],
because such distribution (that we explicitly consider later in this chapter)
is exactly the same as the one maximizing Rényi entropy or any other
monotonic function of the Uffink functional, as we also discuss below.
However, when that distribution is ‘put back’ into the entropy, only Rényi
entropy gives consistent results in terms of the absolute quantification of the
uncertainty and the associated ML estimation and model selection proce-
dures. Indeed, we will show that a ranking of models (or values of q) based
on Tsallis entropy would ‘mess up’ the ranking based on ML, while the use
of Rényi entropy restores and extends the consistency with the ML principle.

As another example, we apply the uninformativeness axiom to the HT
family of composable (c, d)-entropies that can be written as in Eq. (3.19).
If we require S(h,g)

c,d [Pu] = S1[Pu] = ln Ω in analogy with Eq. (3.26), then the
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axiom translates Eqs. (3.20) and (3.21) to:

lim
Ω→∞

lnλΩ
ln Ω = λ1−c (3.29)

lim
Ω→∞

ln Ω1+a

ln Ω = (1 + a)d (3.30)

and implies (c, d) = (1, 1). This parameter choice identifies the equivalence
class of entropies that are additive for independent events. Both Shannon
and Rényi entropies belong to this class. In particular, in the case h(x) = x

(trace-form entropy) and g(x) = −x ln x (Shannon entropy), one gets
(c, d) = (1, 1) [73], i.e. S(x,−x lnx)

1,1 [P ] = S1[P ]. Therefore Shannon entropy
is a viable trace-form HT entropy under our axiom. Similarly, in the
case h(x) = ln(x)/(1 − q) and g(x) = xq (Rényi entropy) one again gets
(c, d) = (1, 1) [73], i.e. S(ln(x)/(1−q),xq)

1,1 [P ] = Sq[P ]. Therefore Rényi entropy
is a viable composable HT entropy. By contrast, the case h(x) = x and
g(x) = (xq − Ω−1)/(1 − q) (Tsallis entropy) leads to (c, d) = (q, 0) [73],
confirming that Tsallis entropy (which is another trace-form entropy) does
not respect our axiom.

The fact that, for both the UJK and HT families, only Rényi entropy
(or an asymptotically equivalent one) ‘survives’ our axiom does not disagree
with the possibility of non-extensivity of the entropy, which has led to the
introduction of many variants of entropy over the last decades [72, 73]. In-
deed, while our axiom selects entropy additivity for independent systems
(as both Shannon and Rényi do), it does not have direct implications when
independence is not present or even not known. In particular, it should be
stressed that non-extensivity is a property not of the entropy itself, but of
how the number Ω of configurations scales with the physical size of the sys-
tem (i.e. the number n of units or particles) [73]. Even Shannon entropy can
be non-additive if applied to a system where Ω (or ΩC∗ , when in presence
of a constraint C∗) is not exponential in n, as clear from Eq. (3.2) or (3.3)
(note that Eq. (3.3) applies in the microcanonical case, but a similar non-
extensive scaling of the entropy would be exhibited in the canonical case as
well). An important example in this respect is provided by random graphs:
the number of all binary graphs on n vertices is Ω = 2(n

2), so it is super-
exponential [73, 104]. Even when subject to various types of constraints C∗,
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the number ΩC∗ remains super-exponential [11]. At the opposite extreme,
even for systems where Ω does increase exponentially in n, the system may
still be subject to certain constraints such that ΩC∗ is sub-exponential in
n, so that the resulting entropy is sub-extensive. An example is the class
of State Space Reducing processes [86]. Later in the chapter, we will show
that Shannon entropy can grow non-linearly in n even for a simple example
of n independent observations. Therefore one first general result implied
by the uninformativeness axiom is that non-extensivity or non-ergodicity
(when present) should be completely encoded in the scaling of ΩC∗ with n,
thus ultimately in the identification of the proper (effective) constraint C∗,
and not in the expression of the entropy itself.

3.3.3 The generalized MEP

In a GMEP context, a direct consequence of the fact that our axiom
restricts the viable expressions for the generalized entropies is, of course, a
corresponding restriction on the probability distributions maximizing such
generalized entropies under soft constraints (note that, under hard con-
straints, all maximum entropy distributions reduce to the microcanonical
uniform distribution P0 described in Sec. 3.2.2). This restriction can have
two (related) effects: one on the functional form of the maximum entropy
distribution and one on the way the distribution connects to the entropy
itself and possibly other quantities. The HT and UJK entropies serve as
good examples for both effects, as we now show.

For instance, while the general form for the probability distribution
that maximizes the HT entropy S

(h,g)
c,d [P ] in trace form (h(x) = x) is the

exponential of the so-called Lambert-W function3 W(x) [86, 73], the only
admissible form according to our axiom is the one corresponding to the
choice (c, d) = (1, 1). With this parameter choice, the W(x) function
reduces to a linear function, so that the maximum entropy probability
reduces to the Boltzmann-Gibbs distribution in Eq. (3.6) [73], consistently
with the fact that the only admissible trace-form HT entropy according to
our axiom is Shannon entropy, as we have shown above. To obtain a truly
generalized maximum entropy probability, one should therefore consider

3The Lambert-W function W(x), which cannot be written in close form, is the solution
to the equation x = W(x)eW(x). The real solutions are those that are relevant here.
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non-trace-form entropies.

In particular, considering the Rényi entropy Sq[P ] which our axiom se-
lects from both the UJK and the HT families, the GMEP can be formu-
lated as the following well-known generalization of the MEP described in
Sec. 3.2.2. Given an empirically observed value C∗ of a (scalar or vector)
function C(G) of the unknown microstate G of a system, the least biased
inference about G is provided by the distribution Pq that maximizes Sq[P ]
under the (soft) constraint

⟨C⟩q ≡
∑︁Ω

i=1 p
q(Gi)C(Gi)∑︁Ω

i=1 p
q(Gi)

= C∗, (3.31)

which generalizes the usual Shannonian constraint in Eq. (3.4) (note that
⟨C⟩1 = ⟨C⟩). The quantity ⟨C⟩q is sometimes called (normalized) q-mean
and can be regarded as a mean with respect to the so-called escort (or
zooming) probability distribution p̃(Gi) = pq(Gi)/

∑︁Ω
j=1 p

q(Gj) [105, 72].
This q-mean has been introduced to extend important properties and
relations from the classical (i.e. Shannonian) statistical mechanics to the
non-extensive one, including the Legendre structure of thermodynamics,
the H-theorem and the Ehrenfest theorem [72]. However, from the point
of view of statistical inference, whether ⟨C⟩q is a proper choice for a
constraint is a debated issue in the literature, since this quantity might
appear to lack a direct interpretation in relation to the available data. We
will provide reassurance towards this concern: the use of ⟨C⟩q leads to a
well-defined combination of the available data and, conveniently, regularizes
the inference procedure in cases when ⟨C⟩ would be unstable. Indeed,
⟨C⟩q is always finite as soon as the distribution of C is normalizable, even
when the ordinary mean ⟨C⟩ diverges and the ordinary inference process
becomes inapplicable. Ensuring a finite value is crucial in order to estimate
the Lagrange multiplier(s) from repeated observations and is especially
important in our setting (described later in more detail) where we want
to be able to determine q purely from data, without prior knowledge of
its value and therefore without knowing beforehand whether the ordinary
mean would diverge. A second concern may have arisen in the careful
readers who noticed that the UJK entropies are usually derived from the SJ
axioms while constraining the ordinary mean value ⟨C⟩, not ⟨C⟩q. However,
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later in this chapter we will show that the application of the ML principle
to all parameters of the distribution (including q) leads exactly to the same
numerical values of the GMEP probability distribution, irrespective of
whether ⟨C⟩ or ⟨C⟩q is used (provided both quantities are finite). Finally
and profoundly, the use of the q-mean restores a complete consistency
between the ML principle and the Lagrangian optimization and yields a
direct relationship between maximized likelihood and entropy, while the
use of the ordinary mean would fail to do so.

To carry out the constrained maximization of Sq[P ], we look for the
vanishing derivatives of the q-Lagrangian

Lq[P ] ≡ Sq[P ]− α
[︄ Ω∑︂
i=1

p(Gi)− 1
]︄
− θ · [⟨C⟩q − C∗] (3.32)

with respect to P , α and θ, and assume q ̸= 1 from now on. The resulting
values are denoted as Pq, αq, θq. In particular, setting ∂Lq[P ]/∂P |Pq = 0 we
get

0 = ∂Lq[P ]
∂p(Gi)

⃓⃓⃓⃓
pq(Gi)

(3.33)

= q

1− q
pq−1
q (Gi)∑︁
j p

q
q(Gj)

− α− q pq−1
q (Gi)

θ · (C(Gi)− ⟨C⟩q)∑︁
j p

q
q(Gj)

for all i from 1 to Ω, from which it is clear that pq(Gi) depends on θ, as in
the case q = 1, and additionally on q. The derivative of Lq[P ] with respect
to α leads to a condition identical to Eq. (3.7):

∂Lq[Pq]
∂α

⃓⃓⃓⃓
αq

= 0 ⇒
Ω∑︂
i=1

pq(Gi, θ) = 1, (3.34)

which can be used to determine αq by multiplying both sides of Eq. (3.33)
and then summing over i. We then get

αq = q

1− q (q ̸= 1), (3.35)

which is the counterpart of Eq. (3.8). Substituting αq in (3.33) and singling
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out pq(Gi) yields

pq(Gi, θ) =
[1− (1− q) θ · (C(Gi)− ⟨C⟩q)]1/(1−q)

+[︂∑︁Ω
j=1 p

q
q(Gj , θ)

]︂1/(1−q) (3.36)

where we have used the notation [x]a+ ≡ 0 if x < 0, while [x]a+ ≡ xa other-
wise [72]. Note that the denominator of Eq. (3.36) equals the Uffink func-
tional Uq[Pq(θ)] and must also equal the generalized partition function

Wq(θ) ≡
Ω∑︂
i=1

[1− (1− q) θ · (C(Gi)− ⟨C⟩q)]1/(1−q)
+ (3.37)

since pq(Gi, θ) is already normalized via the condition in Eq. (3.35). In other
words,

Wq(θ) =
[︄ Ω∑︂
i=1

pqq(Gi, θ)
]︄1/(1−q)

= Uq[Pq(θ)]. (3.38)

Finally, the maximum entropy probability equals

pq(Gi, θ) =
[1− (1− q) θ · (C(Gi)− ⟨C⟩q)]1/(1−q)

+
Wq(θ)

(3.39)

which has the form of a so-called q-exponential or Tsallis [72] distribution.
Note that Eqs. (3.32) and (3.39) generalize Eqs. (3.5) and (3.6), respec-
tively. Moreover note that, if we formally introduce a pseudostate G̃ such
that C(G̃) = ⟨C⟩q, it follows from Eq. (3.39) that pq(G̃, θ) = 1/Wq(θ) =
1/Uq[Pq(θ)]. Then, from Eq. (3.38), one can see that:

pq−1
q (G̃, θ) =

Ω∑︂
i=1

pqq(Gi, θ) = U1−q
q [P (θ)]. (3.40)

We will discuss the relationship between C(G̃) and C(G∗) later.

When q → 1, pq(Gi, θ) → Z−1
1 (θ) exp(−θ · C(Gi)), retrieving the

Boltzmann-Gibbs distribution in Eq. (3.6). When q ̸= 1, the q-exponential
has nothing to do with the ordinary exponential and actually has power-law
tails proportional to C(Gi)1/(1−q) for large values of C(Gi). The presence
of these heavy tails, which are widespread in several real-world complex
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systems [72, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], is one
of the reasons why q-exponentials have attracted interest, their derivation
from the maximization of a suitable entropy appearing convenient and
parsimonious [73, 72]. In the literature, there is some confusion around the
fact that q-exponentials derive from the maximization of Tsallis entropy
given by Eq. (3.27). While this is certainly true, it is also true that
they derive from any of the UJK entropies in Eq. (3.17): the distribu-
tion maximizing Uq[P ] necessarily maximizes f(Uq[P ]) as well, for any
monotonic f (indeed, our derivation above started from Rényi entropy).
Therefore, the robust empirical support for the q-exponential distribution
that has been highlighted in several analyses of empirical data in e.g.
quantum chemistry [90], high energy physics [91, 92, 93, 94, 95], cosmol-
ogy [96], finance [97], acoustics [100, 101], seismology [98], biology [99] and
medicine [102, 103] cannot be used as support for a specific member f of
the entropy family f(Uq[P ]). Indeed, there is no direct empirical evidence
which selects a specific entropy in the family, and the main arguments
adopted in the literature towards the use of e.g. Rényi versus Tsallis
entropy remain of theoretical or mathematical nature [72, 106], such as
invoking consistency with some formal framework. In this respect, our
approach here can be regarded as an additional theoretical consistency
argument to select entropies within families (e.g. Shannon entropy within
the Tsallis family) or restricted entropy families within ‘super-families’
(e.g. Rényi entropy within the UJK and HT families). Specifically, the
differences among the members of the UJK entropy family arise when
the maximum entropy q-exponential is put back into the entropy itself.
When this happens, the uninformativeness axiom has the important
role of selecting Rényi entropy as the member of the family that solves
all the inconsistencies discussed in Sec. 3.2.6, as we show later in the chapter.

What remains to be done is the determination of the parameter θ. It is
useful at this point to introduce the reparameterization

ψ(θ) ≡ θ

1 + (1− q) θ · ⟨C⟩q
, (3.41)

through which it is possible to (formally) remove ⟨C⟩q from the expression
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for pq(Gi, θ) and get

pq(Gi, ψ) =
[1− (1− q)ψ · C(Gi)]1/(1−q)

+
Zq(ψ) (3.42)

where, denoting the inverse of ψ(θ) as θ(ψ),

Zq(ψ) ≡
Ω∑︂
i=1

[1− (1− q)ψ · C(Gi)]1/(1−q)
+ (3.43)

= Wq (θ(ψ))
[1 + (1− q) θ(ψ) · ⟨C⟩q]1/(1−q) (3.44)

is the reparametrized partition function. Note that Zq(ψ) ̸= Wq (θ(ψ))
unless q → 1, in which case ψ → θ and W1(θ) → Z1(θ). The optimal value
ψq is determined by the condition

∂L[Pq]
∂ψ

⃓⃓⃓⃓
ψq

= 0 ⇒
∑︁Ω

i=1 p
q
q(Gi, ψq)C(Gi)∑︁Ω

i=1 p
q
q(Gi, ψq)

= C∗ (3.45)

corresponding to the intended requirement in Eq. (3.31) and generalizing
Eq. (3.9) to the case q ̸= 1. One the value ψq is determined via the condition
above, it can be inserted into Eq. (3.42) to obtain the final maximum
entropy probability distribution Pq(ψq).

3.3.4 Link with the ML principle and model selection

We now show that the entropy selected by the uninformativeness axiom
restores consistency with the ML principle and retains an interpretation for
model selection, exactly as in the Shannon case. Both properties are not
guaranteed for other entropies. At the same time, we show how to account
for multiple independent observations about the same system.

In analogy with Sec. 3.2.3, we start with the case M = 1 and define the
ML estimation procedure for the parameter ψq as follows:

ψ∗
q = argmax

ψ
ℓq(ψ), ℓq(ψ) ≡ ln pq(G∗, ψ). (3.46)
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Requiring ∂ℓq(ψ)/∂ψ|ψ∗
q

= 0, one gets

Ω∑︂
i=1

C(Gi) pqq(Gi, ψ∗
q ) = C(G∗) pq−1

q (G∗, ψ∗
q ) (3.47)

and, dividing both terms by
∑︁

G p
q
q(G∗, ψ∗

q ),

⟨C⟩q =
C(G∗) pq−1

q (G∗, ψ∗
q )∑︁

G p
q
q(G∗, ψ∗

q )
. (3.48)

One might think that the right hand side of the above equation is different
from the ‘desired’ value C∗ = C(G∗), however this is not the case. In-
deed, considering again a pseudostate G̃ such that C(G̃) = ⟨C⟩q and using
Eq. (3.40), we can rewrite Eq. (3.48) as

C(G̃)
C(G∗) =

1− (1− q)ψ∗
q · C(G̃)

1− (1− q)ψ∗
q · C(G∗) , (3.49)

which leads to C(G̃) = C(G∗). In other words, the value ψ∗
q defined by

Eq. (3.46) coincides with the value ψq defined by Eq. (3.45), i.e. ψ∗
q ≡ ψq,

i.e.
∂ℓq(ψ)
∂ψ

⃓⃓⃓⃓
ψ∗

q

= 0 ⇒
∑︁Ω

i=1 p
q
q(Gi, ψ∗

q )C(Gi)∑︁Ω
i=1 p

q
q(Gi, ψ∗

q )
= C∗ (3.50)

in analogy with Eq. (3.45). This means that the ML principle can still be
seen as equivalent to the part of the Lagrangian optimization relative to ψ.
Moreover, the application of the logarithm to both sides of Eq. (3.40) leads
to

ℓq(ψ∗
q ) = −Sq[Pq(ψ∗

q )], (3.51)

showing that, for M = 1, the log-likelihood of the observation coincides with
minus the Rényi entropy. This extends Eq. (3.12) to the case q ̸= 1, with the
following consequence. If we put ourselves in a model selection framework
where we interpret each Pq(ψ) for different values of q as a different model
for the same data C∗ (for M = 1) and where each model has a maximized
likelihood equal to Pq(ψ∗

q ), then the optimal model (if unique) corresponds
to the one with the highest value of Pq(ψ∗

q ). Thanks to Eq. (3.51), we
can equivalently interpret this ranking of different models according to their
maximized likelihood as a ranking based on their realized Rényi entropy: the
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model with highest maximized likelihood is the one with minimum Rényi
entropy. Notably, other entropies of the UJK family, including Tsallis en-
tropy, do not manifest this property. Also the relationship in Eq. (3.13)
generalizes as follows:

Lq[Pq(ψ∗
q )] = Sq[Pq(ψ∗

q )] = −ℓq(ψ∗
q ), (3.52)

relating the value of the Lagrangian attained by Pq(ψ∗
q ) to the maximized

log-likelihood. Therefore, up to this point, it seems that Rényi entropy
retains all the desirable properties of Shannon entropy.

We now consider the case of M > 1 i.i.d. realizations {G∗
m}Mm=1 of the

system, leading to M independent observations {C∗
m}Mm=1 of the constraint,

where C∗
m ≡ C(G∗

m) for all m. We have already seen in Sec. 3.2.3 that in this
case it is the ML principle, not the MEP, that identifies how to combine the
M observed values. Introducing again the average log-likelihood ℓq(ψ), the
ML condition for ψ becomes a straightforward generalization of Eq. (3.14):

ψ∗
q = argmax

ψ
ℓq(ψ), ℓq(ψ) ≡

∑︁M
m=1 ln pq(G∗

m, ψ)
M

. (3.53)

It is not difficult to show that requiring ∂ℓq(ψ)/∂ψ|ψ∗
q

= 0 translates into:

Ω∑︂
i=1

C(Gi) pqq(Gi, ψ∗
q ) = 1

M

M∑︂
m=1

C(G∗
m) pq−1

q (G∗
m, ψ

∗
q ) (3.54)

or equivalently

⟨C⟩q =
∑︁M

m=1C(G∗
m) pq−1

q (G∗
m, ψ

∗
q )

M
∑︁Ω

i=1 p
q
q(Gi, ψ∗

q )
(3.55)

which extends the classical (q = 1) result in Eq. (3.15) to the general,
non-Shannon case. We therefore learn that the arithmetic average is no
longer the optimal way of combining the M available observations in order
to determine the parameter ψ. Indeed, dismissing the arithmetic average
makes sense if we recall that, a priori, we do not even know whether the
first moment of the distribution generating the M values {C∗

m}Mm=1 is finite.
Indeed, the q-exponential distributions that are solution to the GMEP
exhibit a power-law behavior for q ̸= 1. As a consequence, in principle
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all their moments could diverge, depending on the value of q. Assuming
that q is not known beforehand and is rather determined by the inference
procedure itself (as we assume later on), it would make no sense at all
to use the arithmetic average to constrain the q-mean in case of multiple
observations, since that average might become infinite in the M →∞ limit
when q > 3/2, while the q-mean is by construction finite whenever the
distribution is normalizable. The same problem might in principle apply
to any higher moment ⟨Cn⟩ with n > 1, while any q-generalized moment
⟨Cn⟩q evaluated with respect to Eq. (3.42) converges if q is such that the
distribution is normalizable (which is a basic requirement for this procedure
to be consistent [72]). The ML estimator determined by Eq. (3.55) identifies
the distribution’s parameters, irrespective of the converge of any moment.

An important consequence of the fact that ⟨C⟩q is no longer equal to
the arithmetic mean of the M observations is that in general, for q ̸= 1 and
M > 1,

Sq[Pq(ψ∗
q )] ̸= −ℓq(ψ∗

q ), (3.56)

thus failing to generalize Eq. (3.16) to the case q ̸= 1 and Eq. (3.51) to
the case M > 1. Similarly, Eqs. (3.13) and (3.52) do not generalize here.
Rather, a relationship that is still valid is

Sq[Pq(ψ∗
q )] = −ℓ̃q(ψ∗

q ), (3.57)

where ℓ̃q(ψ) ≡ ln pq(G̃, ψ) is a sort of ‘pseudolikelihood’ involving the pseu-
dostate G̃ such that C(G̃) = ⟨C⟩q introduced above. Unfortunately, ℓ̃q(ψ) is
no longer equal to the actual log-likelihood ℓq(ψ) based on the M observa-
tions. Does this mean that, in presence of multiple i.i.d. observations of the
same quantity about a system, the correspondence between log-likelihood
and entropy is lost? The answer to this question emerges when looking at a
seemingly unrelated problem, i.e. the selection of the optimal value of the
entropic parameter q, and is provided in Sec. 3.3.5.

3.3.5 Inference of the entropic parameter

We now come to the last, and in many ways most crucial, benefit implied
by the uninformativeness axiom, namely the possibility of consistently iden-
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tifying the entropic parameter(s) purely from the data, without postulating
a priori knowledge about the system — such as scaling laws of the type
exemplified by Eqs. (3.20) and (3.21) [86, 73, 87].

To this end, starting directly with the general case M ≥ 1, we invoke
again the ML principle and, building on its restored consistency with the
estimation of the other parameters of the maximum entropy distribution
proven in Eq. (3.50), extend it to the identification of the entropic param-
eter(s) themselves. This means that we now turn the model selection pro-
cedure we discussed after deriving Eq. (3.51) (where we compared different
models {Pq(ψ)}q in terms of their maximized likelihoods {Pq(ψ∗

q )}q) into
a single ML parameter estimation procedure, applied directly to the two-
parameter distribution Pq(ψ). Indeed, the ML principle treats any parame-
ter agnostically, without specific interpretations, and is therefore ‘unaware’
of the fact that q and the other structural parameters play different roles
in an information-theoretic setting. Considering again Reńyi entropy as the
only viable entropy from the UJK and HT families, the ML principle applied
to the entropic parameter q is formally stated as follows:

q∗ = argmax
q

ℓq(ψ), ℓq(ψ) ≡
∑︁M

m=1 ln pq(G∗
m, ψ)

M
. (3.58)

On the other hand, combining the above expression with Eq. (3.53), it is
clear that the estimation of q is coupled to that of ψ, so that the actual
formulation of the extended ML principle is

(ψ∗
q∗ , q∗) = argmax

(ψ,q)
ℓq(ψ), ℓq(ψ) ≡

∑︁M
m=1 ln pq(G∗

m, ψ)
M

. (3.59)

This expression immediately tells us that, once the ML principle is extended
to the determination of q, the results we have discussed in Sec. 3.3.4 represent
only one side of the coin. Now, requiring jointly

∂ℓq(ψ)
∂ψ

⃓⃓⃓⃓
(ψ∗

q∗ ,q∗)
= 0, ∂ℓq(ψ)

∂q

⃓⃓⃓⃓
(ψ∗

q∗ ,q∗)
= 0, (3.60)

we arrive again at Eq. (3.55) (with q replaced by q∗) plus the additional
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condition

Ω∑︂
i=1

pq∗(Gi, ψ∗
q∗) ln

[︁
1− (1− q∗)ψ∗

q∗ · C(Gi)
]︁

(3.61)

= 1
M

M∑︂
m=1

pq∗(G∗
m, ψ

∗
q∗) ln

[︁
1− (1− q∗)ψ∗

q∗ · C(Gm)
]︁
.

Recalling from Eq. (3.42) that

1− (1− q∗)ψ∗
q∗ · C(Gi) = [pq∗(Gi, ψ∗

q∗)Zq∗(ψ∗
q∗)]1−q∗ (3.62)

we obtain the condition

Ω∑︂
i=1

pq∗(Gi, ψ∗
q∗) ln pq∗(Gi, ψ∗

q∗) =
∑︁M

m=1 ln pq∗(G∗
m, ψ

∗
q∗)

M
. (3.63)

In other words, the additional ML condition determining q∗ requires that
the maximized log-likelihood equals minus Shannon entropy, i.e.

S1[Pq∗(ψ∗
q∗)] = −ℓq∗(ψ∗

q∗), (3.64)

restoring an analogy with Eq. (3.16) that appeared to be lost and replaced
by Eq. (3.57) when considering q ̸= 1. Remarkably, we now realize that,
when the ML principle is extended to q, the correspondence with Eq. (3.16)
is not replaced, but rather accompanied by Eq. (3.57). On one hand,
Eq. (3.64) generalizes to the class of q-exponentials the relationship in
Eq. (3.16) that is well-known for the exponential distribution. On the other
hand, it does not hold for any value of q and independently on the data,
but only for the pair of values (ψ∗

q∗ , q∗) that maximize the likelihood. In
particular, the connection between Shannon entropy and log-likelihood at
the specific parameter value (ψ∗

q∗ , q∗) remains a general result, even for
q ̸= 1 and M > 1. This might look quite surprising, because, for q ̸= 1,
the log-likelihood is based on the q-exponential distribution that maximizes
Rényi, not Shannon, entropy.

Despite the surprise, the above result makes perfect sense because we
have assumed M independent observations. Actually, it solves the final in-
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consistency we pointed out in Sec. 3.2.6: assuming independent observations
justifies Shore and Johnson’s original restricted interpretation of axiom SJ3
and leads to Shannon entropy as the quantifier of the uncertainty of the
data. Indeed the inequality in Eq. (3.56) should be put in relation with our
initial discussion of the axiom SJ3 about system independence. Recall that
assuming that the M values {C∗

m}Mm=1 come from independent observations
is equivalent to assuming that there are M identical and independent copies
of the same system, each copy being observed exactly once. Under this
assumption of independence, the original reasoning by Shore and Johnson
becomes appropriate and one should therefore expect that Shannon entropy,
rather than Rényi entropy, is the proper entropy describing the combined
system ofM copies. Therefore the breakdown of the correspondence between
the average log-likelihood and Rényi entropy can be regarded as a symptom
of the assumed independence of the M observations. When M = 1, we can
use Eq. (3.51) and combine it with Eq. (3.64) to obtain

Sq∗ [Pq∗(ψ∗
q∗)] = S1[Pq∗(ψ∗

q∗)] (3.65)

showing that in this particular case the maximum entropy probability dis-
tribution returns coinciding values of Shannon and Rényi entropy, even if it
maximizes the latter but not the former. This result does not hold in general
for M > 1. An important consequence of the combination of Eqs. (3.16)
and (3.64), valid also for M > 1, is that the Shannon entropy of the distribu-
tion that maximizes Rényi entropy is not larger than that of the exponential
distribution, if the parameters are set according to ML:

S1[Pq∗(ψ∗
q∗)] ≤ S1[P1(ψ∗

1)], (3.66)

meaning that the optimized q∗-exponential achieves a ‘better compression’
of the data than the ordinary exponential. As we show below for a simple
example, S1[Pq∗(ψ∗

q∗)] and S1[P1(ψ∗
1)] might even scale differently with the

number of observations (or size of the system), making the inequality (3.66)
particularly relevant for data compression purposes.

The remarkable result in Eq. (3.64) has an important consequence for
the estimation of q∗. In particular, in order to determine both q∗ and ψ∗

q∗ ,
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one can consider a range of values for q and, for each value in the range,
compute ψ∗

q according to Eq. (3.55). This produces, for each value of q, a
log-likelihood ℓq(ψ∗

q ) that is only partially maximized, in the sense that the
maximization has been carried out only with respect to ψq and not yet with
respect to q. Then, among all these partially maximized log-likelihoods, one
can select the one with the highest value.

This will identify the value q∗ and the associated value ψ∗
q∗ , which

ultimately correspond to the completely maximized log-likelihood ℓq∗(ψ∗
q∗).

Only for this parameter choice (q∗, ψ∗
q∗), the log-likelihood equals minus

Shannon entropy. So from the ML condition Shannon entropy emerges
spontaneously: while the probability Pq maximizes Rényi entropy and not
Shannon entropy, the latter is the correct entropy for model selection to
take independence into account. We stress once again that the physical
entropy characterizing the real system may be different from both Shannon
and Rényi entropies. Nonetheless, the introduction of our axiom is
consistent with an information-theoretic model selection criterion, based
on the maximization of Rényi entropy to obtain the functional form of the
probability distribution and the ML principle to estimate its parameters,
including the entropic one. In order to illustrate the performance of the
above approach, we now consider two simple numerical examples.

Our first example is a system described by an observable C(G) taking
only positive real values, i.e. C(G) ∈ [0,+∞). Moreover, we assume that
ΩC = 1 for all C, meaning that for each value C(G) of the observable there is
only one state G that realizes it. Thus, the sums over system states simplify
into integrals over the observable values:

∑︁Ω
i=1 →

∫︁∞
0 dC. The probability

distribution resulting from the GMEP is then:

pq(Gi, ψ) = (2− q)ψ [1− (1− q)ψ · C(Gi)]
1

1−q

+ , (3.67)

where we have used Zq(ψ) = 1/(2− q)ψ. For different values of ψ and q, we
have drawn an i.i.d. sample of M = 103 realizations from the distribution
above, with the aim of inferring the true value of those parameters purely
from the data so generated. In particular, we have generated samples from
an exponential distribution (i.e. qtrue = 1), a q-exponential distribution
with finite first moment ⟨C⟩ (qtrue = 1.3) and a q-exponential distribution

63



1.0 1.1 1.2 1.3 1.4 1.5
q

200

300

400

500

600

0.0 0.5 1.0 1.5

10−3

10−2

10−1

100

1.0 1.1 1.2 1.3 1.4 1.5
q

−950

−900

−850

−800

−750

−700

10−3 10−2 10−1 100 101

10−3

10−2

10−1

100

1.50 1.55 1.60 1.65 1.70
q

−2000

−1800

−1600

−1400

−1200

10−3 10−1 101 103 105

10−3

10−2

10−1

100

Figure 3.1: Comparison between the average partially maximized log-likelihood
ℓq(ψ∗

q ) (solid line) and minus Shannon entropy −S1[Pq(ψ∗
q )] (dashed line) as a func-

tion of q, for three samples of M = 103 deviates generated from the probability
distribution Pq(ψ) in Eq. (3.67), and in particular: exponential distribution where
qtrue = 1 and ψtrue = 5.0 (left), q-exponential (power-law) distribution with finite
first moment where qtrue = 1.3 and ψtrue = 3.0 (center), and q-exponential (power-
law) distribution with diverging first moment where qtrue = 1.6 and ψtrue = 7.0
(right). The insets show the comparison between the empirical cumulative dis-
tributions of the M realized values (crosses) and the retrieved maximum entropy
distribution using the inferred values (q∗, ψ∗

q∗) (solid line).

with diverging first moment (qtrue = 1.6). Figure 3.1 shows, for the three
cases, ℓq(ψ∗

q ) (blue line) and −S1[Pq(ψ∗
q )] (orange line) as functions of q. The

black dot indicates the intersection between the two curves, which identi-
fies the estimated value q∗ where Eq. (3.64) is realized. The true values
of the parameters and their inferred ML estimates (q∗, ψ∗

q∗) are presented
in Table 3.1. Since the left plot corresponds to qtrue = 1, it is a standard
exponential distribution. In such a case, the two curves intersect only for
q = 1. By contrast, the other two cases correspond to qtrue ̸= 1 and the
two curves intersect in two points, namely q = 1 and q = qtrue. In these
cases, both intersections are solutions of Eq. (3.64), but the solution q ̸= 1
is the one that corresponds to higher log-likelihood (and lower entropy).
This example is very simple but explanatory: it shows directly how Shan-
non entropy plays a role in model selection even when the distribution taken
into consideration comes from the GMEP and maximizes Rényi, not Shan-
non. We also stress once more that, in the last case, constraining the usual
mean rather than the q-mean would have not been appropriate, since for
q > 1.5 the usual mean diverges as M →∞; instead, by using the q-average,
it becomes possible to consistently characterize the original infinite-mean
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power-law distribution. Note that, in the real world, the physical entropy
characterizing the system producing the data simulated here might be un-
specified and, as such, could be different from the information-theoretic one
we are using for the inference procedure. Indeed, as stated above, also Tsal-
lis entropy and the HT entropies are naturally associated with power-law
distributions. Moreover we would also like to notice that, since the maxi-
mized log-likelihood coincides with minus the Shannon entropy, the selected
probability distribution could be more compressible than the one obtained
setting q = 1. An example is shown in the middle panel of Figure 3.1: if
the probability in Eq. (3.67) represented the probability distribution of a
source generating i.i.d. symbols, then the one selected by our GMEP and
ML would be, unsurprisingly, more compressible then the one obtained by
setting q = 1. Moreover, the precise value ℓq∗(ψ∗

q∗), coincides with the lower
bound of compression, in accordance with Eq. (3.66). We also note that,
if the true process generating the data has finite mean, then the estima-
tion of ψ∗

1 is a well-defined problem, otherwise it is not. Figure 3.2 shows
that the Shannon entropy of both distributions is linear in M , with the
one referred to the exponential distribution being larger. Moreover, since in
this case the data are generated according to a finite-mean distribution, the
fluctuations in both ψ∗

q∗ and ψ∗
1 are small. On the other hand, Figure 3.3

shows a situation in which the generating process has a diverging mean.
While the estimated ψ∗

q∗ is robust, ψ∗
1 has huge fluctuations and results in

a super-linear growth of the Shannon entropy. Since ψ∗
1 = M/

∑︁M
j=1C

∗
j ,

the large fluctuations arise from the fluctuating empirical average of M
observations coming from an infinite mean process. Indeed in this partic-
ular case, where the observations come from the distribution in Eq. (3.67)
with q = 1.6, i.e. p(C) ∼ C−α−1 with α = 2/3, we get that, for large
M , the arithmetic average diverges as M−1∑︁M

j=1C
∗
j ∼ M1/α−1 = M1/2.

The use of the q-average fixes this problem, keeping the estimation of its
associated Lagrange multiplier stable. Such divergence is evident even if
one plugs the estimated probability densities back into the Shannon en-
tropy. In fact, in general, S1[Pq(ψ)] = 1

2−q − log
(︁
(2 − q)ψ

)︁
. This leads to

a super-linear growth of the entropy if the standard approach is applied:
S1[P1(ψ∗

1)] = 1 − logψ∗
1 ∼ logM1/2. Instead, by applying the generalized

GMEP, the entropy is S1[Pq∗(ψ∗
q∗)] = 1

2−q∗ − log
(︁
(2 − q∗)ψ∗

q∗
)︁
∼ const,

since both q∗ and ψ∗
q∗ do not change with M . Incidentally, this example
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shows that Shannon entropy, even if additive for independent events, can
grow nonlinearly in the number of independent observations because of an
‘anomalous’ scaling of the relevant Lagrange multiplier(s).
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Figure 3.2: . Data generated according to Eq. (3.67) with qtrue = 1.2 and
ψtrue = 0.5. Left panel: Shannon entropy. Top right panel: Shannon entropy
per observation. Bottom right panel: Estimated Lagrange multipliers.

Table 3.1: Comparison of true parameters’ values with ML estimates.

qtrue ψtrue q∗ ψ∗
q∗

1.0 5.0 1.0 5.0
1.3 3.0 1.3 2.9
1.6 7.0 1.6 7.3

Our second and last example is the simple case of a system characterized
by a Bernoulli random variable C(G) taking value C(G) = 1 with true
underlying probability ptrue, and value C(G) = 0 with probability 1− ptrue.
Constraining the q-average yields

pq(Gi, ψ) =
[1− (1− q)ψ · C(Gi)]1/(1−q)

+
1 + [1− (1− q)ψ]1/(1−q) . (3.68)

Let us now call pq(ψ) the probability pq(G,ψ) when C(G) = 1 and 1−pq(ψ)
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Figure 3.3: . Data generated according to Eq. (3.67) with qtrue = 1.7 and ψtrue =
0.5. Left panel: Shannon entropy. Top right panel: Estimated ψ∗

1 . Bottom right
panel: Estimated ψ∗

q∗ .

the probability pq(G,ψ) when C(G) = 0. It is easily verified that

⟨C⟩ = pq(ψ) (3.69)

and
⟨C⟩q = pqq(ψ)

pqq(ψ) + [1− pq(ψ)]q . (3.70)

If we now consider M i.i.d. realizations {C∗
m}Mm=1 of C and apply Eq. (3.54),

we get pq
∗

q∗(ψ∗
q∗) = pq

∗−1
q∗ (ψ∗

q∗)f1 where f1 =
∑︁M

m=1C
∗
m/M is the empirical

frequency of the observed instances where C∗
m = 1. This relation trivially

reduces to
f1 = pq∗(ψ∗

q∗). (3.71)

Since there are infinite couples of (ψ∗
q∗ , q∗) that satisfy the ML condition

and produce exactly the same maximized log-likelihood, none of them has
to be preferred over the other. According to our approach, one finds a result
which recalls the Shannonian case: for a Bernoulli random variable, the
parameters of the maximum entropy distribution have to be set so that the
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estimated probability matches the empirical frequency. This can be done
for any value of q and is therefore a degenerate case where no specific value
of q can be learned from the data, because the resulting maximum entropy
distributions are all identical to each other. This is not unexpected: in fact,
what we have done here in practice is trying to capture the properties of
a one-parameter binary random variable with a distribution that depends
on two parameters. Therefore this example illustrates a situation where the
data are not informative enough to infer the entropic parameter.

3.3.6 Relation with ordinary average constraints

The SJ axioms are explicitly formulated for constraints that are linear in
probability: they not only find a particular functional form for the entropy,
but define the whole maximum entropy procedure including the estimation
of the Lagrange multipliers. Therefore, one may question whether it makes
sense to apply our GMEP procedure, which uses q-means, to the UJK family,
which derives from the SJ axioms.

In [14], Jizba and Korbel evaluated explicitly the functional form of the
probability distribution resulting from the maximization of Uq′ [P ] with lin-
ear constraints. Here, we report their result using our notation. If one
constrains the ordinary mean ⟨C⟩ and follows the same maximization pro-
cedure for Sq′ [P ] as described in Sec. 3.3.3, a different maximum entropy
distribution P̂ q(θ) is obtained:

p̂q′(Gi) =
[1− (q′ − 1) θ̂ · (C(Gi)− ⟨C⟩)]

1
q′−1
+

Ŵ q′(θ̂)
. (3.72)

Following the reparameterization previously introduced, it is also possible
to write:

p̂q′(Gi, ψ̂) =

[︂
1− (q′ − 1) ψ̂ · C(Gi)

]︂1/(q′−1)

+

Ẑq′(ψ̂)
, (3.73)

where
ψ̂(θ̂) ≡ θ̂

1 + (q′ − 1) θ̂ · ⟨C⟩
. (3.74)

Note that the transformation q′ → 2 − q formally links the two types of
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constraint. In particular, one can see that

p̂q′(Gi, ψ̂) = p2−q′(Gi, ψ̂) = pq(Gi, ψ̂). (3.75)

The difference between our and UJK approaches lies in the estimation of
the Lagrange parameters, and in the fact that UJK assume that q is known.
They consider a set of observations coming from systems which they do
not know being independent of each other or not {C∗

m}Mm=1, and select the
Lagrange multiplier in order to satisfy:

⟨C⟩(θ̂∗) = C∗
JK , (3.76)

where C∗
JK = 1

M

∑︁M
m=1C

∗
m is simply the sample average of the observations.

So, they are using the method of moments as estimation technique. It follows
that their probability distribution becomes:

p̂q′(Gi) =
[1− (q′ − 1) θ̂∗ · (C(Gi)− C∗

JK)]
1

q′−1
+

Ŵ q′(θ̂∗)
. (3.77)

With our approach we consider instead a different situation. We imagine
that our set of observations comes from replicas of the same system. Thus,
we are considering an ensamble of systems which we know are independent of
each other, but could internally have correlations which are better captured
by generalized entropies (and, consequentially, non-factorizable probabili-
ties). In other words, we are addressing the hierarchical nature of entropies,
which arises from the scale-dependence of the presence of correlations. Even
if our GMEP procedure does not satisfy SJ4 (subset independence) axiom
due to the presence of non-linear constraints, it is consistent with the fact
that the resulting probabilities should behave differently depending on the
scale of the conditioning subset in SJ4. Moreover, it is possible to establish a
relationship between the two approaches, showing that our GMEP-ML pro-
cedure returns a probability distribution which is equivalent to the one UJK
would obtain by considering a deformed C∗

JK . The probability distribution
resulting from our approach has the form:

pq(Gi, ψ∗) ∝ [1− (1− q)ψ∗ · C(Gi)]1/(1−q)
+ , (3.78)
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where ψ∗ is related to θ∗ through Eq. (3.41) and is here a numerical value
satisfying Eq. (3.54). It is possible to rewrite ψ∗ as a function of the linear
average of C with respect to Pq:

ψ∗ = θ̂
∗

1 + (1− q)θ̂∗ · ⟨C⟩
. (3.79)

Plugging it back in Eq. (3.78), we get:

pq(Gi, θ̂
∗(ψ∗)) ∝

[︂
1− (1− q) θ̂∗ · (C(Gi)− ⟨C⟩)

]︂1/(1−q)

+
, (3.80)

which is equivalent to Eq. (3.77) under the transformation q → 2−q′ and by
setting C∗

JK = ⟨C⟩ ≠ 1/M
∑︁

mC
∗
m. The important difference with respect

to the JK approach is that ⟨C⟩ is not the sample mean of the observation, but
the theoretical average calculated with respect to the Pq resulting from our
approach, based on GMEP and ML estimation. This is neither surprising
nor in contradiction with SJ axioms or JK approach: while the sample
mean is a good estimator when one wants to be completely unbiased with
respect to the possible correlations among different systems, it fails when
one knows that at certain scales probability distributions should factorize,
but still wants to allow local correlations.

In order to complete the discussion, in the following we describe how our
approach behaves when the linear average is constrained. According to the
GMEP, we maximize the Lagrangian:

L′
q′[P̂ ] = Sq′[P̂ ]− α

[︄ Ω∑︂
i=1

p̂(Gi)− 1
]︄
− θ̂ · [⟨C⟩ − C∗] . (3.81)

We obtain then the probability distribution in Eq. (3.72), which is equivalent
to Eq. (3.73), and use the ML principle to estimate ψ̂∗ and q′∗. It is easy
to show that ML on ψ̂ leads to a condition which, under the q′ → 2 − q
transformation, is equivalent to Eq. (3.54):

Ω∑︂
i=1

C(Gi) p̂2−q′

q′ (Gi, ψ̂
∗
q′) = 1

M

M∑︂
m=1

C(G∗
m) p̂1−q′

q′ (G∗
m, ψ̂

∗
q′). (3.82)

The same holds for the estimation of the entropic parameter, which satisfy
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Eq. (3.64):
S1[P̂ q′∗(ψ̂∗

q′∗)] = −ℓq′∗(ψ̂∗
q′∗). (3.83)

Imagine now to have a set of observations and to estimate the parameters
of Pq(ψ) and P̂ q′(ψ̂), obtained respectively constraining ⟨C⟩q and ⟨C⟩. We
would obviously get that if q = q∗, then q′∗ = 2− q∗ and that ψ∗ = ψ̂

∗. So,
according to Eq. (3.75), we would obtain the same probability distribution
in both cases. However, the consistency between the GMEP and the ML
is maintained only when the q-average is constrained. In fact, considering
a single observation C∗ corresponding to the state G∗, in the first case we
have:

Lq∗ [Pq∗(θ∗)] = Sq∗ [Pq∗(θ∗)] = − ln pq∗(G∗, θ∗).

In the second case, instead:

L′
2−q∗ [Pq∗(θ̂∗)] = S2−q∗ [Pq∗(θ̂∗)]− θ̂∗ · [⟨C⟩ − C∗]

̸= − ln pq∗(G∗, θ̂
∗)

̸= − ln p2−q∗(G∗, θ̂
∗).

Thus, the correspondence between (minus) the log-likelihood and the La-
grangian is valid only in the first case, as well the one with the considered
Rényi entropy (i.e. the one we maximize in the GMEP).

3.4 Conclusions

A large body of literature has discussed the generalized axiomatic definition
of entropy deriving from the relaxation (or unrestricted interpretation)
of some of the SK and SJ axioms (in particular, SK4 and SJ3 ). It
is known that, when generalized in that way, the definition of entropy
leads to parametric entropy families where a specific value of the entropic
parameter(s) usually retrieves the ordinary Shannon functional. In a
maximum entropy approach, each entropy family leads to a corresponding
family of maximum entropy probability distributions, indexed again by
the entropic parameter(s), that provide the least biased inference about
a system for which only limited information is available, in the form of
empirical observations of a quantity treated as a soft constraint. Unfor-
tunately, when the estimated maximum entropy distribution is ‘put back’
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into its defining generalized entropy, a number of inconsistencies typically
arise, including incompatibility with the ML principle, impossibility of
determining the value of the entropic parameter(s) purely from empirical
data, and disconnection from Shannon entropy when multiple independent
observations of the same system are available.

In this chapter, based on the fact that every member of an entropy
family is ultimately intended as a quantification of the uncertainty encoded
in the input probability distribution, we have introduced an uninforma-
tiveness axiom demanding that the maximally uncertain (i.e. uniform)
probability distribution should always return the same (maximal) value
of the entropy, irrespective of the value of the entropic parameters. This
simple axiom implies that all entropies take values within the same interval
[0, ln Ω], where Ω is the number of possible (unconstrained) microstates of
the system, thereby equipping generalized entropies with a universal scale
and meaning. The axiom considerably restricts the admissible members of
entropy families. In particular, for both the UJK and HT entropies, the
axiom selects only Rényi entropy as viable. A notable counterexample,
dismissed by the axiom, is Tsallis entropy. From an inferential point of view,
the axiom guarantees that completely uninformative data (or equivalently
the complete absence of empirical information) cannot be used to learn
the value of entropic parameters. At the same time we have showed that,
when informative data are available, a straightforward extension of the
ML principle leads to the optimal estimation of the entropic parameter(s),
purely from empirical observations and without making any assumptions.

The resulting generalized ML approach couples the determination of the
entropic parameters with that of the other structural parameters (Lagrange
multipliers) of the maximum entropy distribution. In particular, while
the ML condition for the Lagrange multipliers indicates which specific
combination of M independent observations should be put equal to the
generalized mean value of the constraint, the one for the entropic parameters
coincides with the requirement that the log-likelihood of the data equals
minus Shannon entropy. This remarkable result shows that the connection
between Shannon entropy and log-likelihood holds true also for generalized
entropies (for the appropriate ML value of the entropic parameter) and is
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consistent with the assumed independence of the M observations. When
M = 1, the maximum entropy probability returns coinciding values of
Rényi and Shannon entropies, even if it maximizes the former but not the
latter. For multiple independent observations (M > 1), the connection
between log-likelihood and Shannon entropy remains, while the connection
with Rényi entropy disappears, as a result of independence. Therefore the
log-likelihood, when maximized also over the entropic parameters, auto-
matically finds the correct entropy to be used for model fitting and selection.

We believe that the introduction of the uninformative axiom has ben-
eficial effects for statistical inference and its many applications, offering a
way of constructing generalized entropies that have still controllable and
consistent properties.
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Chapter 4

On nonlinear compression costs: when Shannon
meets Rényi

This chapter is based on: A. Somazzi, P. Ferragina, and D. Garlaschelli. On
nonlinear compression costs: when Shannon meets Rényi. Available at https:

//arxiv.org/abs/2310.18419.

Shannon entropy is the shortest average codeword length a lossless compressor can
achieve by encoding i.i.d. symbols. However, there are cases in which the objective
is to minimize the exponential average codeword length, i.e. when the cost of en-
coding/decoding scales exponentially with the length of codewords. The optimum
is reached by all strategies that map each symbol xi generated with probability pi

into a codeword of length ℓ
(q)
D (i) = − logD

pq
i∑︁N

j=1 pq
j

. This leads to the minimum ex-
ponential average codeword length, which equals the Rényi, rather than Shannon,
entropy of the source distribution. We generalize the established Arithmetic Cod-
ing (AC) compressor to this framework. We analytically show that our generalized
algorithm provides an exponential average length which is arbitrarily close to the
Rényi entropy, if the symbols to encode are i.i.d.. We then apply our algorithm
to both simulated (i.i.d. generated) and real (a piece of Wikipedia text) datasets.
While, as expected, we find that the application to i.i.d. data confirms our ana-
lytical results, we also find that, when applied to the real dataset (composed by
highly correlated symbols), our algorithm is still able to significantly reduce the ex-
ponential average codeword length with respect to the classical ‘Shannonian’ one.
Moreover, we provide another justification of the use of the exponential average:
namely, we show that by minimizing the exponential average length it is possible
to minimize the probability that codewords exceed a certain threshold length. This
relation relies on the connection between the exponential average and the cumulant
generating function of the source distribution, which is in turn related to the prob-
ability of large deviations. We test and confirm our results again on both simulated
and real datasets.
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4.1 Introduction

In the realm of (lossless) data compression, the main goal is to efficiently
represent data in a manner that requires reduced space without compromis-
ing its integrity. At the heart of this challenge lies the encoding strategy,
which determines how individual symbols or sequences of symbols are trans-
formed into compressed representations. Traditionally, these strategies aim
to minimize the average length of the encoded symbols. By achieving a
shorter average encoded symbol length, one can ensure a more compact rep-
resentation of the entire input data, thereby achieving the central objective
of many data compression problems.

Consider a stationary source generating symbols from an alphabet Σ =
{x1, . . . , xN} of size |Σ| = N , with probability p = {p1, . . . , pN}. Then, the
problem consists in finding the encoding strategy which maps each symbol
xi ∈ Σ into a D-ary codeword of length ℓD(i) such that

L(0) =
N∑︂
i=1

piℓD(i) (4.1)

is minimized. L(0) is the codewords’ average length, and the use of such
notation will be clarified later.

In his pioneering work [12], Shannon proved that for a source generating
i.i.d. symbols, Eqn. (4.1) is minimized by all encoding strategies such that
ℓD(i) = − logD pi, for all i = 1, 2, . . . , N . However, in most cases, strategies
that guarantee such equality for each symbol do not exist but only get ‘close’
to it. This leads to the notorious relation

L(0) ≥ H1[p], (4.2)

where H1[p] = −
∑︁N

i=1 pi logD pi is the Shannon entropy of the source, which
can be understood as the codewords’ minimum average length. The use of
the subscript in H1 will also be clarified later.

We would also like to mention that Eqn. (4.1) can be seen as a cost
function C, because minimizing Eqn. (4.1) is equivalent to minimizing the
cost of encoding/decoding C(0) ∝ L(0) under the assumption that such cost
is linear in the codewords’ length.

Beyond the conventional focus on the linear average of codeword lengths,
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it’s essential to acknowledge that this is not the only viable metric to target
for minimization. For example, there could be a nonlinear relation between
the cost of encoding/decoding symbols and their codewords’ length. Delv-
ing deeper into the theoretical underpinnings of averages, we encounter the
Kolmogorov-Nagumo (KN) averages [84, 85]: a more general family of aver-
ages that offers a richer landscape for exploration. One might be driven to
consider minimizing these KN averages, recognizing the possibility of uncov-
ering novel compression strategies and further refining data representation
techniques that are suitable in different scenarios. Following the introduced
notation, the codewords’ KN average length is defined as

⟨ℓD⟩φ = φ−1
(︃ N∑︂
i=1

pi φ(ℓD(i))
)︃
, (4.3)

where φ is a continuous injective function. Note that for φ(x) = x the usual
average length (4.1) is recovered. While, in general, KN averages depend
on φ, there is a natural requirement that an average length measure should
satisfy, that restricts the space of admissible functions [107, 108]. Namely,
it should be additive for independent symbols. In particular, consider two
independent sets of symbols Σ(1) = {x1, . . . , xN} and Σ(2) = {y1, . . . , yM},
respectively. The associated probabilities are p = {p1, . . . , pN} and q =
{q1, . . . , qM}, and each symbol is encoded in a codeword of length {ℓ(1)

D (i)}Ni=1
and {ℓ(2)

D (j)}Mj=1. Then, the additivity requirement is formulated as follows:

φ−1
(︃ N∑︂
i=1

M∑︂
j=1

piqj φ
(︁
ℓ

(1)
D (i) + ℓ

(2)
D (j)

)︁)︃

= φ−1
(︃ N∑︂
i=1

piφ(ℓ(1)
D (i))

)︃
+ φ−1

(︃ M∑︂
j=1

qjφ(ℓ(2)
D (j))

)︃
.

(4.4)

It is possible to prove that Eqn. (4.4) leads to the so-called exponential
KN averages [108, 109, 110], that correspond to φ(x) = φt(x) = γDtx + b.
Substituting φt into Eqn. (4.3), one gets that

⟨ℓD⟩φt ≡ L(t) = 1
t

logD
(︃ N∑︂
i=1

pi D
t ℓD(i)

)︃
, (4.5)

where t > −1 and L(t) is then the exponential average of the codeword’s
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length. Notice that for t approaching 0, the exponential average converges
to the linear average, i.e. limt→0 L(t) = L(0), which clarifies the notation
we have adopted before.

The utility of the exponential average in data compression can be un-
derstood from two distinct fronts. Firstly, when the costs associated with
the encoding or decoding steps amplify (t > 0), they might grow in an ex-
ponential fashion with respect to the codewords’ lengths. This leads to a
nonlinear relation having the form C(t) ∝

∑︁
i piD

tℓD(i). Minimizing C(t) is
then equivalent to minimizing Eqn. (4.5) if t > 0, since the latter is a mono-
tonically increasing function of the former. A case falling in such scenario
could be DNA coding [18, 19], where the apparatus involved in encoding
and decoding procedures is very costly. Minimizing this exponential cost
function then could become essential for effective and efficient data han-
dling. Secondly, at a more theoretical level, the exponential average arises
naturally when aiming at curtailing the risk of buffer overflow [20, 111] or
bolstering the probability of transmitting a message in a short timeframe.
This could be the case in aerospace communication scenarios, where it can
happen that antennas are visible for fleeting moments, necessitating the
rapid and reliable transmission of information [112]. In such scenarios, es-
timating the likelihood of large deviations (for the events to be avoided)
involves the cumulant generating function of the probability distribution,
which in turn leads to the exponential average. Finally, it has been shown
that minimizing Eqn. (4.5) with t < 0 is a problem related to maximizing
the chance of receiving a message in a single snapshot [113].

In his valuable paper [114], Campbell proved that the optimal encoding
lengths that minimize the exponential cost of Eqn. (4.5) are

ℓ
(q)
D (i) = − logD

pqi∑︁N
j=1 p

q
j

, (4.6)

where q = 1/(1 + t). Moreover, he proved that the lower bound for the
exponential cost is given by the Rényi entropy of order q = 1/(1 + t) of the
source, defined as

Hq[p] = 1
1− q logD

(︃ N∑︂
i=1

pqi

)︃
, (4.7)

78



so that

L(t) ≥ H 1
1+t

[p] (4.8)

where the equality holds iff Eqn. (4.6) is exactly satisfied. Note that
limq→1Hq[p] = H1[p], i.e. Shannon entropy is a particular case of Rényi
entropy. It follows that for t→ 0, Eqn. (4.8) reduces to Eqn. (4.2).

The probability distribution p(q) =
{︃

pq
1∑︁N

j=1 p
q
j

, . . . ,
pq

N∑︁N
j=1 p

q
j

}︃
which ap-

pears in Eqn. (4.6) is often referred as escort or zooming probability dis-
tribution of p [72, 105, 22]. The reason is that, depending on the value
of q, it can amplify/suppress values in the tails of the original distribution
p (and, since it is normalized, suppress/amplify the others). Escort dis-
tributions have been applied and have emerged in various fields, ranging
from non-extensive statistical mechanics [72], chaotic systems [105] and sta-
tistical inference [22]. Another notable link among the Rényi entropy, the
KN exponential average, and escort distributions comes from an axiomatic
point of view. While Shannon entropy can be derived by the four Shannon-
Khinchin axioms (SK1-SK4) [13], Rényi entropy is derived by relaxing SK4
(also called additivity axiom) to a more general version, which involves both
the KN exponential average and the escort distributions [83].

Since Campbell, from the point of view of data compression problems,
escort distributions are also the optimal distributions according to which
one has to encode symbols in order to minimize the exponential average
codeword length L(t). However, although Campbell provided the existence
of an optimal encoding length, he did not suggest any operational strategy to
achieve it. Some specific algorithms have been later proposed [20, 111, 115,
116], and [117] noted that, since the optimal lengths defined in Eqn. (4.6)
have the same form of the lengths which minimize the linear average length
of Eqn. (4.1) if p is replaced by its escort p(q), then it is sufficient to feed a
standard (i.e. ‘Shannonian’) encoder with p(q) instead of p in order to reach
a cost L(t) close to its minimum H 1

1+t
[p].

In this chapter, we provide a series of contributions. i) We lay the math-
ematical ground to the observations of the previous papers by applying the
above conceptual framework to one of the most efficacious algorithms in the
realm of data compression: i.e., Arithmetic Coding (AC) (Sec. 4.2). ii) We
experimentally analyze the performance of the proposed escort distribution-
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based compressor in the case of optimizing the exponential average codeword
length, over both synthetic and real datasets. We confirm the theoretical
results on the former (composed by i.i.d. generated symbols) and achieve
surprising results on the latter (composed by correlated symbols). In par-
ticular, we show that on a sample of Wikipedia text the application of our
compressor with escort probability leads to an improved compression ratio
(when the considered metric is the exponential average codeword length)
with respect to a standard Shannon compressor, even if the optimal value
of q (i.e. the exponent leading to the escort distribution) is unknown to the
encoder (Sec. 4.3). iii) Finally, we examine analytically and experimentally
the practical case in which its crucial to not exceed a certain threshold in the
codewords’ lengths (such as in the context of bounded buffers), by showing
that the exponential average naturally appears in the probability of large
deviations thus further justifying the study performed in the present chap-
ter. In particular, we will show that by using our approach it is possible to
significantly reduce the probability that the length of the codeword assigned
to a given sequence of symbols exceeds a certain threshold with respect to
a classic Shannon compressor (Sec. 4.4).

It goes without saying that all our results and experimental achievements
could benefit of the use of more recent statistical compressors (i.e., ANS
[118]) in place of the arithmetic coder, whose simplicity is exploited in this
chapter just for clarity of explanation.

4.2 Methods

In the ensuing section, we undertake an examination of the arithmetic coding
compression scheme. We commence by providing a theoretical description
of AC, delineating its operating principles. Following this, we weigh the
pros and cons of AC, offering a balanced viewpoint on its utility and limita-
tions in various application contexts. Finally, we advance the discourse by
generalizing AC with an aim to achieve the theoretical limit as predicted by
Campbell’s theorem.

4.2.1 Arithmetic coding

Arithmetic coding is a lossless encoding scheme [119]. Compressor and de-
compressor both need the alphabet of symbols Σ, the associated probability
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distribution p and the length of the stream of symbols to encode/decode.
Consider a string s⃗ = (s1, . . . , sM ) of length M , where each sj = xij is
a symbol randomly generated by a source from alphabet Σ with associated
probability p. Then, in order to encode s⃗ into a D-ary alphabet, the encoder
performs the procedure illustrated in Algorithm 1.

Algorithm 1 Arithmetic Coding
Require: The input string s⃗ = xi1xi2 · · ·xiM , the probabilities p =
{p1, . . . , pN} and the cumulative f = {f1, . . . , fN} of p.

Ensure: A subinterval [a, a+ S) of [0, 1).
1: S0 = 1
2: a0 = 0
3: j = 1
4: while j ̸= M do
5: Sj = Sj−1 · pij
6: aj = aj−1 + Sj−1 · fij
7: j = j + 1
8: end while
9: return ⟨k ∈ [aM , aM + SM ),M⟩

Essentially the encoder, starting from the interval [0, 1), iteratively di-
vides it proportionally to the probabilities in p and, at each iteration j,
chooses the subinterval corresponding to the associated symbol sj = xij .
After M iterations, the encoder emits a number k, contained in the final
subinterval [aM , aM + SM ), with SM =

∏︁M
j=1 pij , which is uniquely asso-

ciated with the original string s⃗. Such number k is then converted into
its D-ary representation and communicated to the decoder (together with
the original string length M), which can reverse this procedure to get the
original string. It follows that the encoded string’s length ℓD(s⃗) is equal to
the number of symbols (bits if D = 2) necessary to encode k in the desired
alphabet.

From now on, we will consider for simplicity a binary (D = 2) encoding
alphabet. Nonetheless, while our focus is on the classic binary AC, the
results we present are inherently generalizable to D > 2, ensuring that the
core features and principles of AC we discuss remain applicable and valid to
those other cases too.

It is possible to show that the length of the encoded number k (i.e.
encoded string) depends only on the length of the final subinterval SM .
In particular, by choosing k = aM + SM/2 and by truncating its binary
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representation to the first ⌈log2
2

SM
⌉ bits, the approximation error is so small

that such truncation is guaranteed to fall into the interval [aM , aM + SM ).
Considering that

ℓ2(s⃗) =
⌈︃

log2
2
SM

⌉︃
< 2− log2 SM = 2−

M∑︂
j=1

log2 pij , (4.9)

and that it is possible, for M large enough, to approximate each pi with the
fraction of occurrences of symbol xi in s⃗, i.e pi ≃ ni(s⃗)/M , one gets that:

ℓ2(s⃗) < 2 +M ·H0[p]. (4.10)

Eqn. (4.10) unveils the main strength of the AC scheme: the number of bits
that are ‘wasted’ in encoding s⃗ is 2, thus resulting intensive with respect
to the string length M (provided that we operate with infinite precision
arithmetic [119]). As M increases, the number of wasted bits per character
goes to 0, in fact

ℓ2(s⃗)
M

<
2
M
·H0[p]. (4.11)

A primary limitation of arithmetic coding (AC) lies in its operational frame-
work. Unlike certain encoding schemes that allocate distinct codewords to
individual symbols, AC assigns a codeword to the entire string. This means
that the decoding process cannot commence in tandem with encoding so the
decoder must wait for the encoder’s completion of encoding the entire string
(see e.g. the variant Range Coding for relaxing this limitation [120]). As the
efficiency of AC generally improves with an increase in M , this waiting pe-
riod can be time-consuming, rendering AC unsuitable for some applications.
Conversely, AC boasts superior performance compared to encoding mecha-
nisms that designate codewords to each symbol particularly when probabil-
ity distributions are highly skewed. Such encoders mandate a minimum of
1 bit per symbol. However, the optimal length — expressed as − log2 pi —
can be significantly less than 1.
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4.2.2 Generalized AC

We now propose a generalization of AC in order to optimally minimize the
exponential cost L(t) defined in Eqn. (4.5). In analogy with the classical
case, we try to execute AC by dividing each segment according to the escort
distribution p(q), where p(q)

i = pq
i∑︁N

j=1 p
q
j

, in order to reach the optimal lengths
defined in Eqn. (4.6). We will call this procedure ACq. Moreover, we will
call S(q)

j the length of the segment generated by ACq at iteration j. The
logarithm of the length of the final segment S(q)

M for a string s⃗ is:

logD S
(q)
M (s⃗) = logD

M∏︂
j=1

pqij∑︁N
i=1 p

q
i

=
M∑︂
j=1

(︃
logD p

q
ij
− logD

N∑︂
i=1

pqi

)︃

= q

N∑︂
i=1

ni(s⃗) logD pi −M logD
N∑︂
j=1

pqj

(4.12)

where ni(s⃗) counts how many times the symbol xi appears in the string s⃗.
From this result, it is possible to evaluate the number of bits emitted to
encode a particular string in a binary alphabet (D = 2):

ℓ
(q)
2 (s⃗) =

⌈︃
log2

2
S(q)
M (s⃗)

⌉︃
< 2− log2 S

(q)
M (s⃗). (4.13)

Let’s define now the exponential cost LM (t) of a string of lengthM composed
by independent symbols:

LM (t) = 1
t

log2
∑︂
s⃗

P (s⃗) 2tℓ2(s⃗), (4.14)

where P (s⃗) =
∏︁N
i=1 p

ni(s⃗)
i = SM (s⃗). Given Eqn. 4.5, it is LM (t) = M · L(t).

Substituting Eqn. (4.13) in the definition of LM (t), and considering the
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optimal parameter value q = 1/(1 + t), we get that:

LM (t) = 1
t

log2
∑︂
s⃗

P (s⃗) 2tℓ
((t+1)−1)
2 (s⃗)

<
1
t

log2
∑︂
s⃗

P (s⃗) 2t(2−log2 S((t+1)−1)
M (s⃗))

= 1
t

log2

(︄
22t 2tM log2

∑︁
j p

(t+1)−1
ij

·
∑︂
s⃗

(︃
P (s⃗)

N∏︂
i=1

(︁
p
ni(s⃗)
i

)︁− t
t+1

)︃)︄

= 2 + Mt

t+ 1H 1
t+1

[p] + 1
t

log2
∑︂
s⃗

P (s⃗)1− t
t+1

= 2 + Mt

t+ 1H 1
t+1

[p] + M

t+ 1H 1
t+1

[p]

= 2 +MH 1
t+1

[p].

(4.15)

Which reads:

LM (t) < 2 +MH 1
t+1
, (4.16)

where Hq[p] = 1
1−q log2

∑︁N
i=1 p

q
i is the Rényi entropy of the source for a

single symbol. Notice that for independent symbols the Rényi entropy is
additive, i.e. for i.i.d. symbols Hq[P ] = M ·Hq[p] holds. So, the compressor
ACq leads to an average cost per symbol which is close to H 1

1+t
[p] as M

increases:

L(t) = LM (t)
M

<
2
M

+H 1
1+t

[p]. (4.17)

It is possible to visualize this result by considering the cost LM (t, q), in
which the parameters t and q are now decoupled: t is the exponent of the
cost function, while q is used in the ACq procedure. In particular, it reads:

LM (t, q) = 1
t

log2
∑︂
s⃗

P (s⃗) 2t ℓ
(q)
2 (s⃗). (4.18)

Here, ℓ(q)2 represents the number of bits emitted by applying the ACq proce-
dure with the escort distribution of order q (notice that, if q = 1, then the
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ACq=1 reduces to the classic compressor AC).
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Figure 4.1: Exponential average codeword length of strings of length M = 50,
composed by i.i.d. symbols sampled according to pi ∝ i−1, i ∈ [1, 3]. Here t = 0.8.
Its minimum is reached in the proximity of the red vertical dashed line, correspond-
ing to the optimal q, i.e. qt. For that value of q, the distance with respect to the
Rényi entropy of the string (flat orange line) is approximately 2.

Figure 4.1 shows LM (t, q) for different values of q. The minimum is
reached exactly in the value of q prdicted by Campbell, that we now call
qt = 1

1+t . Moreover, the distance between the minimum of LM (t, q), i.e.
LM (t, qt), and the orange line (corresponding to M · H 1

1+t
[p]) is very close

to 2, confirming the result of Eqn. (4.16).

4.2.3 A note on the semi-static approach

In this section, we discuss how the probability distribution p can be measured
for different encoding schemes, focusing on the ACq. An encoding scheme
can be static or semi-static, depending on how the probability distribution
of the source is computed or updated. In the first case, the probability dis-
tribution approximating the source’s one is fixed and never changed while
strings are generated. In the second case, instead, the probability distribu-
tion is evaluated each time a string needs to be encoded, and it is set equal
to the frequency of symbols appearing in that string. In [118], the AMS
coding is focused on the second case.

In this section, we want to elucidate how the use of a semi-static ap-
proach, instead of a static one, affects the exponential cost of Eqn. (4.18).
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Let’s assume that is possible to reach codewords’ lengths as expressed in
Eqn. (4.6), for any symbol and any value of q. Then, it is possible to write:

ℓ
(q)
D (s⃗) =

M∑︂
j=1

(︃
− logD

pqij∑︁N
i=1 p

q
i

)︃

= −
N∑︂
i=1

ni(s⃗) logD
pqi∑︁N
i=1 p

q
i

= M ·H1[f(s⃗)||p(q)],

(4.19)

where H1[f || p] = −
∑︁

i fi logD pi is the cross-entropy between distributions
f and p, and f(s⃗) =

(︁n1(s⃗)
M , . . . , nN (s⃗)

M

)︁
is the empirical frequency of each

symbol in the string s⃗. We also remind that p(q) is the escort distribution
of order q of the distribution p. So, Eqn. (4.18) can be rewritten as:

LM (t, q) = 1
t

logD
(︃∑︂

s⃗

P (s⃗)DtM H1[f(s⃗) || p(q)]
)︃
. (4.20)

While Campbell [114] showed that the best strategy (i.e., the best q) to
minimize the exponential cost consists of taking q = qt = 1/(1 + t), in
the semi-static approach, the exponential cost of each string is minimized
individually by taking q = 1. The reason is that the cost of encoding a
single string is DtMH1[f(s⃗)||p(q)]. Since it is assumed that the probability of
the source is equal to the empirical frequency appearing in the string to
encode, i.e. p = f(s⃗), setting q = 1 provides the lowest cost (if t > 0) since

H1[f (1)(s⃗)||f (1)(s⃗)] < H1[f (1)(s⃗)||f (q)(s⃗)], ∀q ≥ 0.

In other words, if one assumes that p = f(s⃗) then all the observed strings
are encoded as if they were members of the typical set of strings, thus they
are better encoded by considering q = 1, i.e. the Shannon-like approach
[121]. Notice that if more than one string si⃗ is to be encoded, by assuming
p = f(si⃗) at each string, one has to take into account that the probability
distribution of the source is non stationary since, in general, f(s⃗i) ̸= f(s⃗j).
This violates Campbell’s hypothesis, thus making our compression approach
non applicable in this case.

On the other hand, the situation is much different if one considers the
static approach. In this case, the strings s⃗i are considered to be generated
by a stationary source according to a distribution p. So it becomes possible
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to observe strings whose corresponding f(s⃗) is outside the typical set of p,
meaning that they are very expensive to encode and thus making the use of
our approach very advantageous in the case of an exponential cost.

4.3 Application to Wikipedia

Having delineated the theoretical side of our ACq in the preceding sections,
we now transition to a more empirical scenario. This section is dedicated to
the application of our outlined procedure to real-world data.

In particular, we applied ACq to Wikipedia data.1 The dataset used for
our analysis contains W ≈ 7 · 108 symbols from an alphabet Σ of size |Σ| =
N = 27. In order to perform coding in a static approach as we mentioned
earlier, we computed from the whole dataset the empirical frequency of the
27 distinct symbols, shown in Fig.4.2, and then used it to set the probability
distribution p = {p1, . . . , p27}.

0 5 10 15 20 25
Symbols' ranking i

0.000
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0.175

p i

Figure 4.2: Probability distribution of the individual symbols (i.e., characters) in
the Wikipedia dataset. Symbols have been ordered by decreasing frequency and
assigned a rank. The probability distribution has been estimated in a frequentist
approach as pi = ni/W , with ni being the number of times that symbol xi appears
in Wikipedia.

Since the theoretical results presented so far are valid for i.i.d. symbols,
we first discuss and apply our procedure in the case of i.i.d. symbols. After
that, we will move to the real Wikipedia dataset.

1The dataset FIL9 can be downloaded from https://fasttext.cc/docs/en/
unsupervised-tutorial.html.

87

https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html


To begin with, we generated η = 3.500.000 strings of length M = 20
composed by i.i.d. symbols sampled according to p. We then applied the
ACq for different and discretized values of q. For each string we evaluated the
length of the corresponding codeword generated by ACq algorithm, without
actually generating it, as ℓ(q)2 (s⃗) = log2⌈ 2

S(q)
M (s⃗)

⌉. Such lengths have been
stored in a matrix L, whose entry Lij is the length of the codeword of
the j-th string, generated with ACqi , where qi is the i-th value of q that
we encode with. Algorithm 2 summarizes this procedure. By using the

Algorithm 2 Wikipedia data analysis
Require: data, Σ = (x1, . . . , xN ), p = (p1, . . . , pN )
Ensure: len(data) = M · η
Ensure: qend > 0

1: M ← 20
2: η ← len(data)

M
3: q ← 0
4: qidx ← 0
5: while q ≤ qend do
6: n← 0
7: p

(q)
i ←

pq
i∑︁

j p
q
j
∀xi ∈ Σ

8: while n < η do
9: string← data[M · n : M · (n+ 1)− 1]

10: S ← 1
11: for c in string do
12: i∗ ← i|c = xi

13: S ← S · p(q)
i∗

14: end for
15: L[qidx, n]← log2⌈ 2

S ⌉
16: n← n+ 1
17: end while
18: q ← q + 0.1
19: qidx ← qidx + 1
20: end while

matrix L generated by Algorithm 2, it is possible to evaluate the empirical
exponential average length, for different values of t, as:

LempM (t, qi) = 1
t

log2

(︄
1
η

η∑︂
j=1

2tLij

)︄
. (4.21)

Figure 4.3 shows the empirical LempM as a function of q for three different
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Figure 4.3: This Figure shows, for the synthetic i.i.d. generated symbols, the
empirical exponential average Lemp

M (t, q) for M = 20 (blue line), the Rényi entropy
M ·Hqt

[p] (horizontal orange line) with qt = 1/(1+t) (dotted vertical red line). The
three panels show different values of t ∈ {0.2, 0.8, 1.8}. We can see that, in each case,
the minimum of Lemp

M (t, q) is reached at q = qt, and that Lemp
M (t, qt)−M ·Hqt [p] ≈ 2.

values of t, with the corresponding Rényi entropy M ·Hqt and the optimal
qt = 1/(1+ t). It is clear that the minimum of LempM (t, q) is reached at q = qt

and that it is very close to the Rényi entropy M ·Hqt [p].
Let us now move to analyze the real Wikipedia dataset. We divided

it in η = 35.653.488 strings of length M = 20. We applied again Algo-
rithm 2, and proceeded in the same way as we did for the i.i.d. symbols
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scenario. Figure 4.4 reports our results. In particular, we can see that
argminq(L

emp
M (t, q)) < qt and that, for t = 0.2 (top panel), our ACq can

perform better than what Campbell predicted (in fact, minq LempM (t, q) <
M ·Hqt [p]). The emergence of such discrepancies is not surprising, since real
English text is not composed by i.i.d. symbols, and thus the hypothesis on
which our theoretical description lies is not satisfied.

But what does it mean, ‘physically’, the fact that, in this case, the av-
erage empirical cost is minimized by considering a q smaller than qt? Since
we are using escort distributions p(q) of order q as encoding strategy in
Eqn. (4.6), decreasing the value of q is equivalent to increasing the probabil-
ity of the rare strings. This translates into assigning them shorter codewords,
more than it would be done by using q = qt. In other words, when the real
optimal q is smaller than qt, this means that ‘rare’ strings are actually more
abundant in the dataset than they would be if they were generated by a
probability distribution calculated as the product of the probability of i.i.d.
symbols. Figure 4.5 shows, for different values of t, the real (empirical) op-
timal q overlapped to the theoretical qt. For most values of the exponent t,
the empirical best q is smaller than qt.

Finally, we want to stress that even if English text does not satisfy the
i.i.d. symbols hypothesis on which Campbell’s theoretical description lies,
the use of the ACq still outperforms the standard AC if the average length
is exponential, although the empirical optimal q is not the one predicted
by Campbell. In fact, while the value of q that is actually optimal in the
case real English text can not be known a priori, by using the one which
is optimal for i.i.d. symbols (i.e. qt) it is possible to significantly reduce
the exponential average length, or the cost, with respect to the standard
case q = 1. This is shown in Figure 4.6, where we can see that, even if
the true optimal q is different from qt, by encoding according to qt = 1

1+t
there is a notable exponential average length drop with respect to the usual
q = 1 encoding strategy. Of course, if one would know the true optimal q
the advantage would be even greater.

4.4 Discussion

In this section, we’ll take a closer look at the core ideas and findings from
our research. We’ll first explore one of the reasons behind the use of the
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Figure 4.4: This Figure shows, for the real Wikipedia dataset„ the empirical
exponential average Lemp

M (t, q) for M = 20 (blue line), the Rényi entropy M ·
Hqt

[p] (horizontal orange line) with qt = 1/(1 + t) (dotted vertical red line). The
three panels show different values of t ∈ {0.2, 0.8, 1.8}. In all these cases, it is
instead evident that the minimum of Lemp

M (t, q) is reached for q < qt. Additionally,
minq L

emp
M (q, t) could be lower (first panel) or almost exactly reach (second and

third panels) the value M ·Hqt
[p]. We can also see that encoding according to ACqt

(i.e., see the intersection between the blue line and the dotted line) can lead to an
exponential average length smaller than the Rényi entropy (first panel), or to an
error which greater than 2, i.e. minq L

emp
M (t, q)−M ·Hqt [p] > 2 (second and third

panels).

exponential cost in our study, thus explaining why it’s important and how it
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Figure 4.5: Empirical best q for the Wikipedia dataset (blue line solid line) and
qt (orange dashed line) for different values of t. For almost every value of t, the
empirical optimal q is smaller than qt, meaning that in the Wikipedia dataset there
is an abundance of ‘rare’ strings.
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Figure 4.6: Difference Lemp
M (t, q = 1)−Lemp

M (t, q = qt) for M = 20 as a function of
t, for the Wikipedia dataset. Since, for t big enough, this quantity is positive (and
increasing), if the average to consider is the exponential one, there is an advantage
(which increases with t) in encoding according to qt instead of q = 1.

fits into the bigger picture of data compression. After that, we will provide
further analysis of real data, which confirms our previous findings. More-
over, we will also mention what are the errors that can come up when our
guesses about the true probability distribution of the source are not accu-
rate, shedding light on some of the challenges we faced and how they might
be addressed in future studies.
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4.4.1 A justification to the exponential cost with Cramér’s
theorem

In this subsection, we provide a simple yet powerful idea about the useful-
ness of the exponential average and its minimization. Such idea relies on
the linkage between the exponential average and the cumulant generating
function of a distribution. As we anticipated in the introduction of this
chapter, such application could be useful in scenarios in which it is imper-
ative to minimize the probability that codewords’ lengths exceed a certain
threshold.

Suppose that we are interested in encoding strings of fixed length M ,
and that we do not want the corresponding codewords length’s exceed the
threshold M · a. So, using the usual notation, the aforementioned problem
translates into finding an encoding strategy xi → ℓD(i) that assigns to each
symbol xi of the alphabet Σ a length ℓD(i) to its codeword minimizing:

Prob
[︄

1
M

M∑︂
j=1

ℓD(ij) ≥ a
]︄
. (4.22)

Here, the sum runs over the whole string, and ℓD(ij) is the length of the
encoded symbol appearing at the j-th position of the string to be encoded.
Moreover, since the threshold for the encoded strings is M · a, we can see a
as the threshold per symbol. According to Cramér’s theorem, it is possible
to write the following Chernoff bound:

Prob
[︄

1
M

M∑︂
j=1

ℓD(ij) ≥ a
]︄
≤ e−M

(︁
ta−µ(t)

)︁
∀t > 0, (4.23)

where µ(t) = logEp[etℓD(i)] is the symbols’ distribution’s cumulant-
generating function and log is the natural logarithm (i.e. with base e).
Eqn. (4.23) gives us an important degree of control on the probability of
exceeding the threshold, since, as we will show, it is possible to control its
upper bound. Of course, we are interested in situations in which the expo-
nent −M

(︁
ta − µ(t)

)︁
is negative, otherwise, we would get an upper bound

of a probability distribution greater than 1, thus totally uninformative. It
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is possible to rewrite the exponent of the upper bound as:

−M(ta− µ(t)) = −M
(︄
ta− log

(︁∑︂
i

pie
tℓD(i))︁)︄

= −M
(︄
ta−

t logD(
∑︁

i piD
tℓD(i) logD e)

t logD e

)︄
= −M · t(a− L(t logD e)).

(4.24)

Since M , t and a are positive by definition, we are interested in finding the
strategy minimizing L(t logD e) ∀t > 0. We know that, for a given value of
t′ = t logD e, the minimum of L(t′) is Hqt′ [p], with qt′ = 1

1+t′ . Moreover, we
know that such minimum is reached with the strategy ℓ

(q)
D (i) = − logD p

(q)
i

(see Eqn. (4.6)). So, by writing Eqn. (4.24) as a function of qt′ (and, for
simplicity, by dropping the subscript ‘t′’), we get that:

−M(ta− µ(t)) = −M 1− q
q logD e

(a−Hq[p]). (4.25)

So, it is possible to write Eqn. (4.23) as:

Prob
[︄

1
M

M∑︂
j=1

ℓD(ij) ≥ a
]︄
≤ e−M 1−q

q logD e
(a−Hq [p]) ∀q ∈ (0, 1]. (4.26)

Having pointed out that the best strategy consists in setting the codewords
lengths according to Eqn. (4.6), with q = qt′ = 1/(1 + t′), we have to
determine which is the correct t > 0 (and, in turn, qt) to consider. We
expect that the choice depends on the threshold a. In order to choose the
best parameter q, we will minimize the right-hand side of Eqn. (4.25). Since
we are assuming it to be negative, this guarantees that the upper bound in
Eqn. (4.26) is minimized.

Before going into the analytical details of such minimization, we will
consider two simple examples which will provide an intuition on how the
encoding strategy is related to the threshold a. Recall that Hq[p] is a de-
creasing function of q, i.e., H0[p] ≥ · · · ≥ H1[p].

Case a > H0[p] = logD |Σ|. In the first case we consider, we assume
that the threshold a is bigger than the Rényi entropy of order 0. Since
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H0[p] = logD |Σ|, we are assuming that the threshold exceeds the Shannon
entropy of a distribution that shares the same support as the original p, but
with entries replaced by 1/|Σ|, i.e. a uniform distribution. In this scenario,
the term (a − Hq[p]) in Eqn. (4.25) is positive and finite ∀q ∈ (0, 1]. The
r.h.s. of Eqn. (4.25) is then maximized by letting q → 0 (i.e. t→ +∞). By
writing a = H0[p] + ϵ, with ϵ > 0, Eqn. (4.26) reads:

P

[︄
1
M

M∑︂
j=1

ℓD(ij) ≥ H0[p] + ϵ

]︄
≤ lim

q→0
e

−M 1−q
q logD e

ϵ = 0. (4.27)

So, the probability of emitting a codeword longer than the threshold van-
ishes. This result is trivial: by setting q → 0, the encoding strategy is
equivalent to the Shannon encoding for symbols generated with a uniform
probability distribution. In fact, ℓ(0)

D (i) = − log p(0)
i = log |Σ|, and this holds

for any probability distribution p. In other words, if it is imperative that the
average codeword length does not exceed H0[p], just encode the sequence as
if the symbols are uniformly distributed, irrespective of their actual proba-
bility distribution.

Case a < H1[p]. In this second case, we are going to consider a threshold
smaller than the Shannon entropy of the underlying probability distribution
p. So, it follows that (a − Hq[p]) is negative ∀q because H0[p] ≥ · · · ≥
H1[p] > a. Then, by setting a = H1[p]− ϵ, with ϵ > 0, Eqn. (4.26) reads:

P

[︄
1
M

M∑︂
j=1

ℓD(ij) ≥ H1[p]− ϵ
]︄
≤ e−M 1−q

q logd e

(︁
H1[p]−ϵ−Hq [p]

)︁
. (4.28)

The exponent −M 1−q
q logd e

(︁
H1[p] − ϵ − Hq[p]

)︁
> 0 is positive ∀M ∈ N, and

so it does not satisfy our hypothesis of a negative exponent. As previously
mentioned, this means that the above right-hand side term is greater than 1.
For this reason, it gives no information on the probability of exceeding the
threshold. We can however see that since H1[p] is the shortest achievable
codewords’ (linear) average length, the latter can be smaller than H1[p] only
due to fluctuations in the observed symbols frequency, which are suppressed
in the large M limit. The best strategy is then letting q = 1, but still, the
threshold will be exceeded almost always if M is not unrealistically small.
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Case H1[p] ≤ a ≤ H0[p]. Now that we have shown the two extreme cases
a > H0[p] and a < H1[p], let’s focus our attention on the most interesting
case: i.e. H0[p] ≤ a ≤ H1[p]. As previously mentioned, we are interested
in finding the value q = q∗ for which −M 1−q

q logD e(a − Hq[p]) is minimized.
Taking the derivative, one gets:

d

dq

(︄
−M 1− q

q logD e
(a−Hq[p])

)︄
=

= − M

logD e

(︄
1

q(1− q)DKL(p(q)||p)− 1
q2 (a−Hq[p])

)︄
,

(4.29)

where DKL(p(q)||p) =
∑︁

i p
(q)
i logD

p
(q)
i
pi

is the Kullback-Leibler divergence
between the escort of p and p itself. The minimum is then found by setting
the derivative to zero, leading to the condition:

a−Hq∗ [p] = q∗

1− q∗DKL(p(q∗)||p)

= q∗

1− q∗

|Σ|∑︂
i=1

p
(q∗)
i logD

p
(q∗)
i

pi

= q∗

1− q∗

[︄ |Σ|∑︂
i=1

(︄
pq

∗

i∑︁|Σ|
j=1 p

q∗

j

logD p
q∗−1
i

)︄

−
|Σ|∑︂
i=1

(︄
pq

∗

i∑︁|Σ|
j=1 p

q∗

j

logD
|Σ|∑︂
j=1

pq
∗

j

)︄]︄
= q∗(H1[p(q∗)||p]−Hq∗ [p]).

(4.30)

Moreover, it is useful to write the Shannon entropy of the escort p(q):

H1[p(q)] = −
|Σ|∑︂
i=1

pqi∑︁|Σ|
j=1 p

q
j

logD
pqi∑︁|Σ|
j=1 p

q
j

= qH1[p(q)||p] + (1− q)Hq[p]

(4.31)

By plugging Eqn. (4.31) into Eqn. (4.30), one gets that the value q∗ which
sets the derivative to 0 (i.e. minimizes the upper bound in the r.h.s. of
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Eqn. (4.26)) satisfies:

H1[p(q∗)] = a. (4.32)

This equation relates the threshold a to the encoding strategy driven by pq∗ .
In particular, such relation unveils that, if a ∈ [H1[p], H0[p]], the optimal
encoding strategy ‘pretends’ that the symbols are generated according to
their distribution’s escort instead of the original p. Then, since by encoding
with ACq∗ , we are actually (almost) reaching the shortest linear average
length if symbols were generated according to p(q∗), it is reasonable that the
best q = q∗ is the one for which the threshold is such shortest linear average,
i.e. H1[p(q∗)].

Summarizing our contributions in this section, we note that we have
justified the use of the exponential average by the necessity of not exceeding
a certain threshold in the length of the encoded string. In particular, given
the value of the threshold a as an input, the procedure has three steps:

1. Estimate the probability distribution p of the input symbols.

2. Find q∗ by solving Eq. (4.32).

3. Encode the input data with ACq∗ .

Such procedure guarantees that, if a > H1[p], it is possible to reduce the
number of codewords exceeding the threshold with the use of the described
ACq algorithm, which reaches the Rényi entropy bound with an error of at
most 2 bits.

In the following paragraph, we will show a couple of examples over real
and simulated data on how to infer the proper q∗, and how much this choice
impacts the fraction of strings exceeding the threshold.

4.4.2 Example

Throughout this section, we will apply our procedure to both the usual
Wikipedia dataset and simulated strings composed by i.i.d. symbols. We
will generate the latter according to the probability p = (p1, . . . , p27) ex-
tracted from the Wikipedia dataset (see Figure 4.2 for a visual reference).
In order to understand which is the range of interest for the threshold a, we
have evaluated that H0[p] ≈ 4.75 and H1[p] ≈ 4.12. For this reason, we will
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consider a threshold a ∈ [4.12, 4.75]. Figure 4.7 shows both the value q∗ for
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Figure 4.7: Dashed orange line: q∗ as solution of Eqn. (4.32). Solid blue line:
upper bound of the probability of exceeding the threshold. Black dotted vertical
lines: H1[p] and H0[p]. As the threshold a increases, the probability of exceeding
it decreases until it reaches 0 for a = H0[p].

different values of a, evaluated as the solution of Eqn. (4.32), and the corre-
sponding upper bound (UB) of the probability of exceeding the threshold,
evaluated as:

UB = e

(︁
−M 1−q∗

q∗ logD e
(a−Hq∗ [p])

)︁
, (4.33)

where we set M = 20. For a ≤ H1[p], the upper bound UB is equal to 1,
thus it gives no information on the probability of exceeding the threshold.
Instead, when a increases, UB gets smaller until, for a ≥ H0[p], it reaches
0 (and so does q∗), meaning that if the threshold is bigger than H0[p], by
encoding with escort distribution of order 0 it becomes impossible to exceed
the threshold. This agrees with our previous analysis.

So, we expect that, by applying ACq∗ to both Wikipedia and simulated
data, the fraction of strings that exceed the threshold M · a is smaller than
the one obtained by using the classic arithmetic coder, i.e. AC1. Figure 4.8
shows, as a function of a, the fraction of strings of length M = 20 exceeding
the threshold M · a when ACq∗ and AC1 are applied, over Wikipedia and
simulated data (i.i.d. symbols). It can be noted that, by generalizing the
encoding procedure, the number of codewords exceeding the threshold can
be decreased significantly, especially for ‘large’ a. Such a drop is more pro-
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nounced in the case of the Wikipedia data. The reason is that, since there is
an abundance of ‘rare’ strings in the real data (as we already discussed), the
encoding strategy with escort distribution, which penalizes frequent symbols
in favor of rare ones, is more efficient than it is for truly i.i.d. symbols.
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Figure 4.8: Fraction of strings exceeding the threshold for Wikipedia data (top
panel) and for the simulated i.i.d. symbols (bottom panel). The orange dashed line
is obtained with the classic arithmetic coder AC1, while the solid blue line with
ACq∗ . In the second panel, the spike before the plateau comes from the fact that
an error 2/M = 2/20 = 0.1 occurs in ACq procedure. Indeed, the plateau’s width
is approximately 0.1.

Moreover, we also want to explain the presence of the spike, followed
by a short plateau, in the fraction of strings exceeding the threshold shown
in the bottom panel of Figure 4.8, occurring for a ≳ H0[p]. It is caused
by the intrinsic 2-bits error of ACq∗ procedure (see Eqn. (4.16)). In fact,
if a = H0[p] ≈ 4.75, then M · a ≈ 95. If we could exactly reach the
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desired symbols’ length of Eqn. (4.6) with q∗ = 0, we would never exceed
the threshold. But ACq∗ carries an intrinsic error: the encoded strings’
lengths are all 97 bits, in accordance with the predicted ACq∗ error. The
fraction of strings exceeding the threshold is then 1 until a becomes such
that M · a = 97, i.e. a = 4.85. After such value, the exceeding fraction
drops to 0. In other words, when the threshold is close to H0[p], even the
very small error of the Arithmetic Coding procedure can lead to exceed it.
Despite that, the ensemble of such cases is very small with respect to all
the possibilities: for every a ∈ (4.12, 4.75) the ACq∗ procedure performs
better than the usual AC1, both for real (correlated) symbols and simulated
(independent) ones.

4.4.3 A note on the estimation of the source probability dis-
tribution

So far, we have considered that the probability p of the source generating
i.i.d. symbols is known to the encoder. In reality, this could not be the case
and a measure of error is needed if the probability r = {r1, . . . , rN} is used
to encode symbols generated by the probability p. In the classical case, this
is a well known problem. Assuming that it is possible to achieve the best en-
coding length which minimize the average length L(0), i.e. ℓD(i) = − log pi,
then if the probability r is practically used to encode symbols generated
according to p, the average codewords length is simply given by

H1[p||r] = −
N∑︂
i=1

pi logD ri. (4.34)

H1[p||r] is called cross-entropy. From this, it is possible to define the number
of bits that are wasted by encoding according to r as the difference between
the cross-entropy (i.e. the actual average length) and the Shannon entropy
(i.e. the lowest possible average length), thus getting the Kullback-Leibler
divergence:

DKL[p||r] = H1[p||r]−H1[p] =
N∑︂
i=1

pi log pi
ri
. (4.35)
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Following the same path, we would like to provide a measure in the case of
an exponential average. While Rényi himself defined a generalized DKL [15],
further analyzed in [122] and [123], and different definitions of a generalized
cross-entropy exist [124], we would like to define such quantities in the frame-
work of data compression. In particular, the exponential average codeword
length when r is used to perform the compression is given by:

Hq[p||r] = 1
t

logD
N∑︂
i=1

piD
−t logD(r(q)

i )

= q

1− q logD
N∑︂
i=1

pir
q−1
i + (1− q)Hq[r],

(4.36)

where r(q) is the escort distribution of r, q = 1/(1+t) and Hq[r] is the Rényi
entropy of the distribution r. From this definition, it is possible to write a
function for the error of encoding with distribution r instead of the true p,
as the difference between the actual exponential average length Hq[p||r], and
the lowest possible exponential average length Hq[p], that would be obtained
by the exact guessing of p, i.e. with r = p:

ERq[p||r] = Hq[p||r]−Hq[p]

= q

1− q logD
N∑︂
i=1

pir
q−1
i + (1− q)Hq[r]−Hq[p].

(4.37)

It is easy to see that ERq[p||p] = 0 ∀q > 0 and that limq→1 ERq[p||r] =
DKL[p||r]. Figure 4.9 shows the error function for varying q, with given p

and r such that pi ∝ i−1 and ri ∝ i−2.
To our knowledge, despite the different definitions of generalized diver-

gences and cross-entropies in the literature, the quantity ERq has not been
defined. Yet, it has a direct interpretation and provides a measure of how a
wrong estimate of the probability p propagates on the exponential average
codeword length L(t).

4.5 Conclusions

In this chapter, we have provided an operational scheme to encode sequences
of symbols in order to minimize the exponential average codeword length.
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Figure 4.9: Error ERq[p||r] for two instances of p and r: pi ∝ i−1 and ri ∝ i−2.
The horizontal dashed black line corresponds to DKL[p||r], which corresponds to
ER1[p||r].

Our algorithm leads to an exponential average length per symbol that is
arbitrarily close to the Rényi entropy of the source distribution. While our
theoretical analysis relies on the symbols being i.i.d., we have shown that it
provides advantageous results even in the case of correlated symbols, with
respect to the usual q = 1 Shannonian compressor. Moreover, we have
detailed a possible application of the exponential average, based on its con-
nection with the cumulant generating function of the source’s probability
distribution. Namely, if the encoder’s priority is to minimize the risk of ex-
ceeding a certain codewords’ threshold length, minimizing the exponential
average is a better solution than minimizing the linear average. Even if all
our theoretical considerations are based on the hypothesis that the symbols
are i.i.d. distributed and that the encoder knows the true source distribu-
tion p, we have both shown empirically that ACq is advantageous also in
the presence of correlations and provided a measure of the error when the
encoder guesses the incorrect source distribution. However, a theoretical
description explaining quantitatively how correlations lead to an optimal
q different from qt, and what is the expected error of guessing the source
distribution given a certain (“small”) training dataset still lacks and can be
the object of future studies.
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Chapter 5

Conclusions

Throughout this work, I have investigated some of the challenges posed
by complex systems to the domain of data science. In particular, I have
considered how the strong dependencies between the constituents of complex
systems and the broad distributions that characterize their structural and
dynamical properties require different perspectives in the analysis, inference
and compression of data.

Specifically, within the realm of opinion dynamics, I presented a multi-
plex opinion dynamics model to investigate the behavior of users interacting
across multiple social media platforms. My findings underscore that study-
ing the algorithmic effects of recommendation systems on political polariza-
tion based solely on single-platform considerations can lead to skewed inter-
pretations. In fact, by considering two platforms, I have shown that opinion
polarization can be sustained by the presence of a polarizing platform even
if users spend the majority of their time on a neutral one. Furthermore, in-
troducing a dynamical social media repertoire update in the model revealed
a notable segregation between extreme and moderate users. Interestingly,
in this environment, the competition between platforms morphs into co-
operation, promoting greater user satisfaction without amplifying opinion
polarization.

Then, in the context of theoretical methods to handling partial in-
formation, I have introduced the Generalized Maximum Entropy Princi-
ple (GMEP). By maximizing generalized entropies that are parameter-
dependent, it offers the possibility not to a priori neglect unobserved corre-
lations among system components. Moreover, though the uninformativeness
axiom, it is possible to pinpoint a specific generalized entropy from a given
family. If applied to the Uffink-Jizba-Korbel or Hanel-Thurner entropies,
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this axiom selects the Rényi entropy. Furthermore, it reconciles the GMEP
with the Maximum Likelihood (ML) principle, leading to the natural emer-
gence of the q-average. The latter can be now be interpreted as the natural
average that maximizes the likelihood when there’s only a single observa-
tion about the system. Furthermore, for i.i.d. observations, I have shown
that the entropic parameter q can be determined via ML. Interestingly, its
numerical value ensures that the negative log-likelihood equals the Shannon
entropy, even if the observed distribution maximizes Rényi entropy rather
than Shannon entropy.

Finally, I have extended the established Arithmetic Coding (AC) scheme
to ACq, which takes escort distributions as input probabilities. Notably,
ACq effectively approaches the lower bound of the exponential average code-
word length—equivalent to the Rényi entropy of the source distribution—
with vanishing error. When applied to both simulated i.i.d. strings and
real English Wikipedia text, the robustness of ACq becomes evident. De-
spite Campbell’s theoretical underpinnings rely on the hypothesis of i.i.d.
symbols, ACq provides remarkable results in terms of exponential average
length even when symbols are correlated. Additionally, my research has
underscored that the exponential average is the quantity to minimize if the
objective is to reduce the likelihood of exceeding a given codewords’ length
threshold. The application on both i.i.d. and real-world data confirm my
analytical findings. In fact, by applying ACq, there is a noticeable reduction
in the count of strings that exceed a given threshold, compared to traditional
Shannonian encoding scheme.

To conclude, my research has underscored the pitfalls of drawing con-
clusions from partial information—often leading to misinterpretations or
superficial insights. The main tool for navigating such challenges, and en-
suring unbiasedness, is the maximum entropy principle. I’ve explored this
realm, particularly focusing on reconciling the GMEP with the ML prin-
ciple. Further, I’ve investigated the estimation of the parameter q, the
indicator of system correlations in the context of GMEP. The emergence
of Rényi entropy from the uninformativeness axiom, led me to probe its
application in the field of data compression. The intricate nature of cer-
tain human-engineered systems, exemplified by DNA coding or applications
where memory optimization is paramount, can lead to pose emphasis on
the exponential average codeword length, rather than the linear one. The
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introduction of ACq, coupled with insights into its capacity to reduce the
number of losses in memory-constrained environments, offers a promising
avenue for enhancing such complex systems.
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[69] Ludwig Boltzmann. Über die Beziehung zwischen dem zweiten Haupt-
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and control, 8(4):423–429, 1965.

[115] Neri Merhav. Universal coding with minimum probability of code-
word length overflow. IEEE Transactions on Information Theory,
37(3):556–563, 1991.

[116] Anselm C Blumer and Robert J McEliece. The rényi redundancy of
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caratterizzato, sono qualità magnifiche da trovare in un amico. So che su di
te posso sempre contare.
Carlotta, dopo ventitre anni di amicizia è un eufemismo dire che per me sei
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