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ABSTRACT
This paper presents results from the SESAR ER3 Domino project. Three mechanisms are as-
sessed at the ECAC-wide level: 4D trajectory adjustments (a combination of actively waiting
for connecting passengers and dynamic cost indexing), flight prioritisation (enabling ATFM slot
swapping at arrival regulations), and flight arrival coordination (where flights are sequenced in
extended arrival managers based on an advanced cost-driven optimisation). Classical and new
metrics, designed to capture network effects, are used to analyse the results of a micro-level
agent-based model. A scenario with congestion at three hubs is used to assess the 4D trajectory
adjustment and the flight prioritisation mechanisms. Two different scopes for the extended ar-
rival manager are modelled to analyse the impact of the flight arrival coordination mechanism.
Results show that the 4D trajectory adjustments mechanism succeeds in reducing costs and de-
lays for connecting passengers. A trade-off between the interests of the airlines in reducing costs
and those of non-connecting passengers emerges, although passengers benefit overall from the
mechanism. Flight prioritisation is found to have no significant effects at the network level, as
it is applied to a small number of flights. Advanced flight arrival coordination, as implemented,
increases delays and costs in the system. The arrival manager optimises the arrival sequence of
all flights within its scope but does not consider flight uncertainties, thus leading to sub-optimal
actions.

1. Introduction
Understanding the complex interdependencies and coupling of various components of the ATM system is a major

challenge for ATM architects. Assessing how the introduction of changes in one (sub)system may impact others, not
only locally, but also at the network level, is particularly difficult. The ‘Airspace Architecture Study’ (SESAR Joint
Undertaking, 2019b) highlights how the ATM system can be understood as nodes, which are often operating close
to maximum capacity and without appropriately connected resources: disruptions in the system often propagate and
"knock it out of optimal flow”. This ‘domino’ effect is offset, for example, by strategically placed buffers in schedules,
although these are often insufficient to absorb all of the disturbance(s). The Study indicates the need for “stronger
linking between airspace, operations and technical evolution and measurement of the impact through simulations fac-
toring in known deployments ...”. It also recommends targeted incentives for “early movers”. The ‘Transition Plan’
(SESAR Joint Undertaking, 2019a) further endorses the acceleration of market uptake of the next generation SESAR
technologies and services to support defragmentation. The Plan identifies three key operational and technical measures
that need to be implemented in the very short term (2020 to 2025), to initiate the changes outlined. These measures
will allow different parts of the system to be developed at different paces, while maintaining coherence at the network
level and awareness of local needs.

Previous research has highlighted the need to consider different stakeholders in order to fully understand the impact
of introducing changes in the ATM system (Cook et al., 2016; Delgado et al., 2020). Domino, an H2020 – SESAR JU
Research and Innovation project, expands some of these concepts by further developing amodel (Mercury) to assess the
coupling of ATM systems from a flight and passenger perspective. Mercury is able to model a whole day of operations
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at the ECAC level following flights and passengers (Domino Consortium, 2019). It allows ATM system designers to
better understand the relationships between (sub)systems and the nature of such relationships, which emerge in a given
technological and operational context. The outcome of the model is analysed with the use of classical and advanced
network metrics (centrality and causality), which afford new insights into the impact of modifying the ATM system
at the network level – see (Zanin and Lillo, 2013; Cook et al., 2015) for an early review of the value of non-classical
metrics and the need to differentiate between flight- and passenger-centric indicators.

Exploring several issues outlined in the Airspace Architecture Study (SESAR Joint Undertaking, 2019b), in the
context of different (future) operational and stressed environments, this paper presents the assessment of three mecha-
nisms: 4D flight trajectory adjustments (4DTA), flight prioritisation (FP) and flight arrival coordination (FAC). These
mechanisms are modelled considering a baseline, which resembles current practices, and as an advanced implemen-
tation, in two distinct scenarios.
4DTA is composed of two sub-mechanisms: (i) dynamic cost indexing (DCI), whereby a flight is able to adjust its
cruise speed to manage expected delay (Cook et al., 2009); and (ii) waiting for passengers (WfP), whereby a flight can
wait at-gate for late connecting passengers (Delgado et al., 2016; Cook et al., 2016). FP is inspired by UDPP concepts
allowing the swapping of ATFM slots among airlines (Pilon, 2016; SESAR Joint Undertaking, 2018). FAC provides
advanced management of fight arrivals for the sequencing and merging thereof (Bagieu, 2015; Montlaur and Delgado,
2017).

The paper is organised as follows. Section 2 introduces the background concerning the model developed in Domino
(Mercury), as well as its main characteristics. It also provides a literature review on the use of agent-based models
(ABM) in ATM and the contributions of Mercury towards the development of advanced tools for the assessment of
air traffic management initiatives. Section 3 describes the three mechanisms analysed in this paper in more detail and
outlines the advancement on the state of the art with respect to thesemechanisms. The outcome of themodel needs to be
analysed in order to gain an insight into the impact of the mechanisms in the system. In particular, dedicated advanced
network metrics have been developed as part of the Domino project. These metrics are described in Section 4. Two
scenarios are presented in Section 5 and the main findings summarised in Section 6. The paper closes with conclusions
and proposals for future work, in Section 7.

2. Model – Mercury
2.1. Agent-based models and air traffic management

Agent-based models (ABM) used as the basis for a network approach of system design are relatively new in the
ATM domain. ABMs that can be found in this field in the literature (Bouarfa et al., 2013; Stroeve et al., 2013; Molina
et al., 2014; Gurtner et al., 2017; Delgado et al., 2017) are usually used to assess the impact of fairly limited changes in
the airspace and/or are focused on a relatively small geographical area. For instance, some research projects modelled
passenger flows in airport terminals as multi-agent systems (Enciso et al., 2016; Schultz and Fricke, 2011). Other
studies focused on modelling the behaviour of individual and groups of passengers and their impact on passenger
flows (Cheng et al., 2014; Chen et al., 2018).

Models encompassing all of the European traffic at once are rare and usually confidential in terms of documenta-
tion and implementation (for instance EUROCONTROL’s internal tool RNEST2). Moreover, these models are often
deterministic, missing a crucial ingredient of the airspace – its variability – and/or include very simple rule-based be-
haviours for their agents. Finally, to the authors’ knowledge, almost none of these tools are able to compute passenger
metrics.

Mercury was developed in response to that need, over the course of several years (Cook et al., 2012, 2016; Delgado
et al., 2020). This allowed one of the first European-wide passenger KPI assessments in terms of travelling times, and
was later expanded to include door-to-door travel times (Kluge et al., 2018). The Domino model is a new expanded
version, the main features of which have been presented in (Mazzarisi et al., 2018).
2.2. Model description

Mercury is an ECAC-wide micro-level agent-based model (ABM) comprising the following main agents:
• ‘Airline operating centre’ (AOC): it is responsible for the management of the airline’s fleet (managing the dis-

patching, cancellation, ATFM slot swapping, etc. of the flights), and of the passengers (rebooking passengers
2https://www.eurocontrol.int/simulations (accessed February 2021)

https://www.eurocontrol.int/simulations
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when missed connections occur, compensating them, etc.). The AOC decisions are based on the estimation of
the expected cost of delay, calibrated with (Cook and Tanner, 2015). It is to all effects the most complex agent.

• ‘Flight’: there is a flight agent per individual flight in the simulation. These agents integrate the trajectories
based on the flight plans. They also performs basic flight operations such as requesting for a departing slot.

• ‘Ground airport’: it captures and provides estimation and realisation times of the different on-ground airport
processes: taxi-in and taxi-out, turnaround times, and passengers connecting times.

• ‘Network Manager’: it accepts or rejects flight plans, issues ATFM delays from probabilistic or explicitly mod-
elled regulations.

• ‘AMAN’: it manages the arrival sequence of flights to ensure that airport arrival capacities are respected. An
airport might implement an extended arrival manager (E-AMAN), with an extended planning and an execution
horizon, or just a simpler arrival manager (AMAN). With the E-AMAN, when a flight reaches the planning
horizon, a slot is pre-assigned enabling the possibility of adjusting their trajectory (reducing their cruising speed)
to save fuel while performing part of the required delay. Once flights enter the execution horizon, they are finally
sequenced and holding delays issued. A first come first served approach is used in airports with a simple AMAN.

• ‘DMAN’: this type of agents provides slots to flights following a first come first served policy, assigning flights to
a queue of departing slots to ensure that the runway capacities are respected. The delay issued will be performed
at the gate prior push-back.

• ‘Radar’: this singleton agent follows the flights trajectories and notifies interested parties (e.g., AMAN, AOC)
when significant milestones are reached (e.g., top of climb (TOC), entering the planning horizon).

• ‘Flight swapper’: The flight swapper is responsible for the management of ATFM slots swaps following the
principles of User-Driven Prioritisation Process (UDPP) (Pilon, 2016; SESAR Joint Undertaking, 2018).

There is one instance of the ‘Airline’ agent per individual airline and one ‘Flight’ agent per flight. Passengers
typically have only few decisions to make and thus are not modelled as agents, even though their preferences are taken
into account by the airlines indirectly through a soft cost based on a logit utility function (calibrated again with (Cook
and Tanner, 2015)). Each airport has an instance of the ‘Ground airport’, ‘DMAN’ and ‘AMAN’ agents. Finally, the
simulation counts with a single instance of the ‘Network Manager’, ‘Radar’ and ‘Flight swapper’ agents.

Mercury is executed as an event-driven simulator. In addition to events (e.g., ‘flight pushback’), agents also react
to messages from other agents (e.g., a request for rebooking passengers which have missed connections). Random
variables are used for uncertainties (e.g., taxi times, cruise wind, passengers connecting times, turnaround times, and
cancellations), and for some non-optimal decision-making processes by agents (e.g., as part of the dispatch process the
selecting the flight plan to be operated). All distributions are built on various empirical data and the model has been
calibrated with historical data (see Section 2.4). Due to the stochasticity, for each scenario several runs of the model
are performed.

In the model, the agents (particularly the AOC) estimate their expected costs and try to perform actions to minimise
them. In particular the model considers the following costs:

• ‘cost of delay’, estimated as the extra cost that airlines experience on their flights due to delay. These costs can
be broken down and examined for different types of aircraft and companies, as in (Cook and Tanner, 2015). In
particular, Mercury considers:

– ‘non-passenger related’ costs: extra cost onmaintenance and crew due to delay, based on (Cook and Tanner,
2015).

– ‘passenger related’ costs, which are divided between:
∗ ‘hard’ costs, which have a direct monetary translation, such as compensation costs for passengers due

to Regulation 261 (European Commission, 2004), or cost associated with duty of care, re-booking of
missed connections, etc. These costs are modelled explicitly in Mercury.

∗ ‘soft’ costs, i.e., costs that represent a future loss for the company in terms of market share due to
deteriorated perception by the passenger. The estimation of these costs is historically based.
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• cost due to breaching curfews: flights breaching curfews may incur a wide range of costs, from a small fine to
an interdiction to land. Mercury implements ‘hard’ curfew: if a flight plan is expected to arrive after the curfew
threshold, it is rejected by the Network Manager. This protocol is implemented in some selected airports. A
‘curfew buffer’ is computed and dynamically updated for each flight, i.e., the maximum delay that a flight can
experience before risking generating reactionary delay which might end up in a curfew breach. This might
impact the behaviour of the AOC, e.g., recovering early morning delays to avoid later curfews.

• fuel costs: Mercury models the nominal fuel usage and its associated cost (0.5 EUR/kg), but also consider-
ing tactical uncertainties, e.g., wind, and the impact on fuel of delay management strategies, e.g., holdings or
adjustments to cost index. Fuel usage is estimated using BADA 4 performances (EUROCONTROL, 2015).

• airspace charges: they are computed considering the 39 regions managed by EUROCONTROL CRCO plus the
surrounding airspaces of other countries with different charging schemes. These costs allow the AOC to select
which flight plan to submit to the Network Manager comparing the total expected operational costs of different
alternatives routes even when they use adjacent airspaces to the European core.

It is worth noting that the cost of delay is typically a non-linear function of delay. Negative delays (flights that arrive
before schedule) are usually of no monetary value to the airline. High delays are in proportion more costly than small
delays (cost increase on average as roughly quadratic with delay (Cook and Tanner, 2015)). Finally, the cost functions
tend to exhibit significant noncontinuous increments linked to events such as passengers missing connections.

Mercury produces detailed metrics for each flight and passenger in the system, e.g., departing, arrival delays, taxi
times, missed connections, compensations. Aggregated values (KPIs) are then computed based on this output.
2.3. Mercury inputs

Mercury requires a significant amount of data to define all the parameters needed to execute a simulation. The
input consists of:

• data required to model airline operations and flights
– flight schedules,
– pre-computed flight plans covering, for each aircraft type, the different possible routes between origins and
destinations; used by the AOC to select operational flights plan for their flights,

– data on aircraft performance models (BADA 4),
– general airlines information (e.g., alliances)

• passenger itineraries,
• ATM operational data

– probabilities of ATFM delay per ANSP for ATFM regulations issued in the airspace,
– samples of ATFM regulations issued at airports,
– distributions of turnaround times, connecting times, taxi-times, non-ATFM-delay for each airport,
– airport data, such as runway capacity, curfews or usage of arrival managers,
– cost of delay parameters

• other operational parameters, such as the cost of fuel or en-route charges,
• hyperparameters required to define scenario parameters, such as for each mechanism their implementation level

(baseline, advanced)
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Data source Main usage Reference
DDR2 Used to get the set of flights,

origin-destination, routes, aircraft
type, estimated cruise wind, dis-
tributions on climb and descent
profiles, requested nominal cruise
speeds and flight levels, airlines, al-
liances, airspace structure, ATFM
regulations

(EUROCONTROL, 2015b)

Cost of delay reporting Used to compute cost of delay func-
tion

(Cook and Tanner, 2015)

IATA Summer Season 2010 from CODA Taxi times (CASSIOPEIA Project, 2016)
DDR2 Minimum turnaround times, mini-

mum connecting times
(ComplexityCosts Project, 2016)

CODA Non-ATFM delays (EUROCONTROL, 2015a)
Paxis, GDS For passenger itineraries, including

fares and classes
(ComplexityCosts Project, 2016)

Innovata (Cirium) Flight schedules –

Table 1
List of data sources used.

2.4. Datasets, calibration and validation
Agent-based models need to be calibrated to produce reliable results. Even if the models are able to simulate any

particular input, the quality of the results depends on the calibration of some distributional parameters. To calibrate
Mercury we used various data sources, summarised in Table 1, along with consultation with relevant stakeholders
(e.g., airlines) to capture their behaviour.

The datasets are restricted only to commercial flights landing or taking-off in Europe. DDR data are used to obtain
flights characteristics relevant for the model, including possible routes and aircraft rotations, and to characterise other
operational parameters, such as ATFM regulations, which are based on the analysis of historical DDR data for several
AIRACs. Schedule data are used to extract the SOBT and SIBT of these flights. Passenger data are used to define
individual itineraries andmerge themwith the flight data. Other data sources, e.g., CODA datasets, are used to calibrate
certain parameters in the model as described below.

Many processes inMercury are modelled using statistical distributions. For example, the average wind encountered
by flights during the en-route phase, or the amount of ATFM delay assigned to a flight due to an en-route regulation.
Table 2 presents some of the key processes that are modelled in Mercury, and how the distributions of the associated
indicators/parameters have been calibrated.

The calibration and validation has been performed by considering not only average values but the distribution of
key indicators. For example, we analysed the distribution of arrival and departure delay as reported in DDR and CODA
with the model (EUROCONTROL, 2015a).

3. Mechanisms
Table 3 summarises the three mechanisms evaluated. These have been selected to cover different stakeholders (air-

lines, airports, network manager) and to have a spread on the location of their usage (localised at a given region, e.g., at
an airport, or across the network, e.g., by AOCs on all flights). The detailed description of each mechanism is presented
in the following sub-sections. Each mechanism has been executed in a baseline and and advanced implementation.

The baseline implementation is based on current (2014) equivalent operational concepts, the advanced implemen-
tation is inspired, if more exploratory, by future aspects of SESAR (SESAR JU, 2015). More information on the model
details can be found in (Mazzarisi et al., 2018; Domino Consortium, 2018)
3.1. 4D trajectory adjustments (4DTA)

4D trajectory adjustments is amechanismwhichmodifies the flights trajectories to deal with delay. This mechanism
is formed of two sub-mechanisms:
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Process Distribution Based on
Taxi-in/out Log-Normal distribution with modified mean, standard

deviation for different scenarios
IATA Summer Season 2010 from
CODA

Climb uncertainty Normal distribution, minutes Analysis of DDR difference between
planned and executed trajectories
(M2, M3) from the DCI4HD2D
project (CASSIOPEIA Project, 2016)

Cruise Normal distribution, NM Analysis of DDR difference between
planned and executed trajectories
(M2, M3) from the DCI4HD2D
project (CASSIOPEIA Project, 2016)

Wind Empirical probability distribution for planned wind during
the cruise. Used percentile of wind between regions. No
noise added on execution.

For each ANSP to ANSP origin and
destination airport consider the dif-
ference between requested speed and
observed average ground speed for
cruise segments from DDR2 analysis
(AIRAC1409).

Turnaround time Exponential distribution based on minimum turnaround
time based on airport size, aircraft wake and type of
airline. Distributions modified based on scenario

Analysis of turnaround times per-
formed in the POEM project and used
in the ComplexityCosts project (Com-
plexityCosts Project, 2016)

ATFM delay Airport regulations are sampled from a historical day.
The day is selected based on their percentile ranked by
the number of regulations at the airport on the day.
Airspace regulation delays are based on two distributions,
one for weather and one all other types of regulations

Based on analysis of DDR2
(AIRAC1313-1413 excluding days
with industrial actions)

ATFM delay Empirical probability distribution function for regulations
due to weather and regulations for other reasons.

Based on analysis of DDR2
(AIRAC1313-1413 excluding days
with industrial actions)

Non-ATFM delay Exponential distribution with parameters modified based
on scenarios

-

Connecting times Log-Normal distribution based on minimum con-
necting times per airport and type of connec-
tion (national-national, international-international and
national-international)

Based on analysis of minimum con-
necting times at ECAC airports origi-
nally performed in the POEM project
(Cook et al., 2012)

Variation of cruise
length due to DCI

Normal distribution, NM Analysis of performance using Airbus
Performance Engineering Programme
(CASSIOPEIA Project, 2016)

Table 2
Calibration parameters in the model.

• Dynamic cost indexing (DCI): modifying the speed of the flight to speed up and recover delay or, in some cases,
even to slow down to save some fuel while maintaining the route (Cook et al., 2009). Note that a change of cost
index will imply not only a change on the cruising speed but also on the location of the top of descent, generally
increasing the cruise and reducing the slower descent.

• Waiting for passengers (WfP): actively delaying outbound flights to wait for delayed connecting passengers.
This option is currently seldom used by airlines, as it impacts the on-time performance of the outbound flights
and, in some cases, waiting for passengers might lead to outbound flights being regulated. However, when the
optimal solution to minimise the cost of delay is sought, then this might be a relevant strategy (Delgado et al.,
2016; Cook et al., 2016). This could be particularly important for passengers who will need to be rebooked on
next-day flights if they miss their connection, leading to significant costs for the airline.

Two different levels of implementation are considered for the DCI and WfP rules: a baseline implementation
which aims at capturing the most common current practices of airline operators, and an advanced implementation
where decisions are made considering expected costs and the use of coupled sub-mechanisms.
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Mechanism Rationale Implementation Characteristics

4D Trajectory
Adjustments
(4DTA)

Actively waiting
for connecting
passengers prior
departure and
adjusting cost
index to manage
delay.

Baseline

• Rule of thumb.
• Dynamic Cost Index (DCI) prior departure, recovery prob-
ability as function of amount of departing delay.
• Waiting for passengers (WfP) for flexible ticket holders up
to 15 minutes.
• Decoupled decision between DCI and WfP.

Advanced
• DCI coupled with WfP prior departure.
• Cost based decision.
• Re-assessment of DCI decision at TOC.

Flight
Prioritisation
(FP)

Swapping of
ATFM slots at
arrival regula-
tions.

Baseline • No exchange of ATFM slots available.

Advanced • Possible to swap slots for flights in same ATFM regulation
at arrival airport.
• Possible intra- and inter- airlines slots swaps.

Flight Arrival
Coordination
(FAC)

Extended Arrival
Manager at air-
ports.

Baseline • Assignment of arrival slots to first available slot.
• No AOC information used.

Advanced • Request cost information from flight and AOC.
• Assign slots which minimise expected costs.

Table 3
Summary of mechanisms characteristics.

3.1.1. Baseline implementation
The baseline implementation uses a rule of thumb to approximate current practice in the airline industry for DCI

andWfP. The parameters of these mechanisms are calibrated with feedback received from a number of industry experts.
The cost index is determined before the take-off (i.e., at push back) and it is fixed throughout the flight. The AOC

considers the departure delay and the delay recovery strategy is performed as follows: (i) no delay will be recovered
tactically if the estimated departure delay is smaller than 15 minutes; (ii) the decision of recovering delay is taken
with probability linearly increasing with the value of estimated departure delay, when it is between 15 and 60 minutes
(probability of recovery goes from 0.2 at 15 minutes to 1 at 60 minutes); (iii) the flight will always try to recover delay
if the estimated departure delay is larger than 60 minutes.

Once the AOC has decided to try to recover delay, it will try to recover as much delay as possible (up to 5 minutes).
The maximum recovered delay is however limited by the amount of extra fuel that would be required, being capped
at 70% of the total amount of additional fuel available. Moreover, to align the application of this rule with current
practices, the flight never speeds up to the maximum possible speed; rather, the maximum selected speed is capped at
90% of the maximum velocity. Finally, after applying all of the so far mentioned constraints, if the amount of delay
that can be recovered is lower than 5 minutes, no recovery is performed, as experts highlighted that recoveries of delay
lower than 5 minutes are seldom performed.

Waiting for passengers is performed 5 minutes before the aircraft is ready for push-back. At that moment, the
AOC checks which passengers are not at the gate ready for boarding, and it estimates the time required for them to
arrive to the gate. For this estimate, the AOC uses the most up-to-date information available: the actual or estimated
time of arrival of the inbound connecting passengers’ flights and their minimum connecting time (MCT). The MCT
is pre-calculated for each airport and it varies as a function of the type of connection: domestic - domestic, domestic
- international, etc. In the baseline implementation, the AOC decides to wait for any passenger with a flexible ticket
whose at-gate time is estimated to be at most 15 minutes after the expected push back time of the outbound flight.
3.1.2. Advanced implementation

In the advanced implementation of themechanism, the decisions onDCI andWfP are purely driven by the advanced
estimation of the expected costs. Before departure, the mechanism couples the assessment of DCI and WfP decisions
via a unified cost function. However, at top of climb (TOC), a second optimisation is performed and the delay recovery
strategy is reassessed.

In the first instance, an estimation of the costs associated to waiting or not-waiting of each inbound passenger group
which is not present at the gate 5 minutes prior push back ready is performed. The cost of waiting considers the extra
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delay required to allow the passengers to make their connection (considering the estimated arrival time and the MCT).
The cost of not-waiting considers all types of passengers’ cost due to missed connection (e.g., duty of care, re-booking,
soft costs). The required waiting times for all the passengers groups defines the range of departure delay that will be
further analysed. For example, let us consider a flight which has an estimated departure delay of 20 minutes, with the
maximum delay that can be recovered (selecting the maximum speed) being 8 minutes. Then, there are 2 groups of
passengers which are late for boarding with estimated delays of 10 and 15 minutes, respectively, i.e., waiting extra 10
minutes will allow for the boarding of the first group of passengers, while waiting extra 15 minutes will ensure that
both groups can board the plane. In this situation, the AOC assess all possible costs associated with departing delays
in the range of 35 minutes, together with the application of any possible delay recovery strategy: from departing with
35 minutes of delay, thus waiting for both passenger groups, but with no delay recovery, to departing with 20 minutes
of delay and arriving with 12 minutes of delay, that is not waiting for passengers and recovering the maximum possible
delay.

All the estimated costs are added and observed as recoverable delay (from not recovering any delay to the maximum
number of minutes a flight can recover by speeding up and using the extra fuel available). This is done by the use of
dynamic cost indexing. DCI is considered to estimate the fuel cost required to achieve each of the different potential
recovery times. Differently from the baseline implementation, the AOC might decide to recover only part of the delay
and there is no limitation on the maximum velocity that the flight can choose in order to recover delay, as the decision
is purely driven by the cost and the objective is finding the optimal solution given the estimated costs and physical
constraints.

Combining the cost of waiting or not waiting for passengers, and the cost of recovering delay, a joined solution is
provided. The decision that minimises the total cost is selected, i.e., a decision to wait (or not) and to recover delay
(or not) is performed before push back. This approach enables more complex decision such as waiting for passengers
and then recovering part of the delay, trading a reduction on cost associated to missed connections with an extra cost
on fuel consumption. When the flight reaches the TOC, a re-assessment of the expected arrival delay and potential
delay recovery is performed. In this case, some of the cost associated with the departure delay will already have been
accounted (e.g., cost of re-accommodating passengers who missed their connections). However, some further costs
could still be managed, in particular the ones related to the arrival delay. At this moment, the AOC considers the
scheduled inbound time (SIBT) to estimate the arrival delay, in particular the potential arrival buffers are taken into
consideration. Accordingly, the speed is selected to minimise the total cost, and the advanced 4DTA incorporates the
possibility to slow down the flight at TOC in order to save fuel, when the expected arrival time is at least 30 minutes
before the SIBT. This could be possible, in effect, due to the buffers, wind uncertainty, etc. This extra option enables
the trading of unnecessarily long buffer for fuel savings.
3.2. Flight prioritisation (FP)

The flight prioritisation mechanism enables the swapping of ATFM slots at arrival airports regulations. This
mechanism is inspired by UDPP principles (Pilon, 2016).
3.2.1. Baseline implementation

In the baseline implementation, ATFM slots are not allowed to be swapped.
3.2.2. Advanced implementation

In the advanced implementation, airlines are allowed to swap ATFM arrival slots between their own flights, but also
exchanging their arrival slots with flights of another airline. When a flight plan is submitted to the Network Manager,
if ATFM has been assigned due to a regulation at the arrival airport, the airline considers the possibility of the flight
swapping. The following conditions need to be fulfilled to accomplish the swapping: (i) both flights have to be in the
same regulation at the arrival airport, and (ii) the estimated cost of the swap needs to be negative (i.e., the swap has a
positive impact overall).

The cost of the swap is estimated as the total expected cost of delay if the slots are swapped minus the cost of delay
if they are not, i.e., cost1(slot2) + cost2(slot1) - (cost1(slot1) + cost2(slot2)), where slot1 is ATFM arrival slot assigned
originally to the first flight, slot2 is the ATFM arrival slot for the second flight, and cost1 and cost2 are the delay cost
function of the first and second flight for a given arrival slot.

In order to estimate the cost of delay associated with each slot, the most up-to-date information is used, e.g.,
considering the next available flight for missing connections. These costs consider passenger (hard and soft costs)
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and non-passenger related costs (crew and maintenance). Other network effects, such as an estimation of reactionary
delay or the impact on curfew, are also considered. The model could estimate exactly which subsequent flight will
be impacted by the propagation of delay, in terms of aircraft and/or connecting passengers, since all information is
known to the airlines (or can be accessed by them). However, this is computationally too expensive increasing by a
large factor the simulation time. As a consequence, a heuristic is used for the decision-making process of swapping
the slots. This is done by computing the number of flights that will be operated by the same aircraft and assuming that
a similar cost to the one experienced by the current flight will be incurred by them in a worst case scenario approach.

A novel contribution with respect to current operations comprises allowing flight swaps between different airlines,
thus introducing the exchange of information between airlines for cost estimation. This is, in effect, an unrealistic
assumption for the current real-world operational environment, where such information about costs is never shared by
airlines. However, a market mechanism (e.g., credit system, auction) can be devised, in principle, for an efficient slot
exchange, with benefits for both the counterparties, for example by providing a payment to the airline delaying its own
flight. Here, the presence of such market mechanism is assumed to justify the possibility of flight swapping between
two airlines. However, a possible implementation is out of scope of this paper and it is left for future research.
3.3. Flight arrival coordination (FAC)

The flight arrival coordination mechanism focuses on the sequencing done by E-AMAN systems at airports. This
mechanism is only implemented in airports which have or are expected to operate an E-AMAN (24 airports as according
to the SESAR Pilot Common Project (European Commission, 2014)). For these airports there are two moments when
flights are issued delay when approaching them to manage their arrival and landing sequence:

1. when the flight enters the planning horizon of the E-AMAN (with a default value of 200 NM from the airport),
2. when the flight enters the execution or tactical horizon of the E-AMAN (defined at 120 NM from the airport).

The distances selected for the planning and execution horizon are in accordance with the expected extension of the
arrival managers from 100-120 NM to 180-200 NM (European Commission, 2014).

When a flight enters the planning horizon, using an optimisation function which depends on the level of advance-
ment of the mechanism, all the flights located in the scope of the arrival manager, i.e., between the planning and the
execution horizon, are re-assigned to available arrival slots, i.e., not tactically assigned yet. The flight which triggers
this optimisation, i.e., the one which enters the arrival manager, receives the amount of delay that it is expected to
require during its sequencing and approach. This flight then tries to absorb as much delay as possible by slowing down
(saving some fuel).

At the execution horizon, the flight which exits the E-AMAN triggers a similar re-optimisation and the final slot is
assigned. The required delay (if any) is then performed as holding.

Note that the optimisation problem is solved by considering all flights within the E-AMAN domain, each flight
entering or leaving the system triggers a new optimisation which determines the optimal sequence. However, the
new optimal solution may disrupt the previous sequence, thus successive optimisation problems might lead to some
inefficiencies. Furthermore, in some cases, the slot assigned at the planning stage might not be available anymore
when the flight reaches the execution horizon due to the stochastic dynamics of the system.
3.3.1. Baseline implementation

In the baseline implementation, the flight arrival coordination tries to minimise the amount of holding delay that
will be carried out at the TMA by minimising the total holding delay. The FAC optimisation function focuses on the
maximisation of the arrival throughput at the runway. No information from the airlines is considered when optimising
the arrival sequence. When a flight enters the planning horizon, the first slot available, considering the estimated
landing time of the flight, is assigned. In a similar manner, once the flight enters the execution horizon, the first
available slot is assigned and the holding delay computed.
3.3.2. Advanced implementation

In the advanced implementation, the FAC tries to minimise the expected total cost for each flight, considering the
cost of fuel estimated by the flight (considering potential fuel savings achieved by slowing down, but also extra fuel
cost by performing holding), and the cost of delay estimated by the AOC (for passenger and non-passenger related
costs of delays).
The FAC considers the expected cost of each slot for each flight. This information is provided to the FAC by the flight:
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1. when the flight enters the E-AMAN planning horizon, the FAC sends a list of slots available to the flight;
2. then the flight requests the expected cost of delay for each slot to its AOC;
3. in parallel, the flight estimates the fuel required for each slot (including potential savings by slowing down and

required holding times) considering aircraft performance and operational parameters (e.g., current weight);
4. finally, the total expected cost is computed considering both, the cost of delay (from the AOC) and the cost of fuel

(computed by the flight). These costs per available slot are then relied to the FAC to be used in the optimisation.
Once the FAC receives this expected costs per slot, the arrival sequence is optimised with the objective of minimising
the total expected cost for all flights within the E-AMAN scope, and delay issued to the incoming flight. When the
flight reaches the execution horizon, the same optimisation is performed with the already provided expected cost per
slot.

4. Indicators
Mercury is able to produce detailed low-level metrics. An analysis of the raw output of the model is required to

gain an understanding of the effect of introducing the mechanisms in the system. This is achieved through the use of
standard indicators, and also advanced network metrics.
4.1. Standard indicators

A set of classical metrics, variously used in ATM, intended to capture fundamental statistics regarding delays
and costs (both for flights and passengers) are considered. Note that metrics which relate to passengers represent an
advance with respect to classical flight-centric metrics. In fact, as shown in previous research (Cook et al., 2012), these
passenger metrics provide a deeper understanding of the trade-offs involved in ATM operations. Examples of these
metrics are: departure and arrival delay; number of delayed and cancelled flights; reactionary delay (number of flights
and average magnitudes); and, passenger delay considering connecting and non-connecting passengers.
4.2. Centrality

In a networked system, such as ATM, centrality is a measure of the ‘importance’ of a node in terms of its role in
connecting the network. In the network of airports and flights, flights represent links and are therefore present only
in some time intervals. By considering the difference between scheduled and actual (operated) flights, two air traffic
networks can be defined. The effect of a mechanism to improve the robustness of the system (or parts thereof) can
be assessed by analysing the differences between centrality in the scheduled and actual network, as the mechanism
should mitigate disruptions in network connectivity. Most centrality metrics are not suited for these types of analysis
(Mazzarisi et al., 2018) as they focus on static, single-layer networks, while air traffic is more naturally described
by a temporal, multilayer network (Zanin and Lillo, 2013). Links in the network dynamically appear and disappear,
as these links represent flights, and connections between them are only possible in the right temporal order. All the
flights from the same alliance (or airline) can be considered as a different layer of the network (Zaoli et al., 2019). Both
these aspects, the temporal and the multi-layer structures, must be considered to measure the disruption of network
connectivity caused by delays. The failure of existing centrality metrics to capture these effects is analysed in detail in
(Mazzarisi et al., 2018).
Two tailored centrality metrics are proposed. Inspired by the Katz centrality (Katz, 1953), it is considered that the
centrality of a node depends on the number of itineraries in the network having that node as origin (outgoing centrality)
or as destination (incoming centrality). Only itineraries (or ‘walks’) which are time-respecting and which consider the
time required to travel through a link, are considered, i.e., only itineraries which can be travelled (considering flight
duration and transfer times) should be counted. Two different ways of weighting itineraries are proposed.

First, ‘trip centrality’ (TC) (Zaoli et al., 2019): an itinerary of n legs outgoing from (incoming to) an airport
contributes �n to the outgoing (incoming) centrality of that airport, where � < 1, so that longer itineraries contribute
less. If the itinerary comprises flights of different airlines, its contribution is reduced by a factor "m, where m is the
number of changes of layer through the itineraries, and " < 1. This considers that multi-airline itineraries are less
useful. In summary, the itineraries considered by trip centrality are all the possible itineraries that could be used by
passengers (they are temporally feasible), weighted higher when they have fewer legs and fewer changes of airline.

Second, ‘passenger centrality’ (PC): each itinerary contributes to the outgoing (or incoming) centrality of an air-
port: an amount which corresponds to the number of passengers on that itinerary. Therefore, the outgoing passenger
centrality of an airport corresponds to the number of passengers that take a flight departing from that airport. The
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incoming centrality is defined by the number of passengers that arrive at the airport, either as final destination or with
further connections.

The damage to network connectivity due to disruptions can be estimated as the loss of centrality between the
scheduled and the operated network. The operated network considers delays and cancellations, therefore an airport’s
trip centrality is always smaller than its centrality in the scheduled network. The loss of outgoing trip centrality of an
airport therefore measures the loss of potential outgoing itineraries that become unfeasible in the operated network,
quantifying the decrease in the potential to access the rest of the network from that airport (see (Zaoli et al., 2019) for
more details).

For passenger centrality, in the operated network only passengers reaching their destination using their scheduled
itinerary are considered. Therefore, passengers with a modified itinerary imply a loss of passenger centrality. If, for
example,N passengers incoming to airport imiss their connection at i, and are rebooked to another flight, airport iwill
have a loss of outgoing centrality amounting toN . The same loss would apply ifN passengers depart late from i and
miss their next connection at another airport. Therefore, the loss of outgoing passenger centrality of an airport accounts
for the passengers that experience a disruption at that airport and for those that experience problems downstream. The
actual incoming passenger centrality corresponds to the number of passengers that were scheduled and managed to
reach the airport following their scheduled itineraries. Therefore, the loss of incoming passenger centrality can be
interpreted as the impact to airport i caused by issues upstream.
4.3. Causality

Delays and congestion states propagate through the system due to the interactions between flights and the environ-
ment. Causality metrics aim to reveal the channels of delay propagation, identifying which nodes are facilitating the
spreading process, for instance by forming subsystems working as amplifying feedback for delay propagation.

In statistics, detecting a (directional) causal relationship between two time series is equivalent to assessing whether
the information on the past states of one variable helps in forecasting the future state of the other. Two causality
metrics, Granger causality in mean (Granger, 1969) and Granger causality in tail (Hong et al., 2009) are considered.
The difference between the twometrics is that the latter considers only ‘extreme’ states (large delays, in our application),
therefore assessing whether there is a significant dependence between the extreme states of two variables. The former
considers the dependence between all states. Given two random variablesX and Y , whose states at different times are
captured by two time series:

• Y ‘Granger-causes in mean’ X if we reject, at some confidence level, the null hypothesis that the past values
of Y do not provide statistically significant information about future values of X, by assuming a linear VAR(p)
process as the predictive model (see (Granger, 1969) for further details on the implementation of the method);

• Y ‘Granger-causes in tail’ X if we reject, at some confidence level, the null hypothesis that the past extreme
values of Y , defined as states falling in the (right) tail of the distribution3, do not provide statistically significant
information about future extreme states of X (for further information, see (Hong et al., 2009)).

We consider the network of airports and flights, where airports represent the nodes and a (directional) link is present
if a causal relationship between two nodes exists. The state of delay of the airport is defined as the third quartile of the
delay distribution of flights departing within a one-hour time window at each node.

GivenN airports, the network of causal relationships is built by applying the Granger causality test (‘in mean’ or ‘in
tail’) to all the possibleN(N −1) pairs of airports. We use the false discovery rate method (Benjamini and Hochberg,
1995) to correct for false positives, due to the number of tests carried out (Tumminello et al., 2011), while maintaining
an overall significance level equal to 5%. Similarly, the use of the Bonferroni correction has been considered in other
publications (Zanin et al. (2017); Mazzarisi et al. (2018)).

Granger causality metrics thus measure how delays at an airport propagate to other airports. The number of causal
links quantifies the global amount of delay propagation and the structure of the causality networks tells us how delays
are propagated. The topology of the network of causal relationships in the ATM system is paramount to the under-
standing of the dynamics of delay propagation at the macro level and to investigate whether the introduction of the
mechanisms represents an improvement, e.g., by disrupting some propagation channels, thus restoring optimal func-
tioning. To this end, topological network metrics can be extracted from the network of causal relationships, e.g., link
density, reciprocity, clustering. In this research, we consider: (i) link density, i.e., the number of causalities with respect

3Thus, we can consider the time series of binary variables, which are 1 if the state is extreme, 0 otherwise.
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to the number of all possible causalities, capturing the average level of causality in the process of delay propagation;
(ii) reciprocity, measuring the likelihood of nodes being mutually linked, thus indicating subsystems of delay ampli-
fication; and, (iii) the number of feedback triplets4, representing subsystems of three airports where delay propagates
circularly.

The impact of implementing a mechanism at the network level can be assessed by measuring the changes in causal-
ity and disruption to feedback effects with respect to a baseline. However, the value of a network metric, such as the
number of feedback triplets, depends on the link density of the network, which may change from one scenario to an-
other. For a fair comparison, we consider the ‘over-expression’ of such a metric, where over-expression is defined as
the ratio of the observed value of a network metric to its expected value in the random case of an Erdös-Renyi graph
with the same link density.

In evaluating the variation of such network metrics from the baseline to some scenario with a newATMmechanism
implemented, it is crucial that the adopted test of Granger causality does not display a high false positive rate, especially
in relation to the considered subgraphs, i.e., two-way linked nodes or feedback triangles. Recently, it has been proved
that the test of Granger causality in tail by (Hong et al., 2009) is sensitive to autocorrelation of time series, thus
resulting in a high false rejection rate of two-way causality in the presence of unidirectional relationships (Mazzarisi
et al., 2020). The authors of (Mazzarisi et al., 2020) introduced a novel test of Granger causality in tail, based on the
bivariate version of the vector discrete autoregressive process for binary time series, referred to as ‘BiDAR’, which
solves this issue while maintaining very good power and adequate size. In the following, we use this novel test for the
analysis of simulations of the agent-based model.

5. Scenarios
The entire ECAC space is modelled considering commercial flights on 12th September 2014. This includes ap-

proximately 27k flights and 3.4M passengers (distinguishing between flexible and non-flexible ticket holders), with
approximately 800 airports. This date and dataset was carefully selected to be representative of a high-traffic, non-
disrupted day in 2014, with demand thus similar to an average day in 2023 (STATFOR baseline forecast). This allow
us to extrapolate that the results presented would be valid to future operational days. The traffic is based on historical
DDR data, schedules and generated passenger itineraries, and calibrated using historical data from CODA and DDR
(EUROCONTROL, 2015a,b) as described in Section 2.4.

Two scenarios (‘hub delay management’ and ‘effect of E-AMAN scope’) are designed to evaluate the mechanisms.
5.1. Hub delay management

This scenario has been designed to evaluate the impact of the 4D Trajectory Adjustment and the flight prioritisation
mechanisms to alleviate the impact of disruptions at main hubs. As indicated in Section 3.1, 4DTA is composed of
two sub-mechanisms (dynamic cost indexing and waiting for passengers), even if these mechanisms could be applied
by any airline operating at any airport, their maximum benefit is directly related to the expected cost (and benefit) of
managing disruptions driven by passenger connectivity. Airlines without connecting passengers will only benefit from
the use of dynamic cost indexing, while airlines with passenger connections tend to concentrate them at their hubs.
For these reasons, this scenario considers that a large disruption is impacting three large hubs in Europe: Amsterdam
(HEAM), Heathrow (EGLL), and Paris Charles de Gaulle (LFPG). The disruptions are modelled by manually defining
an ATFM regulation at each airport with the following characteristics: regulations start and finish in the morning
(06:00 – 14:00 local time), and the airport capacity during the regulated period is half of the average nominal capacity
of the airports (45 arrivals/hour for HEAM, 54 arrivals/hour for EGLL and 44 arrivals/hour for LFPG).

In addition to the imposed ATFM regulation, the rest of the delay in the system is set as default (i.e., nominal day
of operations) and ATFM regulations are defined at other airports based on a randomly selected nominal day.

This scenario is executed in: (i) a baseline form (where all three mechanisms are implemented in baseline), and
(ii) using 4DTA and FP with the advanced implementation.

Note that even if the manually set disruptions are only defined for the three hubs, the mechanisms are implemented
in the whole system, e.g., if the 4DTA is implemented in the advanced mode, this mechanism will be exploited by all
flights regardless of their airline type, and origin and destination.

4A feedback triplet is a subgraph of three nodes, A, B, and C, where A causes B, B causes C, and C causes A.
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Figure 1: Summary of percentage changes of metrics in 4DTA with respect to the baseline. Panels show, respectively,
metrics related to delay, cost, passengers, centrality and causality. Abbreviations used in legends: Av. = average, arr. =
arrival, %f > x min = percentage of flights with delay larger than x minutes, react. = reactionary, ex. = excess, pax =
passenger, conn. = connecting, pos. delay = positive delay (early arrival counted as zero), TC = trip centrality, PC =
passenger centrality, l.dens = link density, GC = Granger Causality, rec. = reciprocity, feed.tr. = feedback triplets.

5.2. Effect of E-AMAN scope
The second case study focuses on the different implementations of the flight arrival coordination mechanism. The

FAC is implemented in the baseline and the advanced version, the latter considering different planning horizon ranges,
in order to analyse the role of the extension. With larger horizon, all flights are considered earlier in determining the
landing sequence: on one hand, an early decision may lead potentially to more fuel savings, but, on the other hand, it
tends to reduce flexibility in combination with higher uncertainty.

Hence, in order to analyse the role of the horizon range, the network is simulated with high average delays. In
particular, the delays assigned by the ATFM regulation are modelled as random selection from the distributions char-
acterising historical days of operations with high number of assigned ATFM delays, reduced capacities of the airports
and longer en-route and taxiing operations.

In total four different cases are executed (two baseline and two advanced FAC implementations):
• Baseline with nominal and extended range: the FAC is implemented in the baseline version as described in

Section 3.3.1, considering both 200 NM and 600 NM for the planning horizon.
• Advanced FAC with nominal and extended range: the advanced version of the FAC is implemented, with the

planning horizon equal to 200 NM or 600 NM.

6. Results
In this section, we show the results of the comparison between the simulations of the ATM system with the novel

mechanisms implemented and the baseline version of the model as described in Section 5. Most of the analyses are
performed considering 100 simulations of the model. For the centrality analyses, 50 simulations are used. The results
of each metric are averaged across these, and in the following discussion, these averages are presented. The baseline
scenario is the reference point, for both classical and network metrics we show their percentage change with respect
to the baseline. As a robustness check, subsamples of 50 independent simulations are considered and their results
compared: thus unless differently specified, the results shown are those that are consistent in the subsamples. Note
that the results presented are for all flights modelled.
6.1. 4D Trajectory Adjustment – Hub delay management

Figure 1 shows the percentage change of a selection of classical and network metrics when 4DTA is implemented
in its advanced form in the ‘hub delay management’ scenario with respect to the baseline.
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The top-left panel shows that the introduction of the 4DTA mechanism improves the system by reducing the flight de-
lays. This is true for all the displayed quantities, namely the average arrival delay for flights with more than 15 minutes
of delay, their fraction, and the reactionary delay (number of flights and amount of delay). This is consistent across
different measures of delay (arrival and departure delays ≥ X with X ∈ {0, 15, 60, 180}, not shown). This suggests
that the possibility to adjust speed is useful to partially absorb large delays.
The top-centre panel shows that, with 4DTA, there is a sizeable reduction of excess fuel cost (up to almost 20%). This
can be understood by the fact that flights use 4DTA to control in a more efficient way their total costs, and the cost of
fuel is a significant factor driving the solution. Such behaviour creates a cost difference with respect to the baseline
implementation, where the decision to recover delay does not consider the economic impact but only the delay magni-
tude. Other types of cost are only marginally affected by the introduction of 4DTA, e.g., the average passenger-related
costs, in some cases even increasing. Non-passenger delay costs (e.g., cost of maintenance and crew associated with
delay) display a small but sizeable decrease. Overall, the costs are reduced by more than 10%when 4DTA is introduced
in the system.
Positive passenger delays are also reduced (see top-right panel). This is much more evident when considering con-
necting passengers (blue bar) rather than non-connecting ones (red bar), since they benefit more by the introduction
of 4DTA. In fact, the departure delays created by the regulations are only recovered when it is advantageous cost-wise
(e.g., if there are connecting passengers missing their connections due to the delay). Although the fraction of modified
itineraries (i.e., passengers which are re-booked due to missed connections) slightly increases, passengers are better
off when 4DTA is in operation. More passenger metrics are shown in Figure 2. We note that the average passenger
delay (including early arrivals, counted as negative) increases with respect to baseline. This is due to having less early
arrivals, since 4DTA allows flights to slow down to reduce fuel costs, trading buffers and early arrivals for fuel sav-
ings. The same effect can be seen on the average non-connecting passenger delay. We also note that the reduction in
positive delays is driven by a reduction in the fraction of flights with delays ≥ 180 min. A reduction of the fraction of
passengers receiving duty of care and a smaller increase of the average duty of care produce an overall improvement.
The improvements for connecting passengers can be due to a more efficient use of the waiting for passengers option
or to a speeding up of the flights with connecting passengers on board. Regarding the latter factor, we verified that
the flights carrying at least one connecting passenger select slightly higher percentage speeds than flights that contain
no connecting passengers when applying 4DTA to speed up (see Figure 3). We also note that the use of waiting for
passengers is quite different in the baseline and advanced implementation of the mechanism. In fact, although a similar
number of flights considers applying the waiting for passengers option in the two scenarios, only 15% of them actually
apply it in the advanced scenario, against 27% in the baseline, and the average the wait is shorter (3.8 minutes against
6.7 minutes in the baseline). This suggests that the strict rule used in the baseline scenario (i.e., always waiting for any
flex passengers if the wait is below 15 minutes) is not efficient cost-wise when compared to the more flexible strategy
of the advanced scenario. In fact, flex passengers (7.7% of the 3.4M passengers) are widely spread over flights (67.9%
of flights have at least one flex passenger) and often they are connecting passengers (21.6% of them), and this leads
to a large use of waiting for passengers in the baseline. This should be adjusted as part of a future calibration. The
strategy used in the advanced scenario, evaluating the cost of waiting for passengers, leads to a more moderate use of
the option, which however seems more efficient both for costs (as seen in the previous paragraph) and for connecting
passengers.

The causality and centrality metrics (bottom panels of Figure 1) partly confirm the view given by the classical
metrics. The centrality metrics display a slightly larger loss, possibly in connection with the larger number of modified
itineraries. In fact, modified itineraries are due to disrupted connections, which impact both trip centrality and pas-
senger centrality losses. Causality metrics signal that the level of distress propagation between airports is lower with
4DTA. In fact, the density of causal links shows a very significant decrease according to both types of causalities, in
mean and in tail. This suggests that delays in one airport less frequently cause delays in another, both for average and
extreme delays, because the 4DTA mechanism tends to absorb most of the delays, especially for connections, leading
to softening of the propagation. A further confirmation of such improvement is the reduction of network reciprocity:
the two-airports feedback effects, measured by reciprocity, also decrease substantially, meaning that a propagated delay
less frequently propagates back, creating an amplification effect. There is, however, a small increase in the feedback
triplets. This overall improvement in delay propagation is certainly linked to the decreased delays, especially reac-
tionary delays, as well as to a more refined waiting for passengers mechanism. In fact, the large use of waiting for
passengers in the baseline is a potential source of delay propagation, where the delay of an incoming flight causes the
delay of an outgoing one.
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Figure 2: Percentage change in passengers-related metrics advanced 4DTA with respect to the baseline.

Figure 3: Violin plot of the percentage speed selected when applying 4DTA at TOC by flights with at least one connecting
passenger (orange) and by flights not carrying any connecting passenger (purple).

In summary, the introduction of the 4DTAmechanismmakes the system better off from the point of view of airlines,
passengers and the environment (due to reduced fuel consumption). The system is more efficient (from the cost and
delay perspective) and more robust to local shocks at airports, which propagate much less. These results are aligned
with previous findings in the literature (Delgado et al., 2016; Cook et al., 2016).
6.2. Flight prioritisation – Hub delay management

The ‘hub delay management’ scenario has also been tested with the introduction of the flight prioritisation mech-
anism. Figure 4 shows the percentage change of a selection of classical and network metrics in this scenario with
respect to the baseline. Classical metrics (top panels) indicate that the system is worse off overall. There are more
reactionary delays (top left), total costs are higher mainly due to fuel and passenger costs (top centre), passenger delays
and modified itineraries are slightly increased (top right). It is important to note, however, that these variations are
quite small (never larger than 2%, often much smaller). This suggests that the introduction of FP has little or no impact,
at least when measured with classical metrics. As FP is implemented across the network in the simulation but can only
be used when flights are affected by ATFM regulations at arrivals, we also measured the effects restricted to the three
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Figure 4: Summary of percentage changes of metrics in FP with respect to the baseline. Panels show, respectively, metrics
related to delay, cost, passengers, centrality and causality. The percentage variations of the classical delay and cost metrics
are restricted to the three airports where the FP mechanisms are applied and we consider all flights landing at any of the
three airports within the time window of active regulation. Abbreviations used in legends: Av. = average, arr. = arrival,
%f > x min = percentage of flights with delay larger than x minutes, react. = reactionary, #f = number of flights, ex.
= excess, pax = passenger, conn. = connecting, pos. delay = positive delay (early arrival counted as zero), TC = trip
centrality, PC = passenger centrality, GC = Granger Causality, rec. = reciprocity.

hubs which were manually disrupted. However, this means restricting the analysis to a small number of flights, and the
results were not statistically significant, in that they were not consistent on two independent sets of 50 model iterations.
Therefore, no statistically significant effect are detectable in the airports where the FP mechanism is implemented.

Considering the entire system, centrality metrics show increased losses, in line with the larger fraction of modified
itineraries. Causality metrics, despite some changes of the node degree of the airports, i.e., the number of causal links
pointing to or outgoing from the node, display no significant variations of reciprocity and feedback triplets, which
supports the hypothesis that FP has negligible effect on delay amplification, thus it is less effective than 4DTA at the
systemic level. The bottom panels of Figure 4 show centrality and causality metrics restricted to the three disrupted
hubs. The sign of variations is not consistent across the airports, nor between two sets of 50 independent model
iterations, therefore again we cannot detect any significant effect when restricting to these airports.

In summary, the introduction of FP appears to have essentially little or no effect (or maybe slightly negative) at
the system level, when considering delay, cost, centrality, and causality. More surprisingly, at the level of the three
manually disrupted hubs, no significant effect can be detected, suggesting that the effects, if any, are very small and
essentially stochastic fluctuations.
6.3. Flight arrival coordination – Effect of E-AMAN scope

As presented in Section 5.2, two different sub-scenarios are evaluated: one with E-AMANoperating with a nominal
radius of scope of the planning horizon (i.e., planning horizon located at 200 NM from the airport), and one with an
the extended radius (i.e., planning horizon located at 600 NM).

The results presented are restricted to the analysis of the 24 airports where an E-AMAN is operating (see Sec-
tion 3.3). In particular, we consider only flights landing at an airport among these 24 in computing delay and cost
metrics. Figure 5 shows the percentage variations of a selection of metrics for the two choices of radius with respect
to the baseline where the network is simulated in a congested operational day. The advanced implementation of the
FAC increases the delays of both flights (top-left panel) and passengers (top-right panel). The implementation with
the nominal range increases the average arrival delay and reactionary delay. The extended radius setting appears to
further worsen the delay situation, increasing also the number of flights with delay and reactionary delay. As a conse-
quence, passenger costs are larger (top-centre panel), especially in the extended radius setting, producing higher total
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Figure 5: Summary of percentage changes of metrics in FAC with respect to the baseline. Panels show, respectively, metrics
related to delay, cost, passengers, centrality and causality. The percentage variations of both classical and centrality metrics
are restricted to the airports where the FAC mechanisms are applied. Only flights landing at any airport of the restricted
sample in computing the delay and cost metrics are presented. The causality metrics are extracted from the network of
causal relationships between any couple of the ECAC airports, but considering only the subgraphs, i.e., the reciprocated
links or the feedback triangles, involving at least one airport with the FAC mechanism. Abbreviations used in legends: Av.
= average, arr. = arrival, %f > x min = percentage of flights with delay larger than x minutes, react. = reactionary, #f =
number of flights, ex. = excess, pax = passenger, conn. = connecting, pos. delay = positive delay (early arrival counted
as zero), frac. = fraction, TC = trip centrality, PC = passenger centrality, l.dens = link density, GC = Granger Causality,
rec. = reciprocity, feed.tr. = feedback triplets.

costs. Quite surprisingly, the excess fuel cost is only very slightly smaller (in the nominal radius FAC setting) or even
larger (in the extended radius setting) than in the baseline scenario. Thus, it seems that the introduction of the FAC
mechanism in its advanced form makes the system less efficient.

This can be attributed to a discrepancy between the E-AMAN planned and actual holding time, which causes the
assignments of additional holding delays to respect the planned landing sequence. In fact, the advanced implemen-
tation of E-AMAN assigns, in some cases, large delays (e.g., delays of over 20 minutes). This happens, as shown in
Figure 6a, partially because the advanced FAC is trying to minimise the expected total cost, and in some cases, some
delay might represent fuel savings as the cruise speed is reduced. This is particularly relevant for large aircraft on the
larger extended scope scenario. In the baseline implementation, as the radius increases from 200 to 600 NM, the fuel
that is potentially saved increases: expected total fuel saved by slowing down to avoid holding with a 200 NM scope in
the baseline implementation is on average 19.6 t (2 kg per flight), with 600 NM radius, these expected saving increase
to 24.2 t (2.5 kg per flight). In the advanced implementation, the expected savings are even larger (32.7 t (average of
3 kg per flight) at 200 NM, and 269.0 t (average of 27 kg per flight) at 600 NM). As the advanced implementation is
trying to minimise the cost, later slots might be assigned (even if at the expenses of delay) to save fuel.
However, these expected benefits are not observed in the final results, as presented in Figure 5. The planned landing
sequence is broken due to not considering forthcoming demand and particularly due to the lack of managing of uncer-
tainties. Each time a flight enters one of the radii of the E-AMAN, the landing sequence is optimised. However, there
is no capacity reserved for new arrivals which are not already in the E-AMAN scope; and more importantly the flight
might experience non-accounted delays due to uncertainties while in the E-AMAN meaning that it might not be able
to use its planned slot. The consequences are discrepancies between the delay issued in the planning horizon and the
actual delay required when the flight reaches the execution horizon as shown in Figure 6b, i.e., when the flight arrives
to the execution horizon it might be delayed due to uncertainty and not able to use its planned slot, or its planned slot
might not be available as assigned to other flights, leading to holdings.
This effect is particularly relevant for large aircraft frames, as they are more prone to save fuel by slowing down their
cruise, and therefore to receive larger delay at the planning horizon. However, these flights will also have higher
holding fuel consumption and more passengers on-board, so an overall worsening of fuel and passengers indicators is
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(a) Planned extra fuel (fuel savings) expected at planning
horizon for flights issued with delay.

(b) Extra delay required between delay assigned at planning
and execution horizons.

Figure 6: Metrics at planning and execution horizon in E-AMAN

observed when further delay is assigned to them at the execution horizon if, for example, they miss their planned slot
due to tactical uncertainties.

In summary, the naive approach to enhance the E-AMAN by re-optimising the landing sequence, considering
expected costs, produces an overall worsening with respect to focusing on minimising the arrival delay, as uncertainties
and future demand are not properly considered.

This is further confirmed by the network metrics. Centrality metrics (bottom-left panel of Figure 5) show small
and positive variations, meaning that the introduction of the mechanism makes the centrality loss of these airports
larger. This is likely due to the increase of modified itineraries and more generally to the increased delays. The
causality metrics (bottom-right panel of Figure 5) are extracted from the network of causal relationships between
all the couples of the ECAC airports, but considering only the subgraphs involving at least one airport where the
mechanism is implemented. Here the outcome is more difficult to interpret: while the introduction of the advanced
FACwith the nominal radius E-AMANmakes the system slightly worse off, in the extended radius scenario the system
becomes significantly less connected, from a causal point of view, both in terms of the number of causal links and of
feedback effects (reciprocated links and triplets). This could be explained by the fact that FAC increases the arrival
delay of flights independently of their departure delays, thus masking the causal relationships due to network effects.

In conclusion, the introduction of the advanced FAC mechanism appears to make the system worse off from the
point of view of airlines and passengers, as well as from a systemic perspective as a whole. With the exception of
causality, all the metrics are worse for the extended range, than for the nominal range. Furthermore, this conclusion
holds evenwhen considering thewhole ECAC space, and not only the 24 airports where themechanism is implemented.

7. Conclusions and further work
Various advanced mechanisms inspired by operational concepts, with a special emphasis on new rules based on an

airline’s network-wide cost minimisation, have been explored in this paper. The Mercury agent-based model allows
us to run a simulation of a single day of operations, tracking passengers and aircraft, modelling the complex inter-
actions and decision making processes of the stakeholders, and, in particular, airlines. The micro-level nature of the
model supports the quantification of various metrics related to different stakeholders, and assessing overall network
performance under various scenarios with the use of standard and advanced network (centrality and causality) metrics.

The ‘hub delay management’ case study showed that the advanced 4D trajectory adjustments (4DTA) mechanism,
adjusting aircraft departure times and cruise speeds, is a powerful tool in the airline’s operations. 4DTA is an efficient
solution to reduce costs for the airline, as well as the average delay for flights and passengers. Connecting passengers
benefit greatly from this, while non-connecting passengers see their positive arrival delay only slightly decrease and
their arrival delay (including early arrivals) increase. Hence, there is a trade-off between airline economic efficiency
and (some) passenger utility, but, on the whole, passengers are better off with 4DTA. The existence of such trade-offs
is important to highlight before deployment, and should nurture the debate on implementation priorities. Centrality
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tends to worsen at the network level with 4D trajectory adjustments, however, probably due to a higher number of
modified itineraries. Propagation of delay between airports, as measured by causality metrics, tends to decrease with
the mechanism implemented. That is, local disruptions affect fewer other parts of the network. The 4DTA mechanism
has proven much more efficient at the network level than the advanced flight prioritisation (FP), which has only small
and slightly negative effects overall, and no statistically significant effect for the airports at which the mechanism is
implemented.

The analysis of the ‘effect of E-AMAN scope’ case study has highlighted how an advanced implementation of the
flight arrival coordination (FAC) requires the consideration of uncertainties and forthcoming demand. The advanced,
but naive, optimisation implemented, where the sequence of arrival slots is re-optimised considering expected costs
each time a new flight enters the arrival manager scope has proven inefficient. Flight are assigned to later slots at the
planning horizon to save fuel by slowing down but uncertainties lead to missed slots and extra holding delay. Thus
leading to a non-optimal behaviour of the system where the saved fuel is then used as holding and delay at arrival is
also experienced. This effect is aggravated as the scope of the E-AMAN is increased as uncertainty increases.

The main high-level goal of the Domino project was to provide a tool and a methodology to analyse the interde-
pendencies between the elements of the air transportation system. This paper presented how this was achieved by the
development and use of Mercury, and the computation of network-wide advanced metrics of centrality and causality.
The metrics developed and evaluated in Domino could be further used at different levels, for instance analysing the
coupling of subsystems in the network. Further work is also required to gain a deeper understanding on the relationship
between these new metrics used in this paper and established ones. These network metrics may be good proxies for
others, and/or add further dimensionality and usefulness, but this can only be understood via statistical analyses and
additional case studies.
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