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ABSTRACT
Galaxy formation during the first billion years of our Universe remains a challenging problem at
the forefront of astrophysical cosmology. Although these z � 6 galaxies are likely responsible
for the last major phase change of our Universe, the epoch of reionization (EoR), detailed
studies are possible only for relatively rare, bright objects. Characterizing the fainter galaxies
that are more representative of the population as a whole is currently done mainly through
their non-ionizing UV luminosity function (LF). Observing the faint end of the UV LFs
is nevertheless challenging, and current estimates can differ by orders of magnitude. Here
we propose a methodology to combine disparate high-z UV LF estimates in a Bayesian
framework: Bayesian Data-analysis Averaging (BDA). Using a flexible, physically motivated
galaxy model, we compute the relative evidence of various z = 6 UV LFs within the magnitude
range −20 ≤ MUV ≤ −15 which is common to the data sets. Our model, based primarily on
power-law scalings of the halo mass function, naturally penalizes systematically jagged points
as well as misestimated errors. We then use the relative evidence to weigh the posteriors
obtained from disparate LF data sets during the EoR, 6 ≤ z ≤ 10. The resulting LF posteriors
suggest that the star formation rate density (SFRD) integrated down to a UV magnitude of
−17 represent 60.9+11.3

−9.6 per cent / 28.2+9.3
−10.1 per cent / 5.7+4.5

−4.7 per cent of the total SFRD at
redshifts 6 / 10 / 15. The BDA framework we introduce enables galaxy models to leverage
multiple, analogous LF estimates when constraining their free parameters.
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1 IN T RO D U C T I O N

The first billion years of the Universe remain a compelling cos-
mological mystery, mostly due to the fact that observations of this
period remain challenging (e.g. Barkana & Loeb 2007; Loeb &
Furlanetto 2013; Mesinger 2016; Dayal & Ferrara 2018). One of
the simplest and most powerful observations are the non-ionizing
(∼1500 Å rest frame) ultra-violet luminosity functions (UV LFs).
These can be obtained with relatively straightforward broad-band
photometric drop-out techniques (Steidel et al. 1999) and are thus
useful in constraining the abundance of galaxies too faint to be
studied with spectroscopy.

Nevertheless, pushing the UV LFs towards the fainter galaxies
that are the dominant population during the first billion years is quite
difficult. Lensing magnification has been shown to be a powerful
tool for this purpose; however, the systematics quickly become
significant going towards magnification factors of beyond μ � 10
(e.g. Bouwens et al. 2017; Atek et al. 2018). Various observational
estimates of the faint end of the LF (where the bulk of the galaxies
lie) can disagree by orders of magnitude.

How do we choose which LF estimates to use when constraining
galaxy formation models? If every competing LF estimate is
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analysed independently, the corresponding parameter constraints
would need to be eventually combined somehow. Alternately, one
could first combine different LF data sets in some fashion and then
fit galaxy parameters to the combined data. For example, Finkelstein
(2016) used a Schechter function form (Schechter 1976) to fit
LF estimates from various studies independently at each redshift
(z = 4–10). These were then combined ‘agnostically’: with each
competing estimate being given the same weight, regardless of how
consistent it was with the assumed Schechter form.

In principle, one should be able to improve on this by applying
some basic, prior knowledge of what the UV LFs should look
like. For example, sharp discontinuities in the LF would be very
difficult to explain physically and could be an indication of an
unaccounted for systematic in the observations. The commonly
used, empirically motivated Schechter function requires additional,
ad hoc parameters to account for both redshift evolution and a
faint-end turnover, in order to be consistent with observations and
physically motivated galaxy formation models of ultra-faint dwarf
galaxies (e.g. Behroozi, Wechsler & Conroy 2013; Dayal et al.
2014; O’Shea et al. 2015a; Liu et al. 2016; Finlator et al. 2017).
Indeed, Yue et al. (2018) use a physical galaxy model to supplement
a Schechter function, and derive constraints on the presence of
a faint-end turnover in the LF, based on galaxy number counts
at z = 6.
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Here we use a flexible galaxy model to combine disparate
high-z LF estimates in a Bayesian evidence-based framework.
The parametrization of this model should encapsulate the general,
physical trends we expect from high-z LFs, while still being able to
accommodate the unknown details of galaxy formation. We apply
this Bayesian Data-analysis Averaging (BDA) framework to current
LF data sets, resulting in combined LF constraints even at redshifts
and magnitudes not probed by current observations.

We note that the differences between current LFs mostly arise
from different analysis methods applied to the same Hubble fields.
For example, different groups use different lensing models, com-
pleteness corrections, Eddington bias corrections, etc. Therefore,
LFs are not raw data, but derived data products. We therefore adopt
the nomenclature BDA.

This paper is organized as follows. In Section 2, we describe
the BDA method, demonstrating its use on toy LFs. In Section 3,
we introduce the LF data sets and the analytic model used to
discriminate between data sets. In Section 4, we apply BDA on
the z = 6 LFs, and we use the resulting weights to combine LF
data across z ∼ 6–10, presenting the resulting ‘concordance’ LFs.
In Section 5, we state our conclusions. Unless stated otherwise, we
use comoving units, and assume the following �CDM cosmological
parameters (�m = 0.3175, �� = 0.6825, h = 0.6711, �b = 0.049,
ns = 0.9677, and σ 8 = 0.83), consistent with the latest results
from the Planck satellite (Planck Collaboration et al. 2018), and
magnitudes are given in the AB system.

2 C OM BIN ING D IFFERENT DATA SETS

Our methodology to combine the estimated LFs is inspired by
Bayesian Model Averaging (BMA; e.g. Parkinson & Liddle 2013);
however, we reverse ‘model’ and ‘data’. Instead of comparing
different models using a given observable, we compare different
observables using a given model. This comparison is done with the
Bayesian evidence, which allows us to weigh the relative posteriors
from different data sets and combine them using this weight. We
describe the procedure in detail below.

We note that alternative Bayesian methods have been proposed
to combine data sets, taking advantage of Bayesian hierarchical
modelling and/or hyper-parameters. A common approach is to add
hyper-parameters to account for mis-estimated errors / systematics
of each observation, which are then marginalized over to obtain the
posterior of the desired quantities (e.g. Lahav et al. 2000; Hobson,
Bridle & Lahav 2002; Ma & Berndsen 2014; Bernal & Peacock
2018). Such an approach relies on knowing how to parametrize these
uncertainties and the additional parameters make the likelihood
calculation more expensive. The procedure we propose avoids this
but at the cost of relying on a parametrization of the ‘truth’.

Below we briefly review BMA, before introducing our reversed
application of it: BDA. We then demonstrate its use using toy models
for LFs.

2.1 Bayes’ equation and model averaging

Let D be a data catalogue composed of several data sets (raw or
derived observations) and M an analytic model with parameters θ .
Bayes’ theorem permits us to compute the posterior: the probability
distribution of the parameters θ given a specific data set Di :

P(θ |Di,M) = P(Di|θ,M)P(θ |M)

P(Di|M) = ∫
θ

P(Di|θ,M)P(θ |M)dθ
, (1)

where P(θ |M) is the prior on the parameters, P(Di|θ,M) is the
likelihood (commonly based on χ2), and P(Di|M) is probability of
the data given the model (also known as the evidence).

In general, the posterior is just the normalized likelihood distribu-
tion, weighted by the priors. The evidence is commonly used only
as a normalization factor because one is interested in the relative
probabilities across the parameter space of θ . However, if one has
various competing models, Mi , then the relative evidence can be
used to discriminate among them, answering the question: ‘which
model is preferred by the data?’. Additionally, the evidence can be
used to average over parameters common to the various models.
This is referred to as Bayesian model averaging (BMA).

2.2 Bayesian Data-analysis Averaging

In this work, we invert ‘data’ and ‘model’, asking the question:
‘which data set is preferred by our model?’ Given a model M, we
can compute the relative evidence of the data sets:

P(Di|D,M) = P(Di|M)∑
j P(Dj|M)

. (2)

The prior on the data set π (Di) is taken to be uniform. This
relative evidence can be used to compare the data sets between each
other, given the model. We use the relative evidence from each data
set as a weight of the resulting posterior for our model parameters:

P(θ |D,M) =
∑

i

P(θ |Di,M) × P(Di|D,M), (3)

where P(θ |D,M) is the final constrained posterior distribution. The
corresponding ‘concordance’ LF is then obtained by sampling this
combined posterior.

It is important to keep in mind that this procedure is model de-
pendent. Ideally, one should choose a model with a parametrization
capable of capturing the general trends we expect from the data, yet
flexible enough to accommodate the large range of uncertainties.
Conceptually, this is analogous to putting a (conservative) prior on
what is expected from the observations. The model we use for this
purpose is described in Section 3.2.

2.3 Demonstration on toy models

Here we illustrate the use of BDA, applied on toy LFs. Our mock LFs
consist of nine points, generated by different methods of sampling
a fiducial parameter combination (Section 3.2):

(i) Mock observation (A) was generated by sampling the ex-
pectation values from this model, assuming Gaussian errors with
a standard deviation of 20 per cent, for each magnitude bin. The
reported errors on these points also have a standard deviation of
20 per cent. Thus, the samples are consistent with the underlying
model and the reported uncertainty corresponds to the true uncer-
tainty. Hence, model (A) represents an accurate data set (c.f. top left
panel in Fig. 1).

(i) Mock observation (B) was generated by sampling the same
analytic model as (A), also taking Gaussian errors with a standard
deviation of 20 per cent. However, here the reported errors are
underestimated to be only 10 per cent (c.f. top right panel in Fig. 1).

(i) Mock observation (C) is statistically the same as (A) for
the brightest six points; however, the faintest three data points
are systematically offset from the underlying analytic model,
showing an upturn for MUV > −16 of 15 per cent, 30 per cent,
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Figure 1. Mock luminosity functions to demonstrate the application of BDA. The three mock data sets correspond to the dots (stars and X) with the reported
errors. The red dashed line illustrates the true underlying LF used to create the mocks. The shaded areas represent the 68 per cent confidence interval from
the posterior. On the bottom right, the same three mocks are shown with coloured dots (stars and X) and the shaded area corresponds to the BDA combined
posterior, with the relative weights of the three data sets shown in the legend.

and 50 per cent, respectively. This observation is illustrative of an
unknown systematic in the data, which cannot be captured by our
model (c.f. bottom left panel in Fig. 1)

We show the three mock data sets and 68 per cent confidence
interval (C.I.) on the posteriors in the first three panels of Fig. 1. As
expected, the posteriors of data sets A and B are comparable, given
that they only differ in the error estimates. However model C prefers
a much steeper LF posterior. This is because our galaxy model
(described in detail in Section 3.2) does not allow for upturns,1 and

1Mirocha & Furlanetto (2019) use an empirical model to show that if the
recent EDGES claimed detection (Bowman et al. 2018) was cosmological,
then one would need either an upturn in the LFs or a new population of
faint, transient galaxies at z ∼ 20. Allowing for an upturn in LFs could
alter some conclusions here, and we defer it to future work. We point out

so the last three points steepen the LF posterior, despite the fact that
the first six points are statistically the same as for model A.

however, that an upturn at z ∼ 6 is very contrived. The most plausible
physical motivation of such an upturn could be ultra-faint dwarfs, which
get their gas through molecular hydrogen cooling (so-called minihaloes).
These form from pristine gas and could have different properties from the
observed galaxies (e.g. Tumlinson & Shull 2000; Schaerer 2002; Yoshida,
Omukai & Hernquist 2008; Xu et al. 2016b; Koh & Wise 2018), which
could result in an upturn. However, these minihaloes likely lie at fainter
magnitudes than those accessible with current observations (e.g. O’Shea
et al. (2015b) and Qin et al. in prep). Moreover, minihaloes are expected
to disappear well before z 6, since they get sterilized quickly by a Lyman
Werner background (Holzbauer & Furlanetto 2012; Fialkov et al. 2013;
Mebane et al., in preparation).
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Figure 2. LF determinations at redshifts 6, 7, 8, and 10 from left to right (see text for details and references). The vertical black dash lines delimit the ‘faint’
and ‘ultra-faint’ end.

In the final panel, we show the combined LF posteriors, obtained
after using the relative evidence to weight the posteriors of A, B,
and C (equation 3). The relative evidence from BDA is shown in the
legend: 66 per cent, 34 per cent, 10−2 per cent, for data sets A, B,
and C, respectively. BDA down-weighs the posterior of data set C
quite strongly, and so it does not really contribute to the combined
posterior. This ‘penalty’ is due to our belief (qualified in terms of
our analytic model; see Section 3.2), that upturns in LFs are non-
physical.

Data set A provides the most constraining power, as the error
bars of the data are estimated properly. BDA prefers A over B by
a factor of 2, even though the only difference between the two data
sets is that the later data set underestimated the errors of its data
points.2

3 TH E N O N - I O N I Z I N G LU M I N O S I T Y
FUNCTION AT H IGH R EDSHIFT

We now wish to apply BDA on actual LF estimates. We first discuss
the data sets we use, then our analytic model which is used to weigh
them, before specifying how we compute the evidence.

3.1 Luminosity function estimation

In this study, four sets of high-z LFs are used, from redshift 6 and
above when available. In the rest of the paper, we define ‘faint
end’ to be magnitudes fainter than −20 (the dominant population
we are interested in characterizing) and ‘ultra-faint end’ to be
magnitude fainter than −15 for which lensing uncertainties increase
dramatically (c.f. Finkelstein 2016; Bouwens et al. 2017; Atek et al.
2018). These four data sets are as follows:

(i) The ‘Bouwens et al. data set’ (B+): consisting of the z = 6 LF
from Bouwens et al. (2017), the z = 7 and 8 LFs from Bouwens et al.
(2015), and the z = 10 LF from Oesch et al. (2018). The estimates
at z = 6 are based on the four first clusters of the Hubble Frontier
Field programme (HFF): Abell 2744, MACS0416, MACS0717, and
MACS1149.

(ii) The ‘Atek et al. data set’ (A+): we take the reported LF from
Atek et al. (2018), adjusted according to their prescription to
correspond to z = 6. This data set used the six clusters of HFF: Abell
2744, MACS0416, MACS0717, MACS1149, AS1063, and A370

2We repeat this experiment with 1000 different realizations, finding that
data set A consistently contributes the most to the combined posterior, at the
level of 70 per cent on average.

and in addition they use the bright part of the LF from Bouwens
et al. (2015).

(iii) The ‘Ishigaki et al. data set’ (I+): consisting of the z = 6
and 8 LFs from Ishigaki et al. (2018). They use the four first HFF
clusters, as well as the LF, extracted from blank fields from Bouwens
et al. (2015).

(iv) The ‘Livermore et al. data set’ (L+): consisting of the z =
6, 7, 8 LFs from Livermore (private communication; Finkelstein,
in preparation). The LFs correspond to those in Livermore, Finkel-
stein & Lotz (2017), but corrected for Eddington bias, which reduces
the implied number densities, most notably at the faint end by up
to a factor of ∼2 [though we note that the amplitude of Eddington
bias corrections is debatable, with Bouwens et al. (2017) arguing
they should be no larger than 10 per cent]. These Eddington-bias
adjusted LFs have also been used in Yung et al. (2019). The two
first HFF clusters are used to derive the faint-end LF: Abell 2744
and MACS0416.

We assume a minimum fractional uncertainty of 20 per cent (in
linear scale), as suggested in Bouwens et al. (2017), increasing the
error of all the data points if the reported error is smaller. Fig. 2
presents these four data sets, at redshift 6, 7, 8, and 10 from left
to right. As seen in the panels, the implied galaxy density can
vary by orders of magnitude, especially in the ultra-faint end when
lensing uncertainties such as completeness corrections dominate the
systematics.

To compute the relative evidence as described above, we need
data at the same magnitude and redshift bins. For this purpose,
we use the 10 points in the magnitude range −20 ≤ MUV ≤ −15
at z = 6 (c.f. Fig. 3). The bright limit of this range is still faint
enough to be relatively free from dust and active galactic nucleus
(AGN) feedback, which are not accounted for in our model. Indeed
the slope of the UV continuum β seems to change around this
value above redshift 6 (e.g. Finkelstein et al. 2012; Bouwens et al.
2014), roughly consistent with simulation results that suggest that
at fainter magnitudes the impact of dust starts becoming negligible
(e.g. Wilkins et al. 2016, 2017; Cullen et al. 2017; Ma et al. 2019),
and AGN feedback can be neglected (e.g. Wilkins et al. 2017;
Yung et al. 2019).3 The faint limit, although in the lensing regime

3We test the impact of the bright end limit on our results by removing
the brightest two magnitude bins and re-computing the posteriors. The
resulting posteriors are consistent with our fiducial ones, with a somewhat
broader PDF for the slope parameter, α∗, due to the removal of points with
comparably small errors. Thus we do not find evidence that the bright end
limit changes the implied slope of the stellar mass to halo mass relation, and
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Figure 3. Zoom-in on the 10 z = 6 LFs points that are common to all data
sets, and which we use when computing the BDA evidence.

(MUV � −17) is sourced by relatively modest magnification factors,
with correspondingly well-behaved uncertainties (Finkelstein 2016;
Bouwens et al. 2017; Atek et al. 2018). Most importantly, this range
is common to all four data sets, which is necessary in order to
compare their corresponding Bayesian evidence.

Unfortunately, by calculating the evidence over a limited range,
we end up implicitly assuming that this range characterizes also the
systematic biases in the other magnitude bins used when combining
the data sets. This is unlikely to be true; however our fiducial choice
of −20 ≤ MUV ≤ −15 at z = 6 corresponds to the maximum
range all data sets have in common. In the absence of a compelling
a priori reason to perform further data cuts, it is reasonable to
use the largest range possible (see however the test in footnote 3).
Moreover, we note that these data are the most constraining, as the
fainter magnitudes and higher redshift data points contribute only
modestly to the posterior. As discussed in detail in Appendix F and
shown in Fig. F1, the addition of fainter magnitudes mainly results
in a slight peak in the posterior for the turnover scale and as a small
bi-modality in the star formation rate to halo mass scaling, both
driven by the A+ data set.

3.2 Analytic model

The analytic model, M, used in this study is the same as in Park
et al. (2018). This model characterizes UV LFs using four, fairly
empirical parameters. It is physically motivated in the sense that it
scales the LF from the halo mass function (HMF), assuming power-
law scalings. Specifically, the typical stellar mass, M∗, of galaxies

as a consequence that we would need additional parameters characterizing
dust or AGN feedback. The relative evidence does change somewhat for this
reduced data set, with 19 per cent / 37 per cent / 41.5 per cent / 2.5 per cent
attributed to B+ / I+ / A+ / L+ (c.f. values in Table 1). This reflects the
fact that the I+ data set has very small errors for those two bins, and the
implies counts are consistent with our parametrization. Thus their removal
shifts some of the corresponding relative evidence to B + . Selecting sub-
samples of the data is, in any case, ad hoc, so we use the largest range which
is common to the data sets and over which our galaxy parametrization is
reasonable.

residing in haloes of total mass, Mh, is assumed to (on average)
follow a power law with arbitrary amplitude and power-law index
(see Behroozi et al. 2013; Behroozi & Silk 2015):

M∗(Mh) = f∗,10

(
Mh

1010M�

)α∗ ( �b

�m

)
Mh. (4)

The typical star formation rate (SFR) in a given halo mass bin
is taken to be the total stellar mass divided by some fraction of the
Hubble time:

Ṁ∗(Mh, z) = M∗
t∗H−1(z)

. (5)

The SFR is then converted to a UV luminosity assuming a simple
conversion factor:

Ṁ∗ = κUV × LUV, (6)

where κUV = 1.15 × 10−28 M� yr−1/erg−1 Hz−1 (Sun & Furlanetto
2016; see also Kennicutt 1998; Bouwens et al. 2012; Madau &
Dickinson 2014) is determined by the IMF (and is degenerate with
our SFR parameters) and the UV magnitude is computed from the
UV luminosity:

log10(LUV) = 0.4 × (51.63 − MUV). (7)

Star formation in low-mass haloes is suppressed via a ‘duty
cycle’, motivated by inefficient gas accretion and/or strong feedback
(e.g. Okamoto, Gao & Theuns 2008; Sobacchi & Mesinger 2013,
2014; Dayal et al. 2014; O’Shea et al. 2015a; Ocvirk et al. 2016,
2018; Yue, Ferrara & Xu 2016). Specifically, we assume that only
a fraction fduty of haloes of mass Mh can host star-forming galaxies,
with

fduty(Mh) = exp

(
− Mt

Mh

)
. (8)

Here, Mt is the characteristic halo mass scale below which star
formation is inefficient. Our results are not very sensitive to the exact
functional form of this duty cycle, since most of the observations
probe galaxies inside more massive haloes, as we shall see below.

Finally, the LF is computed from the HMF and the relation
between the halo mass and the UV magnitude:

φ(MUV) =
(

fduty
dn

dMh

)
dMh

dMUV
. (9)

The model has four free parameters: f∗,10, α∗, t∗, and Mt. Hereafter
we call a parameter point: θ = (f∗,10, α∗, t∗, Mt). Fig. 4 presents a
schematic view of the influence of each parameter on the LF.4 The
turnover mass Mt shifts the peak of the LF towards fainter and
brighter magnitudes. The parameter α∗ controls the slope, rotating
the LFs around the normalization value of MUV(Mh = 1010M�),
which depends on f∗, 10 and t∗. It also changes the location of the
turnover, because it affects the conversion of halo mass to magnitude
(note that the model parameters are all defined in terms of halo
mass, not directly a UV magnitude). Finally, the parameters f∗,10

and t∗ translate the LF curves horizontally. Note that these two
parameters are completely degenerate, and the LF is only sensitive
to the ratio t∗/f∗,10, though ancillary observations such at 21-cm can
mitigate this degeneracy. We refer the reader to Park et al. (2018)
for a detailed analysis of the influence of each parameter on the
luminosity function.

4An animation showing how the parameters influence the LFs and the 21-cm
signal is available at http://homepage.sns.it/mesinger/Videos/parameter var
iation.mp4.
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t*
f*,10

Mt

α*

Figure 4. Schematic view of the influence of the model’s parameters on
the LF. See the discussion in the text and Park et al. (2018) for more details.

The important point for this study is that (i) this model is
physically motivated: the galaxy density is directly linked to the
dark matter halo density allowing us to penalize extreme LF shapes
that are difficult to obtain from HMFs; and (ii) the model is flexible
enough to fit reasonably well a large variety of estimated luminosity
functions as well as those from hydrodynamic cosmological simu-
lations (see appendix 1 in Park et al. 2018) and SAMs (Greig et al.,
in preparation).

3.3 Computing the likelihood and the evidence

Computing the evidence can be computationally challenging in
high-dimensional parameter space (e.g. Trotta 2008), since the
likelihood has to be integrated over the whole space (see the
denominator of equation 1).

Our likelihood at each parameter sample θ is computed by
comparing the corresponding (logarithmic) LF to the data at
every magnitude and redshift bin considered. We use a split-norm
probability density function around each data point to take into
account of the asymmetrical errors in most of the data sets (c.f.
Appendix A). Explicitly, we have

P (Di |θ ) =
∏

MUV bins

S(x(θ ), μ, σ1, σ2), (10)

where S is the split-norm likelihood (see equation A1), x(θ ) is the
modelled galaxy density in a given bin and (μ, σ 1, σ 2) the data
galaxy density and its positive and negative errors in the same bin.

We have to compute the likelihood over the whole 4D parameter
space θ = [f∗,10, α∗, t∗, Mt]. Running an MCMC like in Park et al.
(2018) for a data set takes 2 weeks. In this study we want to compute
the likelihood distribution for four datasets, and explore different
configurations. To aid in this computation, we pre-compute the
z = 6, 7, 8, and 10 LFs corresponding to a grid of 4 × 105

parameter space samples. This grid is the concatenation of eight
Latin Hyperbolic Samples (LHS) of 50 000 points each. The
construction of this pre-computed grid of LFs takes around 2 weeks,
but the subsequent likelihood calculation is very fast: it just takes

Table 1. Relative evidence of the data sets in the magnitude range
[−20,−15] at redshift 6, given the analytic model (in per cent).

(B+) (I+) (A+) (L+)
3.5 52.9 43.4 0.2

a dozen minutes to obtain the likelihood distribution over 400 000
points for each data set on a single core, while an MCMC with
the same chain length could take days on several cores. We check
that this approximation of the likelihood distribution is converged
by comparing with the MCMC results from Park et al. (2018)
(see Appendix D). We also check that the posterior is unchanged
when computed using only half of the grid samples (i.e. 200 000
points). The discreteness of the sampling results in some noticeable
noisiness in the marginalized posteriors; however, the parameter
estimation and the evidence is converged (see Appendix D).

Finally, once the likelihood samples are computed, the pieces of
evidence can be estimated. We interpolate the 400 000 likelihood
samples to an evenly spaced grid, consisting of 50 bins per axis,
and compute the evidence by summing over this grid. We consider
uniform priors for all the parameters over the ranges (log10(f∗,10) ∈
[−2.5,−1], α∗ ∈ [−0.5, 1], t∗ ∈ [0, 1], log10(Mt) ∈ [8, 10]).

4 R ESULTS

We apply BDA on the four data sets in order to compare them and
create a combined LF. As explained above, the relative evidence
is computed from the 10 data points in the magnitude range
[−20,−15] at redshift 6 for each data set. These data are illustrated
in Fig. 3. Note that the ultra-faint end, where the difference between
observational teams is maximal, is not used for the relative evidence.
The restriction to this smaller range of magnitudes and redshifts
does slightly impact the final posterior distribution, as discussed in
Section 3.1, but it is necessary in order to apply the BDA method.

Table 1 gives the resulting relative evidence of the data sets. The
I+ and A+ data sets are preferred by our model compared to the
two others. This preference is mostly due to the combination of (i)
smoothness of the points over the reference range and (ii) small
error5 bars that are still consistent with our parametric model. The
L+ data set is disfavoured because it has a plateau at MUV = −19.5
to −18.5 and a steepening at the faint end; these features are difficult
to fit with our model which relies on smooth functions on top of the
HMFs. B+ also has small relative evidence, mainly because of the
non-monotonic feature at MUV = −16, and the comparably large
error bars at the bright end of the range.

We can now combine the posteriors of each individual data
sets, weighted by this relative evidence (equation 3). We note
that, although the relative weights are computed using only the
10 LF points at z = 6 common to every data set, each individual
posterior is then re-computed using all the data available in the

5As demonstrated in Section 2.3, errors which are too small are naturally
penalized by BDA. We can however explicitly check if the data sets have
underestimated errors by computing their χ2 to the corresponding ML
model. The resulting χ2 are 2.5 / 3.7 / 0.9 / 1.7 for B+ / I+ / A+ and
L+. Although A+ has the smallest chi-squared, it is consistent with a
χ2 distribution with three effective degrees of freedom (like our model).
I+ has the largest chi-squared (within 71 per cent C.L. of the chi-squared
distribution), which is even higher if one uses the quoted errors instead of
the 20 per cent minimum errors that we applied (χ2 of 5.9 at 88 per cent
C.L.). This is weakly suggestive that the errors in the I+ data set could be
underestimated.
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Figure 5. 1D and 2D marginalized posterior distributions of galaxy parameters resulting from the BDA weighing of the posteriors from each data set. The
relative weights are listed in Table 1. Although the relative weights are computed using only the 10 LF points at z = 6 common to every data set (see Fig. 3),
the final posteriors that are averaged are then re-computed using all data points (see text for details). The resulting distribution is mostly the average of the
posteriors of A+ and I+. In the 1D marginalized figures, the reported values are the maximum and 68 per cent of highest posterior density (HPD) (illustrated
by the blue shaded area).

data set, i.e. including the ultra-faint end and all redshifts (see
Fig. E1). It is these posteriors resulting from all data points which
are averaged using the relative weights in Table 1, resulting in the
combined posteriors shown in Fig. 5. To summarize, the weights
are computed on comparable data, at redshift 6 in the magnitude
range [−20, −15] and are applied on the posterior computed using
all the data available.

There are several trends evident in Fig. 5. First, we note the
degeneracy between f∗,10 and t∗, as the ratio of the two (r∗ = t∗/f∗,10)
is relevant for the LFs (see Appendix C). Following Park et al.
(2018), we use a linear prior over log(f∗,10) and t∗; as a result, the
latter is not constrained, showing a flat distribution over the full
range.

The double peak in the 1D marginalized posterior of α∗ comes
from the fact that the two data sets driving the combined posteriors
(A+ and I+) favour two different values for this slope of the M∗–Mh

relation (see Appendix E). A+ in particular favours a steeper LF
(smaller α∗), resulting in a marginalized one sigma constraint of

α∗ = 0.2+0.09
−0.07. This can be understood since the data points that are

most constraining are those with the smallest errors. For A+ as for
I+ , the error is minimum at the bright end of the range we use (see
Fig. 3), and for A+ these points have a steeper slope.

The combined marginalized posterior also shows some con-
straints on Mt, which peaks at 9.39+0.23

−1.35 [log10(M�)]. This peak is
entirely driven by A+ (9.55+0.13

−0.55 [log10(M�)]), with all of the other
data sets only providing an upper limit (see Fig. D1). However, the
statistical significance of this peak is down-weighted by the BDA
combined posteriors, resulting in only an upper limit on the turnover
scale (see also Yue et al. 2016, where they look for evidence of a
feedback-induced turnover in the LF).

4.1 The combined luminosity functions

The posterior over the parameter space is sampled to obtain the
corresponding constraints on the LFs. In Fig. 6 we present the LF
constraints corresponding to the 68 per cent C.L. range of the BDA
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Figure 6. First row: the 68 per cent confidence interval of the combined LFs corresponding to the BDA posteriors from Fig. 5 (blue shaded regions). For
comparison, the orange shaded regions show LF constraints if instead of BDA weights (see Table 1), the posterior of each data set was given an equal weight
(i.e. an average of the posteriors) (orange hatched area). In this later case, the relative down-weighting of A+ evidenced by the turnover scale shifting towards
fainter magnitudes. All data points used in this work are shown as the grey dots. In the first panel, the 68 per cent C.L. from the data-constrained model of Yue
et al. (2018) are shown with the dashed black lines.
Second row: the 68 per cent, 95 per cent, and 99 per cent confidence limits of the cumulative UV luminosity density corresponding to the BDA LFs. The dashed
lines correspond to the magnitude limit below which brighter galaxies contribute 50 per cent and 90 per cent of the total UV luminosity density.

posteriors blue shaded areas. One nice result from this procedure
is the forecast of LFs at even higher redshifts at which we currently
have no data (c.f. z = 15 LFs in the rightmost panel); although
we caution that as our model is mostly constrained by the z = 6
points, these extensions to higher redshifts are even more model-
dependent. We provide the numerical values for these LF constraints
in Tables G1, G2, and G3.

In this figure, we also compare the BDA LFs with those resulting
from a uniform weighing of the estimated data sets, i.e. a simple
average of each individual posterior, giving a relative weight of
25 per cent to all data sets. The 68 per cent C.L. of the LFs obtained
through this simple averaging are shown with the orange shaded
regions in Fig. 6. Comparing the orange and the blue shaded regions,
we see that the posteriors obtained with BDA are broader, allowing
for a turnover at brighter magnitudes. This is driven by the fact
that the A+ data set, which is the only one showing evidence of
a turnover, has a larger relative contribution in the BDA posterior
(43 per cent compared to 25 per cent). Specifically, we note that
BDA LFs do not start to flatten or turn over until at least MUV �
−14 (1σ ). The corresponding scale is shifted fainter by 1 dex for
the uniform weighted LFs, to MUV � −13.

We can also compare our BDA combined LFs to those presented
in Yue et al. (2018), who use redshift 6 blank field data from
Bouwens et al. (2015), complemented with their own lensed
galaxy estimates obtained by taking a mean probability of the
number of galaxies per bin implied by different lensing models.
The resulting LFs are presented in terms of confidence limits,
obtained by sampling a Schecter function modified to allow for

a turnover, and shown in the first panel of Fig. 6. Their LFs
at the bright end of the range are in agreement with our BDA
combined LFs; however, their 68 per cent contours for magnitudes
fainter than MUV � −15 are broader than the ones resulting from
BDA.

The corresponding cumulative UV luminosity densities for the
BDA LFs are shown in the bottom row of Fig. 6, with the dotted
lines denoting 50 per cent and 90 per cent of the total UV luminosity
density (see also the bottom two rows in Table 2). At redshift 6,
galaxies brighter than −17.3 (Understanding the Epoch of Cosmic
Reionization 12.8) contribute to 50 per cent (90 per cent) of the
total UV luminosity. The 50 per cent limit magnitude increases with
redshift, increasing the contribution of fainter galaxies in the total
UV budget. But at the same time, the 90 per cent limit magnitude
does not significantly evolve with redshift.

It is important to note that the distribution of the ionizing
photon number density (relevant for reionization) is likely shifted
even further towards fainter galaxies than the non-ionizing UV
luminosity density. This is because the ionizing escape fraction is
expected to increase towards smaller, fainter galaxies, in which it
is easier for feedback to evacuate low column density channels
facilitating the escape of ionizing photons (e.g. Razoumov &
Sommer-Larsen 2010; Yajima, Choi & Nagamine 2011; Ferrara &
Loeb 2013; Paardekooper, Khochfar & Dalla Vecchia 2015; Xu
et al. 2016a; Kimm et al. 2017). Therefore, when it comes to the
total ionizing photon budget, faint galaxies are likely even more
important than implied by the 1500 Å CDFs shown in the bottom
row of Fig. 6.
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1988 N. J. F. Gillet, A. Mesinger, and J. Park

Table 2. The cosmic SFR density obtained by integrating our BDA LFs down to the commonly chosen limit of MUV < −17 (equivalent to SFR � 0.32 M� yr−1)
(top row), compared with the total (cumulative) SFRD (second row). The third row shows the resulting completeness. Errors correspond to 68 per cent C.L.
The bottom two rows denote the UV magnitude limit corresponding to 50 per cent and 90 per cent of the cumulative UV luminosity density (illustrated in
Fig. 6 by the dashed black lines).

Redshifts 6 7 8 9 10 12 15

SFRD at MUV < −17 −1.72+0.12
−0.10 −2.01+0.07

−0.08 −2.32+0.06
−0.06 −2.66+0.06

−0.06 −3.02+0.08
−0.07 −3.82+0.14

−0.11 −5.20+0.23
−0.21

SFRD total −1.49+0.07
−0.08 −1.71+0.08

−0.07 −1.96+0.11
−0.08 −2.21+0.15

−0.10 −2.47+0.19
−0.13 −3.04+0.24

−0.20 −4.00+0.38
−0.31

SFRD completeness at MUV < −17 (in per cent) 60.9+11.3
−9.6 52.6+11.0

−9.3 44.1+10.6
−9.2 36.0+10.3

−9.4 28.2+9.3
−10.1 16.0+7.4

−9.3 5.7+4.5
−4.7

50% ρUV (MUV) −17.3 −17.0 −16.7 −16.3 −16.0 −15.5 −14.6

90% ρUV (MUV) −12.8 −13.5 −13.7 −13.8 −13.7 −13.2 −12.2

Figure 7. 68 per cent C.L. on the cosmic SFR density implied by our BDA
LFs, integrated down to MUV < −17 corresponding to SFR � 0.32 M� yr−1

(green shaded area), as well as the total SFRD (red shaded area). The
estimated data sets have been homogenized by considering the same SFR–
luminosity relation (equation 6) and the same integration limit of −17 [data
provided by Oesch (private communication) and published in Oesch et al.
(2018)]. The derived SFRD for the two thresholds are given in the Table 2,
as well as the completeness. The original data points are from Bouwens
et al. (2014, 2016), McLeod, McLure & Dunlop (2016), Oesch et al. (2013,
2014), and Ishigaki et al. (2018).

4.2 Star formation rate density

Finally, in Fig. 7 we show the cosmic star formation rate density
(SFRD) from the BDA LFs presented in the previous figure. The
SFRD is shown for two integration limits, up to the magnitude of
−17 (with 68 per cent C.L. in blue) and integrating over the whole
population (68 per cent C.L. in orange). We see that the SFRD up to
a magnitude limit of −17 is consistent with observational estimates
over the corresponding range (homogenized to correspond to the
same limit according to Oesch et al. 2018). However, accounting
for star formation in fainter galaxies implies a less rapid decrease
going towards higher redshifts. For example, the SFRD down
to −17 drops by 3.5 dex going from redshifts 6–15, while the
total SFRD only decreases by 2.5 dex over the same redshift
interval.

We also quote the median and 68 per cent C.L. in Table 2 for these
two integration limits (two first rows) as well as the completeness
expressed in per cent of the total SFRD. At redshift 6, galaxies

brighter than magnitude −17 account for 60 per cent of the total
SFRD. However, this completeness drops rapidly as we go deeper
into the EoR and cosmic dawn, becoming only 6 per cent at z = 15.6

5 C O N C L U S I O N S

High-redshift LFs provide an important constraint on galaxy for-
mation in the first billion years of the Universe. However, the
observations are very challenging, with some estimates disagreeing
significantly.

Here we present a simple framework, BDA, to combine different
high-z LF estimations. The approach relies on a simple analytic
model to encapsulate what we expect from LFs (i.e. smoothness
and dependence on HMFs) while allowing flexibility to account for
the unknown physics behind them.

In principle, there are two uses of BDA: (i) to infer ‘true’ LFs from
disparate data sets; and (ii) to allow disparate data sets to constrain
a galaxy model. For the former, the inferred ‘true’ LFs depend on
the parametrization of the galaxy model, which should hopefully be
reasonable and flexible. For the later, the galaxy model is already
assumed: if one is not doing model selection, the parametrization is
implicitly the ‘truth’ and one is only interested in constraining the
parameters with observations. In this case, BDA provides a way of
combining disparate LF estimates self-consistently using the same
galaxy parametrization that one wishes to constrain.

We apply BDA on four data sets of high-z (z ≥ 6), faint-end MUV

> −20 LFs. The resulting posteriors are mostly driven by two of the
four data sets, showing a corresponding bimodality in the implied
M∗–Mhalo relation. The combined posterior also shows very weak
evidence of a turnover at faint magnitudes, driven entirely by one
data set.

We provide the BDA LFs corresponding to our combined pos-
teriors, which could be used to constrain similar galaxy formation
models. These LFs extend to high redshifts and faint objects, for
which we currently have no data. However, those extrapolations are
model dependent, implicitly relying on our galaxy parameters being
able to characterize the true LFs. The approach we present can be
applied to future data sets, such as those expected from JWST, as
well as providing a framework for galaxy models to be informed by
disparate data sets.

6The completeness is even lower at higher redshifts if there is a separate,
transient population of molecularly cooled galaxies. We expect these
molecularly cooled galaxies to have different properties compared with
the galaxies we observe at z � 10 (e.g. So et al. 2014; Wise et al. 2014), and
the framework we use here does not allow for disparate galaxy populations.
We will return to this in future work, focused on the ultra-high redshifts in
which such galaxies are expected to live.
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APP ENDIX A : SPLIT NORM

To take into account the asymmetric errors provided in the observations we used the split norm distribution (Wallis 2014). It is just the
concatenation of two half-normal distributions, re-normalized to ensure continuity at the origin:

S(x) =

⎧⎪⎪⎨
⎪⎪⎩

A exp
(
− 1

2
(x−μ)2

σ 2
1

)
, x ≤ μ,

A exp
(
− 1

2
(x−μ)2

σ 2
2

)
, x ≥ μ,

A = (
√

2π
(

σ1+σ2
2

)2
)−1.

(A1)

For illustrative purposes, Fig. A1 presents two half normal distributions in blue and orange with two different standard deviations
(respectively 0.30 and 0.10). The corresponding split-norm distribution is shown in red. For comparison, we also show in green the normal
distribution obtained using the average of the variance of the two half normal distributions (i.e. a standard deviation of ∼0.224).

Figure A1. Example of application of the split normal distribution. Two half normal distributions are shown in blue and orange with two different standard
deviations (respectively 0.30 and 0.10). The corresponding split-norm distribution is shown in red. For comparison, we also show in green the normal distribution
obtained using the average of the variance of the two half normal distributions (i.e. a standard deviation of ∼0.224).

A P P E N D I X B: C O N V E R S I O N O F LO G A R I T H M I C TO L I N E A R SC A L E FO R E R RO R S

Some studies give the estimated data points and errors in logarithmic base 10 while others do so in linear scale. In this study, we chose to
work in logarithmic base 10. The transformation from linear to logarithmic scale for the errors are made as follows:⎧⎨
⎩

φlog = log10(φlin),
σ+

log = log10(φlin + σ+
lin) − log10(φlin),

σ−
log = log10(φlin) − log10(φlin − σ−

lin),
(B1)

⎧⎪⎨
⎪⎩

φlin = 10φlog ,

σ+
lin = 10φlog+σ+

log − 10φlog ,

σ−
lin = 10φlog − 10φlog−σ−

log .

(B2)

Note that symmetric errors in one scale become asymmetric in the other.

A P P E N D I X C : TH E R AT I O t∗/ f∗, 10

The model used in this study contains two parameters that are completely degenerate in predicting the LF. Although only the ratio r∗ = t∗/f∗,10

is relevant for the LF, we explore the more general formulation by default in this work since EoR observations (or other data sets) can break
this degeneracy (see Park et al. 2018).

In Fig. C1 we replace f∗,10 and t∗ by r∗ in the traditional corner plot of the posterior. It is the same posterior as presented in Fig. 5, i.e. it is
derived from the BDA combination of the LF estimations. This ratio is strongly constrained by the LFs estimation, log10(r∗) = 1.01+0.06

−0.15. It
is degenerate with α∗ and also slightly with Mt at large values of the latter. It is also noticeable that the sampling noise is reduced, due to the
reduction of the parameter space dimensionality.
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Combining UV LFs 1991

Figure C1. 1D and 2D marginalized posterior distributions of galaxy parameters resulting from the BDA weighing of the posteriors from each data set. The
relative weights are listed in Table 1. This figure is the same as Fig. 5, but here the degenerate parameters f∗,10 and t∗ are replaced by their ratio r∗ = t∗/f∗,10

(in log scale). Note that the range of the ratio is zoomed, the original one derive from f∗,10 and t∗ should be [−4, 2.5].

APPEN D IX D : C ONVERGENCE TEST

In this study, the likelihood is estimated on a grid of points sampled by LHS (200 000 points). To test the convergence of our estimation of
the posterior distribution, we compare it with the posterior distribution generated with on-the-fly MCMC sampling. Note that the MCMC
chain also contains 200 000 points and has converged. Fig. D1 presents the comparison of the marginalized posterior distributions obtained
with the grid (red) and with MCMC (green). Both posteriors are generated using the B+ data set. The 2D contour is the marginalized 1σ .
As expected, the marginalized distributions obtained using the grid sampling are noisier, but the final constraints are comparable. We note a
slight shift on the estimation of the parameter α∗, due mostly to the difference in the treatment of the error: for computational simplicity, the
MCMC code used (Park et al. 2018) treats LF error bars as symmetric, while here we allow for asymmetry (see A1).

We perform a second convergence test on the estimation of the pieces of evidence, by comparing the results obtain with a sample 200 000
points and one of 400 000 points. The results are identical in both cases proving the convergence of the estimation of the evidence.
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1992 N. J. F. Gillet, A. Mesinger, and J. Park

Figure D1. Comparison of the posterior distribution obtained with an on-the-fly MCMC and the pre-computed grid sampling of this study. Both the MCMC
and the grid contain the same number of samples: 200 000 points. Those posteriors are generated using the B + data set. The slight shift in the marginalized
1D constraints on α∗ is due to the different treatment of errors, as discussed in the text.

APP ENDIX E: C OMPARISON O F A LL POSTERI OR D I STRI BUTI ONS

We compare the posterior distribution obtained with the four data sets in Fig. E1. These are generated using all data points for data sets. While
figure E2 presents the same comparison but only using the 10 data points at redshift 6 with −20 ≤MUV ≤ −15.
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Combining UV LFs 1993

Figure E1. Comparison of the posterior distribution obtained with the four estimated data sets, using all the data available at every redshift.
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1994 N. J. F. Gillet, A. Mesinger, and J. Park

Figure E2. Comparison of the posterior distribution obtained with the four estimated data sets, using only the 10 data points at redshift 6 with −20 ≤MUV ≤
−15.

A P P E N D I X F: C O M PA R I S O N BDA , AV E R AG E , A N D R E D U C E DATA S E T S

We compare the posterior distribution obtained with the BDA method with a simple average of all individual posterior. Fig. F1 present in blue
the BDA posterior and in orange the average posterior. There are two noticeable differences. The first is on the parameter α∗, in the average
case, the distribution has a more Gaussian shape. But this difference has no noticeable effect once projected on the LF space (see Fig. 6). The
second difference is the parameter Mt: in the case of the average, it is just a lower limit. This effect is visible in the LF space (c.f. Fig. 2 and
associated discussion).

The posterior distribution using only the redshift 6 data in the magnitude range [−20, −15] is presented by the red curve. The bimodality
of α∗ is smoothed, because the constraints of this parameters are wider with the reduce data and the estimation of I + is slightly smaller. The
second difference is for Mt, where the peak at 9.4 is reduce, because it is driven by the ultra-faint end.
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Combining UV LFs 1995

Figure F1. Comparison of the combined posterior distribution obtained with our fiducial BDA procedure (blue), a simple average of the individual posteriors
(orange), and the BDA posterior obtained using only the data range used for computing the evidence (red; i.e. using only the redshift six points in the magnitude
range [−20, −15]. The reduced range and the simple average both decrease the evidence for a turnover and the related bimodality in α∗, as these trends are
driven by the ultra-faint, Muv > −15, points from the A + data set.
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APP ENDIX G : TABLES OF LUMINOSITY FUNCTI ONS

Table G1. BDA determination of the UV LF at redshifts 6, 7, and 8. The values of LF are given in logarithmic scale: φ [log10(M� mag−1 Mpc−3)], σ sup, and
σ inf the superior and inferior 68 per cent C.I.

z = 6 z = 7 z = 8
MUV φ σ sup σ inf φ σ sup σ inf φ σ sup σ inf

−20.11 −3.26 0.15 0.12 −3.57 0.15 0.13 −3.95 0.17 0.14
−19.77 −3.09 0.12 0.10 −3.38 0.12 0.10 −3.73 0.13 0.11
−19.43 −2.92 0.09 0.08 −3.20 0.10 0.08 −3.53 0.10 0.09
−19.09 −2.77 0.08 0.07 −3.02 0.08 0.07 −3.33 0.08 0.08
−18.75 −2.61 0.07 0.06 −2.86 0.07 0.07 −3.14 0.08 0.08
−18.41 −2.47 0.06 0.06 −2.69 0.07 0.07 −2.96 0.07 0.09
−18.07 −2.32 0.07 0.07 −2.53 0.07 0.09 −2.79 0.09 0.09
−17.73 −2.19 0.07 0.08 −2.38 0.08 0.10 −2.62 0.09 0.11
−17.39 −2.05 0.09 0.09 −2.23 0.10 0.11 −2.45 0.11 0.12
−17.05 −1.92 0.10 0.11 −2.09 0.11 0.12 −2.30 0.13 0.14
−16.71 −1.79 0.11 0.12 −1.95 0.12 0.13 −2.15 0.14 0.14
−16.37 −1.67 0.12 0.12 −1.82 0.13 0.14 −2.01 0.15 0.15
−16.03 −1.56 0.12 0.13 −1.70 0.14 0.14 −1.88 0.15 0.16
−15.69 −1.45 0.13 0.14 −1.59 0.14 0.15 −1.76 0.16 0.16
−15.35 −1.36 0.14 0.14 −1.49 0.14 0.16 −1.66 0.16 0.17
−15.01 −1.27 0.14 0.15 −1.40 0.15 0.17 −1.56 0.17 0.19
−14.67 −1.19 0.15 0.17 −1.32 0.17 0.18 −1.47 0.20 0.19
−14.33 −1.12 0.19 0.18 −1.25 0.22 0.19 −1.40 0.26 0.21
−13.99 −1.06 0.24 0.20 −1.17 0.28 0.22 −1.32 0.32 0.25
−13.65 −0.99 0.31 0.23 −1.11 0.35 0.28 −1.25 0.41 0.30
−13.31 −0.94 0.40 0.27 −1.05 0.45 0.32 −1.19 0.50 0.37
−12.97 −0.89 0.45 0.37 −1.00 0.53 0.42 −1.14 0.56 0.52
−12.63 −0.84 0.55 0.48 −0.96 0.61 0.57 −1.10 0.71 0.64
−12.29 −0.82 0.65 0.63 −0.94 0.74 0.73 −1.08 0.81 0.87
−11.95 −0.81 0.76 0.83 −0.93 0.88 0.96 −1.09 0.95 1.14
−11.61 −0.83 0.89 1.10 −0.97 0.98 1.32 −1.14 1.10 1.51
−11.27 −0.88 1.07 1.41 −1.05 1.17 1.71 −1.24 1.30 1.97
−10.93 −0.99 1.27 1.84 −1.19 1.41 2.18 −1.41 1.54 2.56
−10.59 −1.16 1.47 2.42 −1.40 1.64 2.87 −1.65 1.81 3.32
−10.25 −1.40 1.72 3.18 −1.68 1.93 3.75 −1.99 2.19 4.30
−9.91 −1.72 2.08 4.10 −2.07 2.35 4.84 −2.44 2.61 5.59

Table G2. BDA determination of the UV LF at redshifts 9, 10, and 12. The values of LF are given in logarithmic scale: φ [log10(M� mag−1 Mpc−3)], σ sup,
and σ inf the superior and inferior 68 per cent C.I.

z = 9 z = 10 z = 12
MUV φ σ sup σ inf φ σ sup σ inf φ σ sup σ inf

−20.11 −4.37 0.18 0.14 −4.84 0.19 0.16 −5.90 0.21 0.17
−19.77 −4.13 0.14 0.12 −4.57 0.15 0.12 −5.58 0.16 0.15
−19.43 −3.90 0.11 0.09 −4.31 0.12 0.10 −5.27 0.13 0.13
−19.09 −3.68 0.09 0.09 −4.07 0.11 0.09 −4.97 0.12 0.12
−18.75 −3.47 0.09 0.09 −3.84 0.10 0.10 −4.69 0.12 0.14
−18.41 −3.27 0.09 0.10 −3.62 0.10 0.11 −4.42 0.14 0.14
−18.07 −3.08 0.10 0.11 −3.40 0.11 0.13 −4.17 0.14 0.17
−17.73 −2.89 0.12 0.12 −3.20 0.13 0.14 −3.92 0.17 0.19
−17.39 −2.71 0.13 0.13 −3.01 0.16 0.15 −3.69 0.20 0.19
−17.05 −2.54 0.14 0.16 −2.82 0.17 0.17 −3.47 0.21 0.21
−16.71 −2.38 0.16 0.16 −2.64 0.18 0.18 −3.26 0.21 0.22
−16.37 −2.23 0.17 0.17 −2.48 0.18 0.19 −3.07 0.22 0.23
−16.03 −2.09 0.16 0.18 −2.33 0.18 0.20 −2.89 0.23 0.23
−15.69 −1.96 0.17 0.18 −2.19 0.18 0.20 −2.74 0.22 0.24
−15.35 −1.85 0.18 0.18 −2.08 0.19 0.20 −2.61 0.22 0.25
−15.01 −1.75 0.19 0.20 −1.97 0.21 0.22 −2.49 0.24 0.27
−14.67 −1.66 0.23 0.22 −1.87 0.26 0.23 −2.38 0.33 0.27
−14.33 −1.58 0.29 0.24 −1.78 0.32 0.26 −2.27 0.39 0.31
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Table G2 – continued

z = 9 z = 10 z = 12
MUV φ σ sup σ inf φ σ sup σ inf φ σ sup σ inf

−13.99 −1.50 0.36 0.28 −1.70 0.40 0.31 −2.17 0.48 0.39
−13.65 −1.42 0.46 0.33 −1.62 0.53 0.35 −2.09 0.63 0.43
−13.31 −1.36 0.55 0.43 −1.55 0.61 0.47 −2.01 0.71 0.59
−12.97 −1.30 0.64 0.57 −1.50 0.71 0.64 −1.95 0.84 0.79
−12.63 −1.27 0.75 0.76 −1.46 0.83 0.85 −1.92 1.01 1.02
−12.29 −1.25 0.90 0.99 −1.45 1.00 1.09 −1.91 1.17 1.35
−11.95 −1.27 1.03 1.32 −1.48 1.12 1.49 −1.95 1.33 1.81
−11.61 −1.34 1.23 1.71 −1.56 1.35 1.92 −2.06 1.56 2.37
−11.27 −1.46 1.47 2.21 −1.71 1.58 2.49 −2.26 1.84 3.08
−10.93 −1.66 1.70 2.90 −1.93 1.86 3.25 −2.53 2.16 4.01
−10.59 −1.94 1.99 3.80 −2.25 2.18 4.27 −2.92 2.60 5.18
−10.25 −2.32 2.42 4.89 −2.68 2.64 5.49 −3.43 3.07 6.68
−9.91 −2.82 2.88 6.31 −3.21 3.15 7.00 −4.00 3.63 8.20

Table G3. BDA determination of the UV LF at redshift 15. The values of LF are given in logarithmic scale: φ [log10(M� mag−1 Mpc−3)], σ sup, and σ inf the
superior and inferior 68 per cent C.I.

MUV φ σ sup σ inf

−20.11 −7.82 0.25 0.20
−19.77 −7.39 0.21 0.17
−19.43 −6.98 0.17 0.17
−19.09 −6.60 0.16 0.17
−18.75 −6.23 0.16 0.19
−18.41 −5.88 0.18 0.22
−18.07 −5.55 0.21 0.24
−17.73 −5.24 0.25 0.25
−17.39 −4.94 0.26 0.28
−17.05 −4.66 0.27 0.30
−16.71 −4.40 0.30 0.29
−16.37 −4.16 0.29 0.31
−16.03 −3.94 0.29 0.31
−15.69 −3.76 0.28 0.31
−15.35 −3.60 0.28 0.32
−15.01 −3.45 0.32 0.35
−14.67 −3.32 0.43 0.34
−14.33 −3.18 0.52 0.39
−13.99 −3.06 0.62 0.49
−13.65 −2.96 0.79 0.56
−13.31 −2.86 0.91 0.75
−12.97 −2.79 1.08 0.98
−12.63 −2.75 1.25 1.32
−12.29 −2.75 1.42 1.76
−11.95 −2.81 1.65 2.33
−11.61 −2.97 1.97 3.00
−11.27 −3.21 2.26 3.95
−10.93 −3.58 2.63 5.18
−10.59 −4.06 3.17 6.61
−10.25 −4.60 3.69 8.16
−9.91 −5.10 4.17 9.38

This paper has been typeset from a TEX/LATEX file prepared by the author.
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