On the pursuit of Graph Embedding Strategies for
Individual Mobility Networks

Omid Isfahani Alamdari
University of Pisa
Pisa, Italy
alamdari @di.unipi.it

Abstract—An Individual Mobility Network (IMN) is a graph
representation of the mobility history of an individual that
highlights the relevant locations visited (nodes of the graph) and
the movements across them (edges), also providing a rich set of
annotations of both nodes and edges. Extracting representative
features from an IMN has proven to be a valuable task for
enabling various learning applications. However, it is also a
demanding operation that does not guarantee the inclusion
of all important aspects from the human perspective. A vast
recent literature on graph embedding goes in a similar direction,
yet typically aims at general-purpose methods that might not
suit specific contexts. In this paper, we discuss the existing
approaches to graph embedding and the specificities of IMNs,
trying to find the best matching solutions. We experiment with
representative algorithms and study the results in relation to
IMN characteristics. Tests are performed on a large dataset of
real vehicle trajectories.

Index Terms—individual mobility, graph embedding

I. INTRODUCTION

The recent development and diffusion of location-aware
data collection technologies led to an abundance of spatial
and mobility data that allows scientists and domain experts
to study human mobility at an unprecedented level of depth.
The focus of these studies can be either at the (lower) level of
trajectories — namely, the single trips, the route they followed,
their speed profile, etc. — or at the (higher) level of mobility
demand, thus focusing on the places the users stopped by
and the transitions between these places. In the latter case,
most works analyze the mobility demand from a collective
viewpoint, which aggregates the mobility of a population over
a territory, aiming to identify traffic flows characteristics and
predicting them [1]-[3]. However, when significant data is
available on single users or vehicles, a longitudinal analysis
can be developed to build a model of the individual’s mobility,
which can help in several analytical tasks, from understanding
mobility patterns [4] to mobility prediction [5], [6], event
prediction [7], simulation [8], etc.

The mobility demand of an individual can be effectively
represented by means of networks and graphs, where nodes
correspond to spatial locations and edges represent trips con-
necting pairs of locations. In particular, we are interested in
Individual Mobility Networks (IMNs), a graph abstraction of
individual mobility introduced in [9] and later used in several
applications [7], [8]. The locations in IMNs are specific to
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the user and extracted through clustering on their stop points,
instead of being fixed (as, for instance, happens with the
cognitive maps introduced in [10], based on predefined points
of interest), and both nodes and edges are enriched with
information of frequency stop/traversal, temporal distribution
and spatial aggregates that help to better describe the way
the user moved in the period of observation. Some simplified
examples are visually illustrated in Figure 2. By abstracting
away the specific spatial position of each location, IMNs also
provide a rather intuitive way to compare users belonging to
different places, aiming to understand common and discrimi-
nating characteristics.

The question that arises, however, is now: how fo effectively
(and efficiently) compare IMNs? Which features, aspects of
their structure or combinations of them are significant to
characterize an IMN w.r.t. others? Very specific applications
and tasks might directly come with an ad hoc answer, yet
not providing a general approach to the problem. Similarly,
while humans can rationalize some discrimination criteria by
visually inspecting IMN examples (e.g. by looking at Figure 2
one might think to measure the frequency dominance of the
node labeled as ’0’, or to count the number of peripheral
connections — i.e. not involving node 0’ — in each graph),
that might suffer from subjectivity of personal views, and miss
some important aspects.

The scientific literature has tackled this type of problems
for over a decade, the most relevant and interesting approaches
belonging to the graph embedding field, i.e. the art of trans-
lating graphs into fixed-size vector representations that encap-
sulate the useful information implicitly contained in graphs.
However, the landscape is rather complex, with each method
proposing to model various kinds of concepts and undergoing
validation on benchmarks that possess specific, often under-
explored, characteristics. As a result, comprehending whether
our graphs genuinely align with the expected requirements of
the provided solution becomes very challenging. The purpose
of this paper, then, is to study what the current state-of-art in
graph embedding can do for the specific case of IMNS, starting
from a selection of candidate embedding methods; performing
a comparative analysis of IMNs’ characteristics to see where
they are positioned w.r.t. some reference benchmarks in litera-
ture; and finishing with a mixed supervised and unsupervised
experimentation aimed to identify promising existing solutions



and lasting issues.

This work provides four types of contribution:

1) we introduce IMNs and their related embedding problem,
characterizing them with respect to other popular graph
embedding benchmarks, in particular identifying their key
differences. This aspect is often not sufficiently discussed in
literature, as the diversity of datasets employed is typically
very limited — mostly belonging to social networks or
molecule data sources — and the characteristics of datasets are
mainly provided to show their size. Understanding how much
the data we want to embed fit the validated benchmarks is an
under-explored aspect of the problem;

2) we discuss several families of embedding methods, some
of which are selected for experimental evaluation on IMNs.
In particular, we highlight the concepts they want to model,
the type of information they handle and how they design their
aggregation / propagation within the graph;

3) we provide a detailed empirical study of various methods,
aiming to understand which approaches seem to extract
useful information for IMNs and also what is the intertwined
role of different sets of input features and of inferred graph
structure information. To this purpose, we design a supervised
classification task to obtain objective performance measures,
and complement it with a subjective evaluation based on
similarity search and visual inspection;

4) finally, the paper is intended to provide also a prototypical
example of the process that analysts need to face when they
have to orient in the vast and heterogeneous literature on graph
embedding, since research papers often are mostly focused on
highlighting the originality of the proposed solutions, while
more general guidelines for practitioners are seldom discussed.

The rest of the paper is organized as follows: Section II
provides an overview of the state-of-art methods for graph em-
bedding; Section III introduces IMNs with a comparative stud-
ies of their characteristics vs. other benchmarks; Section IV
describes the features, algorithms and evaluation approach
adopted; Section V provides an empirical evaluation of the
embedding methods selected; finally, Section VI summarizes
the work and provides conclusive remarks.

II. GRAPH EMBEDDING: STATE-OF-ART

Since our main objective is to study the applicability of
graph embedding methods to Individual Mobility Networks,
we provide here a brief overview of graph embedding litera-
ture. We remark that the expression graph embedding is often
ambiguously adopted to refer both to the strategies that yield
an embedding for the whole graph and those that instead assign
an embedding to single nodes. We will refer to the first type as
graph-level embedding and to the second as node embedding.
They are not mutually exclusive, since several graph-level
embeddings are actually derived from a node embedding
through aggregation of the output node representations, yet
they might have different objectives to optimize.

A. Graph-level Embedding

Embedding of a whole graph is typically useful for querying
or learning from several graphs of moderate size, where the
final objective is to retrieve or classify/cluster graphs. The
embedding can in principle be achieved by simply computing a
fixed set of user-defined statistics and aggregates, for instance
some common properties studied in network science: number
of nodes, edges, closed triangles, the diameter of the graph,
etc. However, that would not capture well the detailed structure
of graphs. In particular, several methods try to consider prop-
erties of both the local structure, i.e. the connections between
each node and its neighborhood, and the global structure, i.e.
the connection/reachability among all nodes in the graph.

Kernel-based Features: Kernel methods derive features
for each node from a given neighborhood of other nodes,
typically capturing the local properties of the graph around
the node. Most solutions in this category are inspired by the
basic Weisfeiler-Lehman (WL) algorithm [11], which starts
with initial features associated with each node and iteratively
updates them with an aggregation of the neighbors’ features,
repeating the process a given number of times, and finally
aggregating the features of all the nodes in the graph into
graph-level features, typically through a distribution histogram
for each feature. Properly defining the neighborhood and how
values are diffused is fundamental. The LDP method [12]
adopts the simplest definition, and is limited to one-step
neighbors, computing the distribution of their degrees. Var-
ious others follow a wavelet approach, where propagation is
performed “jumping” from one node to the others located at
exponentially increasing distances, thus capturing also long-
range dependencies. For instance, Geometric Scattering [13]
computes graph embeddings as statistics of the node values
distributions, as obtained at each iteration of the wavelet
propagation mechanism, while [14] examines the distributions
of node features in subgraphs based on diffusion wavelets.

Neural embeddings: This family of methods treats the
neighborhood of a node as its context, following techniques
like skip-grams inherited from language models. For instance,
Graph2Vec [15] builds subgraphs for each node and applies
a doc2vec approach [16] where the subgraph represents the
document and the nodes’ labels the words in it. GL2Vec [17]
further improves it by also exploiting labels on edges. We
remark that these methods need node labels, which provide
a common reference vocabulary among different graphs and
make their embeddings comparable.

Random Walk Approaches: These are basically a specific
(and very popular) variant of kernel methods, where the neigh-
borhood is identified through several random explorations of
the links in the graph starting from the node and performing a
given number of steps. Beside the neighborhood, the process
assigns a weight or probability to the relation between the
explored nodes and the starting one, which are used to
propagate information or features values from the former to the
latter. The Feather methods [18], for instance, use the weights
as probabilities in computing the characteristic function of
node features (basically, translating features into complex



numbers and then computing their expected values). Finally,
Anonymous Walk Embeddings (AWE) [19] renames nodes
with their order of visit in the random walk, which highlights
the presence of loops. The basic version of AWE, then, simply
computes the frequency of each possible anonymous sequence,
and associates the frequency distribution to the whole graph.

Spectral Features: As for random walks, these methods
consider transition probabilities between nodes (usually uni-
form, though external weights might be applied in some
cases) and study the information diffusion among nodes, now
adopting spectral analysis tools, such as the Laplacian matrix
and its eigen-vectors and -values. For instance, NetLSD [20]
and IGE [21] adopt a global heat trace signature of the graph
derived from eigenvalues, achieving isomorphism invariance
and adaptivity to scale. FGSD [22] defines a distance function
between nodes based on their eigenvectors, computing the
overall distribution of distances in the graph, with the possi-
bility to emphasize either local proximity or global structure.

B. Node-level Embedding

Methods in this category aim to embed the individual
nodes of a single, usually very large, graph. A graph-level
embedding can be in principle derived quite easily by pooling
the node embeddings in some way, e.g. through averaging or
extracting other characteristics of value distributions. However,
in order for it to make sense, the node embeddings need to
be consistent across the different graphs we want to embed,
so that their representations are comparable. Most works on
node embedding do not discuss this aspect in detail, therefore
it is often unclear if node aggregation is doable and therefore
if the proposed methods also apply to graph-level.

Proximity preservation: These methods aim to infer node
embeddings that capture the relations between nodes and their
neighbors, possibly at various distances.

Several approaches rely on neural embeddings (already
mentioned above), such as DeepWalk [23] (and its improve-
ment Walklets [24]), which applies the skip-gram approach
by defining contexts through random walks. Node2vec [25]
does something similar, with various node sampling strategies
to define neighborhoods, improved by Diff2vec [26] through
the use of diffusion techniques. GraRep [27] also extends the
concept of Deepwalk, considering k-step neighborhoods, and
implementing it through Laplacian matrix factorization.

GLEE [28] applies Laplacian Eigenmaps to directly encode
the graph structure (in particular, the proximity) through the
geometry of the embedding space, yielding node embeddings
from which we can estimate, for instance, the number of
common neighbors of two nodes or of short paths.

Various papers study the problem in terms of the Laplacian
matrix factorization, such as NetMF [29], which basically
provides a reformulation of Deepwalk; BoostNE [30], that
learns multiple graph representations at different granularities
from coarse to fine; or the simple approach in [31], which takes
k lowest-frequency Laplacian eigenvectors as embeddings.

Finally, HOPE [32] introduces the idea of assigning to each
node two separate embeddings, a source and a target one,

which fit the contexts with oriented graphs, also considering
various node proximity measures to capture with the embed-
dings, such as Katz’s distance, Rooted Page Rank and others.

Embedding Nodes with Attributes: Most of the works
described so far look at the network properties of graphs,
not considering additional existing features of its components.
In particular, very frequently the nodes of the graph have
either categorical features (e.g. the tags of posts in social
networks) or numerical ones (frequency of visits to a web
page, the length of a document, etc.) that could strongly help
the embedding.

MUSAE [33] adopts a neural embedding on top of random
walks (thus similar to Deepwalk), where the sequences of
nodes (actually, node values, since they are attributed) are built
with random walks sampling one node every r along the path.
Different r values are used, pooling (AE) or simply joining
(MUSAE) the corresponding results of each node into a larger
embedding. Also inspired by Deepwalk, SINE [34] formulates
a probabilistic learning framework that separately models pairs
of node-context and node-attribute relationships, where each
node learns its representation by considering context nodes
and observable attributes of the node. BANE [35] adopts a
WL diffusion (thus a kernel method) over the nodes attributes,
and aims to obtain embeddings in a (binary) Hamming space.
TENE [36] considers the case where nodes have a text anno-
tation, and thus devise a matrix factorization schema to create
separate embeddings for network structure and text similarity,
later joined and optimized together. An analogous process is
followed by FSCNMF [37], which outputs two regularized
embeddings of the network corresponding to structure and
content, later combined as the final representation.

Graph Neural Networks: The most common neural network
architectures adopted in the graph domain are Graph Convolu-
tion Networks (GCN), which work in a very similar way to the
Weisfeiler-Lehman (WL) algorithm, yet with learnable weights
driving the aggregation steps. Being a supervised approach,
it can be applied only when nodes are assigned to label
values. An alternative approach is provided by self-supervised
learning (SSL) approaches for graphs [38], which extract
informative knowledge through ad hoc pretext tasks without
relying on existing labels. SSL is often applied as pre-training
of a model, and is then followed by a refinement step with
conventional GCNs over a labeled dataset. Similarly, encoder-
decoder methods (e.g. [39]) learn an encoding function (which
produces the embeddings) and a decoding one that minimizes
a loss w.r.t. properties of the graph, typically the adjacency
matrix representing the graph connections. ASNE [40] can be
seen as a representative example, which separately embeds
nodes and their features, then fuses them through NN layers
used to estimate edge probabilities between node pairs.

III. INDIVIDUAL MOBILITY NETWORKS

Definition. Given a user u, their associated history H,
can be processed to extract their individual mobility network
(IMN) G,. An IMN describes the individual mobility of
a user through a graph representation of her locations and



movements, grasping the relevant properties and removing
unnecessary details. Its nodes correspond to locations that
represent a group of stop points identified through a spatial
clustering-based aggregation [41]; and its edges correspond to
movements representing groups of similar trips between two
locations [42].

Definition 1 (Individual Mobility Network): Given a user
u, we indicate with G,, = (L., M) her individual mobility
network, where L, is the set of nodes and M, is the set
of edges. Given an aggregation operator agg, for each node
l € L, we define the following functions:

e w(l) = number of trips in H,, reaching location [;
e (1) = agg({durations of stops in [});

e p(l) = agg({arrival times of trips reaching [});

o (1) = agg({durations of trips reaching 1});

e 74(l) = agg({lengths of trips reaching [});

Operator agg can return either a single value (e.g. median)
or a n-ple (e.g. average and standard deviation, or quartiles).
The same functions are also defined on edges (movements)
m = (I;,l;) € M, in a similar way, this time considering
only trips that start from /; and reach ;.

Comparative study of IMN properties. IMNs are rather
specific networks that show properties slightly different from
other graph datasets typically used to validate graph-level
embedding methods. Table I compares the averages of six
statistics across six popular datasets plus IMNs. The values
include size of the graphs (|V]), diameter, density (fraction of
edges over the theoretical maximum), nodes degrees, entropy
of node degrees and, finally, a statistic we called maximal
ego coverage, computed as the fraction of nodes contained in
the largest ego-network of the graph. We remark that, while
IMNs are directed graphs, the other datasets considered are
not. Thus, to have fair comparisons, for these measures also
IMNs have been converted to their undirected version.

From this comparison, it emerges that while the average
size and diameter of IMNs are similar to other graph datasets,
their degree and density are rather low, thus showing a general
sparseness of the graphs. At the same time, the entropy is
relatively low and the maximal ego coverage is relatively high
— much higher than what we would expect given IMNs’ low
density. This suggests the presence of a few highly-connected
nodes in IMNs counterbalanced by many low-degree ones.
A clearer picture is given in Figure 1, showing boxplots for
the more interesting measures. We can see that in IMNs the
density is always very low, with a smaller inter-quartile range,
while the maximal ego coverage is significantly higher than the
others — excepted three (Deezer, Twitch and IMDB-M) that are
however characterized by an extremely small diameter (exactly
2 for the ego-networks Deezer and Twitch, between 1 and 2 for
IMDB-M), which makes high ego coverages easily very high.
The Reddit graphs are those closer to IMNs characteristics,
yet they are significantly smaller and denser.

Sample IMNs. The typical structure of IMNs can be seen
in the small sample of graphs shown in Figure 2, where in
addition to nodes and edges we also represent the frequency

avg avg avg avg | avg Deg. avg
Dataset |V| | Diam. | Density | Deg | Entropy | Ego Cov.
DEEZER | 23.49 | 2.00 0.23 | 5.55 1.64 0.94
TWITCH | 29.67 | 2.00 0.20 | 5.84 1.93 0.96
GITHUB | 113.79 | 5.86 0.08 4.12 1.51 0.56
Reddit 23.93 | 4.58 0.12 | 2.09 0.84 0.71
MUTAG | 17.93 | 8.22 0.14 | 2.21 1.02 0.18
IMDB-M | 13.00 | 1.47 0.77 |10.14 0.48 0.90
IMN 33.96 | 3.68 0.12 | 3.26 1.34 0.78

TABLE I

COMPARISON OF STATISTICS OF VARIOUS GRAPH DATASETS.
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Fig. 1. Distribution of nodes properties in various graph datasets. From top-
left: degree distribution, diameter, density and maximal ego coverage.

of stops at locations as nodes’ size, and the frequency of trips
as thickness of edges. Notice that IMNs are oriented graphs,
and edges flow in a clockwise direction. For instance, in the
top-left IMN the flow from ‘0’ to ‘1’ is slightly stronger than
the flow from ‘1’ to ‘0’. Finally, nodes are numbered in order
of stop frequency and self-loops (i.e. trips that start and end
in the same location) are also represented.

As the statistics in the previous section suggested, IMNs
are mostly characterized by a central, high-degree node (most
likely corresponding to the home location of users) connected
to a large number of other nodes. Often this location is
connected to a second one (most likely the workplace) with
high-frequency edges. The presence of these two strong poles
drastically reduces the diameter of the graphs, although IMNs
generally show a low density of connections.

The complexity of IMNs is rather variable, including small
graphs with one node that dominates (top-right of Figure 2,
notice the strong self-loop), larger graphs with a quasi-star
shape built around node ‘0’ (bottom-left graph), others with
more chaotic connections (top-left) and more distributed node
frequencies (bottom-right).

IV. FEATURES, ALGORITHMS AND VALIDATION TASK

In this section we introduce the three components of our ex-
perimentation: the dataset used for evaluation; the embedding



Fig. 2. Sample IMNs. The Individual Mobility Network of four sample users
along two months is shown. Size of nodes and thickness/darkness of edges
represent their frequency. Nodes are numbered in order of stop frequency.

methods tested; the downstream task and its result evaluation.

A. IMNs and features

Our evaluation of embedding strategies is based on a dataset
of 1000 IMNss, each corresponding to a private vehicle moving
in the Tuscany region, Italy, over a period of 4 weeks. In
particular, each vehicle belongs to one of five provinces, and
the corresponding IMN was obtained following the process
in [43]. The distribution of vehicles in the five provinces is
perfectly balanced, i.e. 200 vehicles per province.

Node features. We enrich IMNs with four classes of
features:

o Network Structure features: degree, clustering, node cen-
trality, entropy of next location.

« Location usage features: stop frequency, stay duration, all
the above stratified by time-of-day and day-of-week.

o Trajectory features: average length of incoming trips,
average incoming trip duration, radius of gyration of the
vehicle w.r.t. the node location.

o Geospatial features: Points of Interest (POIs). We remark
that these features might be strongly location-specific, and
thus directly help identifying places and their character-
istics. For this reason, we will experiment both with and
without this information source. Alternative information
belonging to the same wide category might be integrated,
such as distance from city center (or center of gravity, the
home location, etc.), land usage, etc.

Edge features. This kind of information is generally not
supported by graph embedding methods. One exception is
GL2vec, that builds a dual graph where edges are represented
as nodes, and thus their features are used in the embedding
generation. For the others, some algorithms allow using edge
weights or probabilities, therefore some types of edge features
might be translated into usable values. In our case, edges are

associated with trip frequencies, thus we could in principle
transform them into transition probabilities and use them
in random walks methods, such as AWE and FEATHER-
G, by modifying their usual transition choice mechanisms.
However, preliminary tests with simple feature translations
showed no improvement in the output quality, thus this option
was discarded for the time being, and left as a potential future
direction to explore.

B. Embedding algorithms

The embedding is performed adopting several different
algorithms, chosen from the state-of-art described in Section II
in order to cover the most important general approaches.
The selection was also driven by the availability of open-
source code or libraries, and in most cases we exploited
the Karate Club library [44]. We consider both graph-level
methods, which thus directly return the embedding we needed;
and node-level methods, where a final aggregation step is
performed to obtain a graph representation. We briefly list
them and provide details about the selected parameters and
the adaptations performed (where needed).

Graph-level methods include the following:

o LDP [12], a simple kernel method. The only parameter
is the number of bins, which we set to a default value
32;

o GeoScattering [13], another kernel method, requiring as
parameters the order and moments adopted in creating
the graph spectral descriptors, both set to the default 4;

o graph2vec [15] is a neural embeddings approach. Also,
in this case, default parameters were used, in particular,
the output embedding size was set to 128;

e GL2Vec [17] is another neural embeddings method,
similar to graph2vec, and the same parameters were set;

o« FEATHER-G [18] has a random walk component and
an aggregation of sampled values, which require to set,
respectively, an order for adjacenty matrix (set to default
5) and evaluation points (set to the default 25 values
uniformly sampled from 0O to 2.5).

o AWE [19] is also a random walks-based method, whose
main parameter is the length of generated walks. After
testing values between 3 and 8, we chose 5 as the best
one;

e GCN-self is a self-supervised learning approach [38],
based on a standard Graph Convolutional Network to
learn predicting a set of classes that is similar yet different
from the downstream task. The output of the last convo-
lution layer provides an embedding that is used as input
for the final classification task. In our case, we test two
training objectives: one consists in predicting the radius
of gyration (RoG) of the mobility of the user, discretized
into 4 equal frequency intervals'; the other predicts the
fraction of systematic trips of the user (Sys), measured

'We remark that a similar measure is provided at the level of single nodes,
which however represents a more local view that might miss the overall
picture, since the global RoG is computed w.r.t. the overall mobility center,
which usually does not correspond to any of the user’s locations.



as the ratio of trips between nodes ‘0’ and ‘1’ (usually
corresponding to home-work routine trips) over the total,
discretized into 4 classes.

Node-level methods adopted include:

o FEATHER-N is the node-level version of FEATHER-G,
described above, thus basically a random walks method,
the main difference being that it also allows using node
features, whereas FEATHER-G adopts a simple node
degree and clustering coefficient. Parameters are set as
above;

« MUSAE [33] is a neural embeddings method that also
uses node features. The algorithm employs random
walks, for which we set 5 walks per node of length 10,
using order 3. MUSAE makes use of categorical node
attributes, the original node features have been discretized
into 5 equal-frequency bins.

o TENE [36] also uses node attributes, yet adopts a ma-
trix factorization schema. Also in this case, categorical
node features are used (mostly adopted to represent text
labels), thus the same discretization as MUSAE was
applied. The technical parameters of the algorithm were
set to their default values.

« ASNE [40] is a Graph Neural Network approach that,
as MUSAE and TENE, exploits node labels. Also in this
case, we translated original features to discretized values
in the same way as above, and the parameters of the
algorithm were set to their default values.

The final graph embeddings for node-level methods have

been computed through a mean-pooling of nodes’ embeddings.

Among the categories of algorithms described in state-of-

art, we are omitting graph-level spectral features methods,
whose same ideas are basically implemented with different
technical tools in other approaches; and node-level proximity
preserving methods, since aligning the embeddings they pro-
duce across different graphs can be very problematic.

C. Evaluation approach

We evaluate the quality of embeddings in two ways. First,
in order to have objective performance measures, we define
a downstream graph classification task, using as target label
the reference province of each vehicle/graph. We remark that
no node and edge feature adopted has a direct geographical
reference, such as spatial coordinates, thus the task is indeed
challenging. We test this approach by building a simple logistic
classification model on top of the embeddings obtained with
each of the embedding methods listed above, measuring the
performance with the standard Area Under the ROC (AUC).

Second, we simulate a nearest-neighbors query task, where
a small number of IMNs are randomly sampled (the queries),
and for each of them we select the 10 most similar IMNs in our
dataset, based on the cosine similarity computed between the
embeddings of the IMNs to compare. Due to space reasons,
we perform this task only on a small selection of methods,
and visually compare the returned set of IMNs. Clearly, the
outcomes of this task are subjective, and different evaluators
might draw different conclusions.

D. Baseline and supervised approaches

In addition to the embedding methods listed above, we
consider as baseline the usage of raw feature statistics, where,
for each node feature, we compute the average value and
standard deviation w.r.t. all nodes of a graph.

Finally, while we are not directly interested in supervised
graph classification approaches, since the embedding they
produce might be too specific for the prediction task, we tested
two of them to provide reference performance values. Clearly,
our expectation is that they can provide better predictions. The
first method considered is a standard GCN (named GCN-PRY,
since it is directly built on the target “province”), with three
layers of convolution and a mean pooling before a final dense
neural network to predict the province (five output neurons,
hot-encoding the five provinces). The second method is a
simpler dense neural network that takes as input the features
of all nodes, stacked according to a node ordering based on
nodes’ stop frequency (see Section IV-A), padding values for
graphs with less nodes. The idea behind this choice is to
exploit such ordering (which looks rather intuitive, at least
for the top locations, usually associated to home and work
location) to bypass the standard pooling step in GCNs, which
merges all neighbors losing their identity. The network, named
DNN-sorted-nodes, is composed of three layers.

V. EMPIRICAL EVALUATION

In this section we summarize and comment the experimental
results obtained in a downstream classification task, studying
the impact of different sets of input features, and then on an
unsupervised nearest-neighbors retrieval task, where the results
are visually evaluated through a subjective validation.

A. Classification task

Table II reports a comparison of results obtained using
the different embedding methods discussed above. On top
of each embedding a classifier is built through a simple
logistic regression. The choice of such simple classifier was
intentional, in order to appreciate how well the embeddings
could highlight the characteristics that can discriminate among
the classes (in our case, the province where the user was
moving). The performance measure adopted is the area under
the ROC curve (AUC), and, as mentioned in Section IV-A,
we report it separately on two columns, corresponding to the
case where only non-geospatial features are available (“w/out
POI”) and that where all features are used (“with POI”). For
each column, we highlight the top three results (resp. bold,
italic underlined, and just underlined). Embedding methods
are grouped based on whether they exploit features or not —
in the latter case, clearly, the distinction based on POIs does
not apply. Among them, we report results for self-supervised
approaches that train the embedding for different tasks, namely
predicting the radius of gyration of the user’s mobility (GCN-
RoG) and predicting the ratio of their trips that are systematic
(GCN-Sys); and for the two supervised methods.

First of all, results on the top group of the table clearly
show that not using features yields very poor results, basically



TABLE II
AUC PERFORMANCES OF EMBEDDING METHODS ON THE PROVINCE
CLASSIFICATION PROBLEM, BASED ON A LOGISTIC CLASSIFIER.

Method AUC
LDP 0.4997
8 GeoScattering 0.5000
g Graph2Vec 0.4992
& GL2Vec 0.4837
g FEATHER-G 0.5111
AWE 0.4693
w/out POI  with POI
raw features 0.5603 0.7984
FEATHER-N 0.5860 0.7759
8 MUSAE 0.5261 0.4940
3 TENE 0.4928 0.5316
§ ASNE 0.4904 0.5203
GCN-RoG 0.5558 0.6781
GCN-Sys 0.5297 0.5787
% GCN-PRV 0.5241 0.9174
@ DNN-sorted-nodes 0.6352 0.9388

highlighting the fact that the plain structure information that
such methods can derive does not capture the discriminating
characteristics of the different areas. Their performance is
significantly worse than using only aggregate raw features (see
the first line of the “features” block).

Embedding methods that use all features excepted POIs
are generally better, yet only Feather-N and self-supervised
methods improve over using plain features, suggesting that
the aggregation and diffusion processes implemented some-
times can destroy the information content in the original
data. Apparently, the specific structure of IMNs makes most
embedding methods add noise and hide the useful component
of the initial node features. The self-supervised approaches
perform relatively well, yet still below plain raw features,
and significantly worse than Feather-N. Apparently, having a
global objective to train for helps the emergence of generally
useful characteristics, yet the task difference makes the final
balance negative, as the information lost w.r.t. raw features is
larger than that gained through the embeddings.

Examining the results using also POI information, we can
see that the three top methods remain the same, yet yielding
much higher AUC values. At the same time, not even Feather-
N can improve over raw features. The other feature-based
methods, instead, either do not improve significantly by adding
POI information or even worsen slightly. In general, these
results suggest that POI data provide a strong predictive power
as they are, and any aggregation, propagation, or convolution
simply loses useful information along the process.

B. Impact of features

In this section we focus on the best performer among the
unsupervised approaches (Feather-N) and investigate the role
that different input features play. Figure 3 shows the AUC
obtained selecting different subsets of the available features:
network structure measures (NET), trajectory features (TRJ),
location usage (USE). Geospatial features (POIs) are excluded,
since their impact is already known to be large. The effects
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0.60

0.58 ii
0.56 - II
0.54 II

0.52 4

AuC

0.50 -

NET
TR

USE

NET-TR)
NET-USE
USE-TR)
NET-USE-TR|

Fig. 3. Features impact: network (NET), mobility (TRJ), location use (USE).

of other features when POIs are included (omitted for space
limits) are very similar to those presented here.

Trajectory features taken alone are the best setting, while
network structure and location usage have a much weaker
impact. While the combination of NET and USE yields much
better results than the two taken alone — thus, apparently,
they complement well each other — combinations of TRJ with
other features yield slightly worse results, suggesting that the
added useful information is counterbalanced by the noise they
introduce in the simple classification model adopted.

C. Supervised approaches

Graph convolutional network (GCN-PRYV). Following the
standard GCN architecture, nodes are initially represented
through their features, and then updated through three con-
volutional layers, i.e. for each node the mean of its neighbors’
features is computed and passed through a linear transforma-
tion, then through a non-linear function. The results become
the new node representation, and the process is repeated (in
our case) three times. The final node representations are then
aggregated (in our case, through mean pooling) and fed to a
final dense layer with one output node for each class.

The results obtained for GCN-PRV are rather heteroge-
neous, since with no POI data the performances are slightly
worse than the self-supervised approach, while with POI
data the AUC increases beyond 90%, largely improving over
embedding and raw feature approaches. This suggests that, due
to IMNs structure, the GCN mechanism is good at identifying
and emphasizing very important basic features (as in the case
of POIs) but not to infer useful information from the graph
structure and other weaker features.

Fully connected layers (DNN-sorted-nodes). This model
is a graph-level classification approach utilizing fully con-
nected layers (dense layers) and a pooling operation. The
preprocessing stage involves padding the node features of each
graph to ensure consistent input dimensions. The model’s ar-
chitecture comprises three hidden dense layers, each followed
by a dropout layer to prevent overfitting. The final dense layer



maps the graph-level features to the desired output dimension,
while a softmax activation function is used to derive the
predicted class probabilities. The model training optimizes the
Sparse Categorical Crossentropy loss function, adopting the
Adam optimizer.

The results in Table II show that this less refined approach
is actually more robust than the GCN one, improving over
all the other methods, also when no POI data is involved.
This might suggest that nodes’ identities are important to learn
how to treat their features, maybe highlighting more central
nodes (e.g. home and work locations) and de-emphasizing the
others. In order to inspect this hypothesis, we evaluated what
happens when we shuffle the order of nodes, independently
on each graph, thus losing their identity. However, the results,
omitted for space limits, show that the variation is surprisingly
small (always less than 0.0105) and practically insignificant,
both with and without POI data. This suggests that the most
important factor in this prediction task is how different features
are combined, and not the node they come from. That is similar
to what raw features achieve, in addition to the non-linear
combination of features provided by the dense layers that helps
to better identify the most discriminant information.

D. kNN Query Evaluation

In this section, we use the embeddings obtained above to
perform a kNN queries over a small set of IMNs and then
visually review the results. Due to space limits, we will present
here the results obtained on two query IMNs, showing the
top 10 most similar IMNs returned. For each query IMN, we
perform the task both using the embeddings obtained with
Feather-N (the best performer in the classification task) and
with the self-supervised GCN-RoG, comparing the results. The
similarity between two embeddings e; and es is computed
using the cosine similarity s(eq,es) = (e1,e2)/|le1]] - ||ez]-

An overall comparison of results showed that the two
embeddings generally return very different sets of outputs, on
average having an overlap smaller than 10%. In the following,
we consider a query IMN where the overlap is relatively high
(two IMNs over ten) and then one where the overlap is nil.

Figure 4 shows the first query IMN (on top) and the 10
top results returned, ranked by similarity. For the sake of
readability, the graphs report the frequency of edges (numeri-
cally and as thickness) while nodes only show the frequency
rank (‘0’ is the most frequent one, and so on). The overlaps
between the two answer sets are highlighted. A comparison of
results shows that Feather-N returns IMNs of similar size and
complexity of the query. Also, the query contains a central
open triangle, namely the most frequent node is strongly
connected to the second and third most frequent ones, which
are not (significantly) mutually connected. This same pattern
seems to emerge in most of the Feather-N answers. On the
contrary, GCN-RoG output seems to have fewer open triangles
and also tends to include more crowded IMNs and star-like
shapes than the query. From this perspective, Feather-N seems
to return intuitively better answers.

Figure 5 presents the results with the second query, which
show similar characteristics to the previous case: GCN-RoG
tends to include much larger and densely connected answers,
where the central node is more predominant than in the query,
whereas Feather-N’s appear more balanced, except very few
cases presenting a star-like shape.

VI. SUMMARY AND CONCLUSIONS

Our exploration started from realizing how much our data,
namely IMNs, are different from typical benchmarks used
in the graph embedding literature: a semantic difference,
since most benchmarks deal with human interactions data or
physically connected elements of molecules, whereas IMNs
are about movements, thus making recurring concepts in em-
bedding literature like information propagation and bindings
not perfectly fit; and a statistical difference, since the empirical
exploration of IMNs’ properties resulted to be different from
many of the others.

The review of existing graph embedding methods high-
lighted the existence of a limited set of fundamental ap-
proaches, plus several variants and improvements. Many of
them are general purpose, yet their validity is typically as-
sessed on prediction tasks (which are not our primary objec-
tive) over a limited set of application domains. That makes it
difficult to identify the promising methods to choose, for which
reason we selected approaches from the most representative
algorithms in the literature that could be applied to graph-
level embedding. This lack of theoretical foundations in the
selection of an algorithm is an important gap that can only
partially be filled by purely empirical tests.

Empirical evaluations highlighted how the (rich) node fea-
tures of IMNss are fundamental to achieving acceptable results,
yet also suggesting that most methods are not able to handle
them properly. Among the methods tested, we could identify
only one — a simple adaptation of Feather-N to work at the
graph level — that seems to perform better than no-embedding
input features, and yet with no large margins. We performed
a simple visual check of the embeddings produced through
kNN queries by looking at the exterior graph properties (nodes,
connections, and weights), which showed results close to what
we expected intuitively.

Overall, the claim of our paper is that current graph embed-
ding literature provides several appealing approaches and, yet,
very poor support to the development of applications, leaving
the analyst alone in orienting within the vast literature, guided
almost exclusively by empirical explorations. Our exploration
aims to provide a first example of how to develop an analytical
process in this context.

The natural evolution of this work goes in two directions.
The first one is specific for IMNs and includes the devel-
opment of embedding methods ad hoc for them, aimed to
better exploit the abundant features at node and edge level
and to cope with their particular graph structure. The second
one is more theoretical and aims to classify existing methods
based on what kind of information is actually built from
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the input graph structure and features, abstracting away from
formalization and computational aspects, which often cover
very similar concepts behind different covers.
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