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Abstract

We review the recent use of functions of matrices in the analysis of graphs and net-
works, with special focus on centrality and communicability measures and diffusion
processes. Both undirected and directed networks are considered, as well as dynamic
(temporal) networks. Computational issues are also addressed.
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1 INTRODUCTION

Network science is a mature interdisciplinary field that has proved essential to the analysis of a multitude of phenomena in vir-
tually every area of knowledge, from the natural and life sciences to the social sciences, from engineering to the humanities
[15, 30, 32, 52, 111, 112]. It provides conceptual, qualitative tools for the theoretical understanding of general, complex intercon-
nected systems, as well as quantitative methods of analysis for real-world networks arising in sociology, biology, engineering,
information sciences, economics, finance, and many other fields.
Since the early days of social network analysis, the field has been making use of mathematical tools from graph theory and

linear algebra, as well as probability and statistics [120, 95, 128]. In particular, powerful linear algebraic methods have been
developed to define computable metrics for the structural analysis of both static and dynamic networks, such as centrality and
communicability measures, and to tackle fundamental problems in community detection, clustering, and network robustness.
Many of these network problems are formulated in matrix terms, most often involving either the adjacency matrix of the network
or the graph Laplacian, and they lead to the solution of classical problems of numerical linear algebra: sparse linear systems,
the computation of eigenvalues and eigenvectors, and the evaluation of functions of matrices. These problems can be of very
large size and require sophisticated techniques for their efficient solution.
In this review paper we focus on applications to network problems that can be cast in terms of matrix functions. We are

especially interested in the use of matrix functions to define node centrality and communicability measures. Functions of the
network adjacency matrix are closely related to graph walks, which represent a basic tool for exploring network structure.
Diffusive processes on networks (closely related to continuous and discrete random walks) also provide important structural
information, with the graph Laplacian now being the central object. Due to space limitations we focus mainly use of matrix
functions as a modeling tool: while we include a discussion of the numerical aspects, we refer mostly to the literature for
information about algorithms, their implementation, and available software. For an earlier survey of matrix functions in network
analysis we refer the reader to the 2010 paper by Estrada and Higham [66].
The paper is organized as follows. Section 2 is devoted to preliminaries and background. Node centrality measures are covered

in section 3, while section 4 discusses communicability between nodes for static networks. The temporal case is discussed in
section 5. In section 6 we describe other matrix functions that have found application in network analysis, including hyperbolic
functions (used to study graph bipartivity) as well as functions arising in the modeling of dynamic processes on networks via
differential equations. Numerical aspects are briefly discussed in section 7. Section 8 provides a few examples of centrality
computations, and section 9 contains some concluding remarks and future directions.
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2 PRELIMINARIES AND BACKGROUND

In this section we review a few basic notions about graph theory and matrix analysis that will be used later. Good general
references are Diestel [47], Horn and Johnson [93], and Higham [90].

2.1 Graphs and matrices
A directed graph or digraph, G is defined by a set of n nodes (also called vertices) V and a set of edges E = {(i, j)|i, j ∈ V }.
If (i, j) ∈ E implies (j, i) ∈ E, then G is undirected and the edges are formed by unordered pairs of vertices.
In a directed graph, the out-degree of a vertex i, denoted by douti , is the number of edges with i as the starting node, i.e., the

number of edges in E of the form (i, k). The in-degree of node i is the number d ini of edges of the form (k, i). If G is undirected,
then douti = d ini = di, the degree of node i. An undirected graph G is k-regular if all the nodes have the same degree k.
A walk of length k in G is a list of nodes i1, i2,… , ik, ik+1 such that for all 1 ≤ j ≤ k there is a (directed) edge from ij to ij+1.

A walk is closed when i1 = ik+1. A walk with no repeated nodes is called a path, and a cycle is a closed walk with no repeated
nodes, except for the first and last one.
In a weighted graph, a weight wij ∈ ℝ+ is assigned to each edge (i, j). If all the weights are taken equal to 1, the graph

is unweighted. In this paper we will generally assume to work with unweighted graphs, although many results extend to the
weighted case.
A loop in a graph is an edge from a node i to itself. A graph is simple if it has no loops, no multiple edges, and its edges are

unweighted. An undirected graph is connected if there exists a path between every pair of nodes. A directed graph is strongly
connected if there exists a directed path between every pair of nodes.
A graph is called bipartite if its set of nodes V is the disjoint union of two non-empty sets V1 and V2 such that each edge

connects a node from V1 and a node from V2. Given a directed graph, we can define an associated undirected bipartite graph as
follows. Take two copies V and V ′ of the set of nodes of the original graph, and define edges according to the following rule: a
node i ∈ V and a node j′ ∈ V ′ are connected if and only if there is an edge from node i to node j in the directed graph.
The adjacency matrix A = (aij) associated with an unweighted graph G is an n × n matrix such that

aij =
{

1 if (i, j) is an edge in G,
0 otherwise.

Recall that a square matrix A is reducible if there exists a permutation matrix P such that

PAP T =
[

B C
0 D

]

with B and D square matrices. If no such P exists, A is said to be irreducible. It is well known that the adjacency matrix of a
graph G is irreducible if and only if G is strongly connected.
Note that the in- and out-degrees of a node i can be computed as the i-th entries of the vectors AT 1 and A1, respectively,

where 1 denotes the vector of all ones.
For an unweighted graph, the powers of the associated adjacency matrix A have an important property: each entry [Ak]ij

counts the number of walks of length k from node i to node j. In particular, the diagonal entries [Ak]ii count the number of
closed walks of length k passing through node i.
If G is simple and undirected, then its adjacency matrix A is symmetric and binary, with zeros on the main diagonal. In

this case, the eigenvalues of A are real; we will label them in nondecreasing order as �1 ≥ �2 ≥ … ≥ �n. The matrix A
can be diagonalized as A = QΛQT , where Λ = diag(�1, �2,… , �n), the matrix Q = [q1,q2,… ,qn] is orthogonal and qi is
an eigenvector associated with �i. If G is connected, the Perron-Frobenius theorem [93] implies that �1 > �2. Moreover, the
dominant eigenvector q1 can be chosen to have positive entries: we write q1 > 0.
If G is a strongly connected digraph, its adjacency matrix A is irreducible. Let �(A) be the spectral radius of A. Then, again

by the Perron-Frobenius theorem, �1 = �(A) is a simple eigenvalue of A and both the right and left eigenvectors associated
with �1 can be chosen to be positive. If A is diagonalizable, then there exists an invertible matrix X such that A = XΛX−1,
where Λ = diag(�1, �2,… , �n) with �1 ≥ |�i| for 2 ≤ i ≤ n. Let us write X = [x1, x2,… , xn] and (X−1)T = [y1, y2,… , yn];
the left eigenvector associated with �i is yi and the right eigenvector associated with �i is xi. If, on the other hand, A is not
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diagonalizable, it can still be decomposed according to the Jordan canonical form:

A = XJX−1 = X
[

�1 0T
0 Ĵ

]

X−1.

Here J is the Jordan matrix ofA, where for ease of notation we place the 1×1 block corresponding to the eigenvalue �1 first. The
first column x1 of X is the dominant right eigenvector of A and the first column y1 of (X−1)T is the dominant left eigenvector
of A (or, equivalently, the dominant right eigenvector of AT ).
Besides the diagonal form and the Jordan form of A, we will also use the singular value decomposition [84]. Any matrix

A ∈ ℝm×n can be decomposed as A = UΣV T , where U ∈ ℝm×m and V ∈ ℝn×n are orthogonal matrices, and Σ ∈ ℝm×n is zero
except for its diagonal entries �1,… , �min(m,n). Here �1,… , �min(m,n) are nonnegative real numbers and are called the singular
values of A. The columns u1,u2,… ,un of U are the left singular vectors of A, whereas the columns v1, v2,… , vn of V are
the right singular vectors of A. The singular values are uniquely determined by A, but the singular vectors, in general, are not.
When A has rank r < min(mn, n) it is often useful to consider the compact singular value decomposition of A. This is given
by A = UrΣrV T

r , where Ur = [u1,u2,… ,ur] ∈ ℝn×r, Vr = [v1, v2,… , vr] ∈ ℝn×r, and Σr = diag(�1, �2,… , �r) ∈ ℝr×r is the
leading r × r block of Σ.
If the undirected graph G is bipartite, with V = V1 ∪ V2, there exists an ordering of the nodes such that the adjacency matrix

of G takes the form
A =

[

0 B
BT 0

]

,

where B is |V1| × |V2|. It is well known (see, e.g., [84]) that the nonzero eigenvalues of A are of the form �i = ±�i, where the
�i are the singular values of B.
If G is a digraph with n nodes, the associated undirected bipartite graph  = ( , ) has 2n nodes and its adjacency matrix is

of the form
 =

[

0 A
AT 0

]

,

where A is the n × n adjacency matrix of G.
The Laplacian matrix associated with an undirected graph G is defined as L = D−A, where A is the adjacency matrix of G

andD = diag(d1,… , dn) is the degree matrix of G. The graph Laplacian can be written as L = BBT , where B is the node-edge
incidence matrix ofG; ifG has m edges, B is the n×mmatrix in which each column contains exactly two nonzero entries, equal
to 1 and −1, in position i and j where the corresponding edge is (i, j).
For directed graphs, one may replaceD by either the matrix of in-degreesDin = diag(d in1 ,… , d inn ) or the matrix of out-degrees

Dout = diag(dout1 ,… , doutn ), resulting in two distinct notions of Laplacian matrix, Lin and Lout, the second one being usually
preferred.
For an undirected graph, the Laplacian L is a singular, symmetric, positive semidefiniteM-matrix [28]. Note that L1 = 0.

The algebraic multiplicity of the zero eigenvalue is equal to the number of connected components of the graph. In particular,
the graph is connected if and only if the zero eigenvalue of the Laplacian is simple (i.e., if and only if L has rank n − 1).
For a directed graph, both Lin and Lout are singularM-matrices, with 1TLin = 0T and Lout1 = 0. If G is strongly connected,

thenLin andLout have rank n−1; the converse, in general, is not true. A complete characterization of strongly connected digraph
in terms of the associated Laplacian Lout requires the notion of uniform rank [110]. We say that a matrix A has uniform rank r
if it has rank r and every r × r minor of A is nonzero. The latter condition is equivalent to requiring that every subset of r rows
and every subset of r columns of A is linearly independent. Then, as shown in [110], a digraph is strongly connected if and only
if the corresponding Laplacian Lout has uniform rank n − 1.

2.2 Functions of matrices
Next, we review the notion of function of a matrix. Several, fundamentally equivalent definitions are possible [90]. We will give
a definition based on the diagonal or Jordan form. Let A be an n × n matrix (real or complex) and let us suppose for now that
A is diagonalizable. Therefore, we can write A = XΛX−1, where Λ = diag(�1, �2,… , �n) is a diagonal matrix containing the
eigenvalues ofA, andX is invertible. Let f (z) be a (real or complex) function that is well-defined on the eigenvalues ofA. Then
f (A) is defined as

f (A) = Xf (Λ)X−1,

where f (Λ) = diag(f (�1), f (�2),… , f (�n)).
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If A is not diagonalizable, let A = XJX−1 be its Jordan decomposition. The Jordan matrix J has a block diagonal structure
J = diag(J1, J2,… , Jm), with one or more blocks Jk associated with each distinct eigenvalue of A. Let Jk be one such block of
size � × �, with eigenvalue �; then f (Jk) is defined as

f (Jk) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (�) f ′(�) f ′′(�)
2!

… f (�)(�−1)

(�−1)!

f (�) f ′(�) … f (�)(�−2)

(�−2)!
⋱ ⋱ ⋮

f (�) f ′(�)
f (�)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now set f (J ) = diag(f (J1), f (J2),… , f (Jm)) and

f (A) = Xf (J )X−1.

Note that here f (z) must be assumed to be differentiable a sufficient number of times at each eigenvalue of A. More precisely,
denote with mi the index of �i, i.e., size of the largest Jordan block in which the eigenvalue �i appears. If, for each distinct
eigenvalue �i of A, the function f and its derivatives of order up to mi − 1 are defined for � = �i, we say that f is defined on
the spectrum of A, and f (A) is well-defined.
If f (z) has a Taylor series expansion

f (z) =
∞
∑

k=0
ak(z − z0)k

with radius of convergenceR, this property can be used to define f (A). Suppose that each eigenvalue �i of A is either contained
in the interior of the convergence disk |z− z0| < R, or is on the boundary of the disk and the series for f (mi−1)(�) is convergent
at � = �i, with mi the index of �i. Then f (A) is well-defined and it is given by

f (A) =
∞
∑

k=0
ak(A − z0I)k.

Note that the converse is also true, i.e., if f (A) can be expressed through the Taylor series of f (z), then the eigenvalues of A
satisfy the conditions stated above.
The notion of matrix function can be extended to rectangular matrices via the singular value decomposition [89]. Take A ∈

ℝm×n and let A = UrΣrV T
r be its compact singular value decomposition. If f is a scalar function such that f (�i) is defined for

i = 1,… , r, then the generalized matrix function f ⋄ induced by f is defined as

f ⋄(A) = Urf (Σr)V T
r ,

where f (Σr) = diag(f (�1),… , f (�r)). If A is square, f ⋄(A) does not necessarily coincide with the standard matrix function
f (A); however, if A is symmetric positive definite (or semidefinite and f (0) = 0), then f ⋄(A) reduces to f (A).

3 MATRIX FUNCTIONS FOR CENTRALITY MEASURES

One of the most basic questions in the structural analysis of networks is that of the centrality of nodes. A node centrality
measure quantifies the relative importance, or “well-connectedness”, of each node in G, and can be used to establish a ranking
of the nodes. In the directed case, one needs to distinguish between the role of each node as “broadcaster” or as “receiver” of
information in the network. Nodes with high broadcast centrality are known as hubs, whereas nodes with high receive centrality
are called authorities.
Many definitions of node centrality have been proposed in the literature. The simplest and easiest to compute is degree

centrality, which is just the degree di of node i. The underlying idea is that a node is well-connected if it has many neighbors, but
this does not account for the importance of such neighbors. If the graph is directed, simple measures of broadcast and receive
centrality of node i are provided by the out-degree douti and by the in-degree d ini , respectively.
Two centrality measures popular in social network analysis are betweenness centrality and closeness centrality. Both focus

on communication in a graph V through shortest paths. Betweenness centrality [77] is defined for any node i as

CB(i) =
∑

j≠i

∑

k≠i
�jk(i),
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where �jk(i) is the fraction of all shortest paths in the graph between nodes j and k which contain node i:

�jk(i) =
# of shortest paths between j, k containing i

# of shortest paths between j, k
.

Hence, a node that has high betweenness centrality is a node that is likely to be involved in the exchange of information whenever
two nodes communicate with each other.
Closeness centrality [78] for node i is defined as

CC (i) =
1

∑

j∈V ⧵{i} d(i, j)
,

where d(i, j) is the geodesic distance between nodes i and j, that is, the length of a shortest path that connects the two nodes.
Thus, a node has high closeness centrality if it is at a relatively short distance from most other nodes in the network. Recall that
the diameter of an undirected connected graph G = (V ,E) is the maximum distance between any two nodes i, j ∈ V . Many
real-world complex networks have small diameter; hence, in such a network many nodes are likely to have a high closeness
centrality score, making it difficult to rank them.
We now turn to node centrality measures that can be expressed in linear algebra terms. Recall from Section 2 that the adjacency

matrix A of a simple, strongly connected graph G satisfies the hypotheses of the Perron-Frobenius theorem and therefore has a
positive dominant eigenvector x = [x1,… , xn]T . Eigenvector centrality [31] takes entry xi as a measure of centrality of node i.
Observe that if A is primitive (see [28, page 28]) the dominant eigenvector x is, up to normalization, the limit for k→∞ of the
fixed-point iteration

x(k+1) = Ax(k), k = 0, 1,… (1)

If A is imprimitive, it suffices to replace it with Â = (1 − �)I + �A with � ∈ (0, 1) and apply the fixed-point iteration to Â.
Assume G is an unweighted graph. It is easy to see [42] that xi (assumed to be positive and normalized with respect to the
l1-norm) satisfies

xi = lim
k→∞

# of walks of length k inG through node i
# of walks of length k inG

.

As we will see, walks play an important role also in several other centrality measures, particularly those that can be expressed
in terms of matrix functions.
Iteration (1) corresponds to the intuitive notion that “a node is important if it is linked to many important nodes”. Its rate of

convergence depends on the spectral gap  = �1 − �2 of the adjacency matrix A: the larger  , the faster the convergence. Note
that Google’s PageRank algorithm [34] is a variant of eigenvector centrality applied to the (directed) graph of the World Wide
Web, suitably modified so as to guarantee the existence and uniqueness of a positive dominant eigenvector [101].
For directed networks, the dominant left and right eigenvectors of A provide authority and hub scores, respectively. On this

topic we mention Kleinberg’s HITS (Hyperlink-Induced Topic Search) algorithm [97], originally developed for ranking Web
pages. In this iterative ranking scheme, each node i is given an authority score xi and a hub score yi, both initially set to 1. In
matrix terms, each iteration computes

x(k) = AT y(k−1) and y(k) = Ax(k),

where x(k) and y(k) are the vectors of authority and hub scores, respectively, at the k-th step. If we rewrite this process as

x(k) = ATAx(k−1) and y(k) = AAT y(k−1),

we see that HITS is essentially a power method that computes the dominant eigenvector of ATA and of AAT , yielding authority
and hub rankings. Note that these matrices are nonnegative; however, even if the underlying digraph G is strongly connected,
they may be reducible. Hence, the Perron–Frobenius theorem may not be applicable, and the limits of the sequences {x}(k) and
{y(k)} may depend on the initial vectors x(0) and y(0). Conditions ensuring the well-posedness of the HITS computation can be
found in [70]. As shown in [22], HITS can be reformulated in terms of eigenvector centrality for the augmented matrix

 =
[

0 A
AT 0

]

, (2)

the adjacency matrix of the bipartite graph associated with the original digraph.
Subgraph centrality, introduced by Estrada and Rodríguez-Velásquez [67], measures the centrality of a node by taking into

account the number of subgraphs the node “participates” in. More precisely, letG be an undirected graph with adjacency matrix
A and define SC(i), the subgraph centrality of node i, as the total number of walks in G that begin and end at node i, where the
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number of walks of length k is scaled by a factor 1
k!
. Now recall that, for any fixed index i, the entry [Ak]ii counts the number of

walks of length k that begin and end at node i. Therefore SC(i) can be written in terms of a matrix function as

SC(i) =
[

I + A + A2

2
+ A3

3!
+… + Ak

k!
+…

]

ii
= [eA]ii. (3)

Note that off-diagonal entries [eA]i,j provide instead a measure of communicability between nodes i and j: the presence of many
walks joining node i and node j suggests that information flows easily between the two nodes. We will return to this notion in
section 4.
When modeling networks that are subject to some form of external influence (such as a condition of tension, or stress, on a

social network, or heightened risk on a financial network) it can be useful to introduce a tuning parameter � > 0, sometimes
called the inverse temperature by analogy with physical systems [61]. In this case the penalizing weight for walks of length k is
set to �k

k!
and (3) becomes

SC(i, �) =
[

I + �A +
�2

2
A2 +

�3

3!
A3 +…+

�k

k!
Ak +…

]

ii
= [e�A]ii. (4)

The sum of subgraph centralities over all the nodes of the graph is called the Estrada index of G:

EE(G, �) =
n
∑

i=1
SC(i, �) =

n
∑

i=1
[e�A]ii = Tr(e�A) =

n
∑

i=1
e��i .

The normalization of subgraph centralities by the Estrada index defines a discrete probability distribution on the nodes of the
graph:

p(i) = SC(i, �)∕EE(G, �), i = 1,… , n.

Here p(i) can be interpreted as the probability of selecting any weighted closed walk that starts and ends at node i among all the
weighted closed walks that start and end at the same node. The walk entropy of a graph is defined as

SV (G, �) = −
n
∑

i=1
p(i) log2 p(i).

Besides the entropy, other statistical mechanical quantities that are useful in network analysis are the total energy

H(G, �) = −
n
∑

i=1
�ipi

and the Helmholtz free energy
F (G, �) = −�−1 lnEE(G, �),

see [61]. In particular, the Helmholtz free energy is closely related to the “natural connectivity” of a graph, see [65].
Unlike degree, which is a local centrality index, subgraph centrality SC(i, �) takes into account the influence of all nodes

on node i. The choice of factorial weights tends to emphasize the role of short walks. If a different balance of short- and long-
range influence is needed, we may select a different set of real, nonnegative weights {wk}k=0,1,…. When these weights are the
coefficients in the power series expansion of a suitable function f (z), the associated definition of subgraph centrality can be
written analogously to (3):

SCf (i) =
[

w0I +w1A +w2A
2 +…+wkA

k +…
]

ii = [f (A)]ii, (5)

provided that the series is convergent. For a discussion of admissible functions, i.e., types of analytic functions (possibly depen-
dent on a parameter) that can be used to define node centrality measures, see [25]. A notable property of the class of admissible
functions considered in [25] is that they form a positive cone, i.e., positive linear combinations of admissible functions are also
admissible.
Besides the matrix exponential, one popular choice for f (A) is the resolvent function:

(I − �A)−1 = I + �A + �2A2 +⋯ =
∞
∑

k=0
�kAk, 0 < � < 1∕�1,

from which we obtain the resolvent-based subgraph centrality

SCres(i, �) = [(I − �A)−1]ii.
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In fact, row sums of (I − �A)−1 were originally proposed by Katz [95] as a notion of centrality. Katz centrality is defined as

K(i, �) = [(I − �A)−11]i = eiT (I − �A)−11,

where ei denotes the i-th vector of the canonical basis ofℝn. The bounds on � ensure that I−�A is invertible and that (I−�A)−1
is nonnegative. As a consequence, both the diagonal entries and the row/column sums of (I − �A)−1 are positive and can be
used for ranking purposes. In the case of directed graphs, the row sums of (I − �A)−1 yield the hub scores while the column
sums yield the authority scores of each node in G. Hence, hubs and authorities can be ranked by solving the two linear systems
(I−�A)x = 1 and (I−�AT )x = 1, respectively. Note that in place of the vector of all ones it is possible to use any (nonnegative)
reference vector as the right-hand side.
A similar idea can be applied to e�A by defining a measure of centrality known as total communicability [24]:

TC(i, �) = [e�A1]i = eiT e�A1.

A detailed discussion of this centrality measure is postponed to section 4.
It has long been observed that the rankings obtained with different centrality measures, while not identical, are often positively

correlated. In the case of centralitymeasures that depend on a tuning parameter, somethingmore precise can be said. In particular,
degree and eigenvector centrality can be seen as limit cases of Katz and subgraph centrality as the parameters tend to specific
values.

Theorem 1. [25] Let A be the adjacency matrix for a simple, connected, undirected graph G. Then:

(i) as � → 0+, the rankings produced by SC(i, �) and TC(i, �) converge to the degree ranking of node i,

(ii) as � → 0+, the rankings produced by SCres(i, �) and K(i, �) converge to the degree ranking of node i,

(iii) as � →∞, the rankings produced by SC(i, �) and TC(i, �) converge to the eigenvector centrality ranking of node i,

(iv) as � → 1
�1

−
, the rankings produced by SCres(i, �) and K(i, �) converge to the eigenvector centrality ranking of node i,

(v) the results for SC(i, �) and K(i, �) remain valid if the vector 1 is replaced by an arbitrary preference vector v > 0.

For generalizations of this result to more general matrix functions and to directed and weighted graphs, see [25] and the
references therein. We also mention that in some cases it is possible to prescribe the value of the parameter � in Katz centrality so
as to obtain rankings that generally match those obtained by subgraph centrality (with � = 1), see [6]. This can be advantageous
for example in the case of large directed graphs, for which computation of the matrix exponential can be challenging.
For directed graphs, notions of authority and hub centrality and communicability based on the exponential matrix function

have been proposed in [22]. The authors consider the adjacency matrix  of the associated bipartite graph, defined in (2), and
give an interpretation of the entries of e in terms of directed centrality and communicability scores: see [22] and section 4.5.
In recent years, some authors have suggested that a certain type of walks on graphs, called backtracking walks, should not

be taken into account in the definition and computation of walk-based centrality measures. A walk is said to be backtracking
if it contains at least a sequence of nodes of the form (i, j, i), and non-backtracking otherwise. The exclusion of backtracking
walks, besides reflecting the intuitive notion that back-and-forth patterns appear less relevant in the transmission of information
[3], also helps reducing localization effects. See [11, 109] and references therein for the definition and analysis of new centrality
measures based on non-backtracking walks on directed and dynamic graphs. In [12], the authors derive an explicit formula for
the exponential generating function of non-backtracking walks for both undirected and directed graphs. Using these results,
they show how the new measures may be interpreted in terms of the standard exponential centrality computation on a certain
multilayer network.
In this section we have focused on centrality measures for the nodes, but measures of edge centrality are also of great interest;

for example, an edge betweenness centrality measure has been proposed by Girvan and Newman [80]. Edge centrality measures
can also be induced by node centrality measures. As an example, in [8] the centrality C(i, j) of the edge connecting two nodes
i and j in an undirected network with centrality C(i) and C(j) was defined as the product of the two node centralities: C(i, j) =
C(i)C(j). As usual, the choice of an appropriate edge centrality measure is likely to be problem-dependent.
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4 MATRIX FUNCTIONS FOR COMMUNICABILITY MEASURES

Another fundamental problem in the structural analysis of networks is that of quantifying how well different parts of a network,
such as individual nodes or groups of nodes, are connected to one another. This problem is of great importance, for instance, in
the design and analysis of robust infrastructural networks, in the study of urban traffic, in anatomy and medicine (especially brain
networks), in the study of vulnerability of financial networks, in bibliometry, in community detection, and in many other fields.

4.1 Network communicability
The notion of communicability between two nodes, first introduced by Estrada and Hatano in [62], provides an effective measure
of the connectivity between pairs of nodes. The underlying intuition is that two nodes i and j are well-connected if there are
many walks in G connecting i and j, again with shorter walks being given more weight than longer ones. Thus, Estrada and
Hatano define the communicability between the two nodes as

[e�A]ij =
∞
∑

k=0

�k

k!
[Ak]ij , (6)

where � > 0, the inverse temperature, can be used to tune the relative importance of short and long walks. As in the case of
walk-based centrality, other functions besides the matrix exponential can be used. For example, the off-diagonal entries of the
resolvent f (A) = (I − �A)−1, with 0 < � < 1

�1
, can be used to define the Katz communicability between nodes. An eigenvector-

based communicability can be obtained by taking the product x1(i)x1(j) of the ith and jth entries of the (positive) dominant
eigenvector x1 of a (strongly) connected network. Note that if x1 has been normalized so that ‖x1‖2 = 1, then this is just the
(i, j) entry of the projector x1x1T onto the eigenspace spanned by x1; if G is undirected, this is also a matrix function �(A),
corresponding to any scalar function �(�) which takes the value 1 for � = �1 and the value zero on the remaining eigenvalues
of A. As in the case of eigenvector centrality, this can be interpreted as a measure of communicability that takes into account
longer walks: for a connected undirected graph, it can be obtained as the limit of the expression (6), normalized by e��1 , as
� →∞. The same applies to the Katz communicability (multiplied by (1 − ��1)) in the limit � → 1

�1

−
. At the other extreme we

have the simplest and most local notion of communicability between nodes, taking the values 1 or 0 depending on whether or
not there is an edge between nodes i and j. This can be seen as the limit, as � → 0 or � → 0, of the two parameter-dependent
communicability measures based on e�A and (I − �A)−1, respectively, similar to Theorem 1 in section 3.
The communicability function (6) has proved very useful in a number of applications. Some recent examples include:

1. The analysis of brain networks, particularly the identification of anomalies in the brains of patients affected by different
conditions, ranging from stroke to Type 2 diabetes [29, 40, 41, 85, 46, 135];

2. The modeling of cancer networks [81];

3. The study of the spread of contagion in financial networks [16, 129];

4. The study of fracture networks in rocks [127];

5. The study of influence of papers in collaboration and citation networks [140];

6. The modeling of concept learning as weighted networks [100];

7. The characterization of robustness in infrastructural and transportation networks [8, 9, 108];

8. The analysis of urban traffic flow [1];

9. The community detection problem [48, 63, 138];

10. The identification of sparse and dense subgraphs of large graphs [76].

Computing the communicability between pairs of nodes requires the evaluation of bilinear forms of the type eiTf (A)ej for
a given matrix function f (A) of the adjacency matrix. While this is computationally expensive for a large network if all the
communicability values are needed, computing the communicability between a few selected pairs of nodes can be efficiently
carried out, even for very large networks; we refer to section 7 for details. For an extensive survey of network communicability
up to the year 2012, see [65].
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Network EEn(G) TC(G) e�1

Zachary Karate Club 30.62 608.79 833.81
Drug User 1.12e05 1.15e07 6.63e07
Yeast PPI 1.37e05 3.97e07 2.90e08

Pajek/Erdos971 3.84e04 4.20e06 1.81e07
Pajek/Erdos972 408.23 1.53e05 1.88e06
Pajek/Erdos982 538.58 2.07e05 2.73e06
Pajek/Erdos992 678.87 2.50e05 3.73e06
SNAP/ca-GrQc 1.24e16 8.80e17 6.47e19
SNAP/ca-HepTh 3.05e09 1.06e11 3.01e13
SNAP/as-735 3.00e16 3.64e19 2.32e20

Gleich/Minnesota 2.86 14.13 35.34

TABLE 1 Comparison of the normalized Estrada index EEn(G) = Tr(eA)∕n, the normalized total network communicability
TC(G), and e�1 for various real-world networks.

4.2 Total node communicability as a centrality measure
A communicability-based node centrality measure can be defined considering the total communicability of a node, that is, the
sum of the communicabilities of a node with all the nodes in the network, including itself [24]:

TC(i) =
n
∑

j=1
[e�A]ij = [e�A1]i . (7)

Here we have used the fact that the row sums of a matrix function f (A) are the components of the vector f (A)1. A significant
advantage of this centrality measure over those based on the diagonal entries of f (A) (“self-communicabilities”) is the fact that
for large networks it is much easier to compute the action of a matrix function on a vector than the diagonal entries [f (A)]ii.
Indeed, Krylov subspace methods can efficiently compute the vector f (A)1 for a large and sparse matrix A without the need to
compute any of the entries of f (A); see the discussion in section 7.
On the other hand, centrality measures based on the diagonal entries [f (A)]ii have a higher discrimination power than those

based on the row sums [f (A)1]i. Indeed, if a graph G is k-regular, then A1 = k1 and therefore also f (A)1 = f (k)1. Hence, all
nodes in G get the same centrality score and no measure of this kind is able to discriminate between the nodes (the same holds,
of course, for degree and eigenvector centrality). On the other hand, there are examples of regular graphs for which subgraph
centrality (C(i) = [eA]ii) is able to produce a ranking of the nodes [67]; we refer to [18, 99] and [94] for detailed discussions of
various theoretical issues concerning the discriminating power of centralitymeasures based on closedwalks. Generally speaking,
however, real world networks are far from being regular and, in most cases, subgraph centrality and total node communicability
tend to produce similar rankings. Thus, in the case of large networks the use of the more easily computable total communicability
is recommended.
Summing up all the total communicabilities of the nodes and inG and normalizing by the number of nodes results in the total

network communicability (see [24]):

TC(G) = 1
n

n
∑

i=1

n
∑

j=1
[e�A]ij =

1
n
1T e�A1 . (8)

It is easy to see that this quantity, which can be interpreted as the average communicability of a node, is maximized by Kn, the
complete graph with n nodes. The total network communicability is a measure of network connectivity, and in this regard it
plays a role similar to that of the Estrada index. It is, however, much easier to compute, since it consists of a single quadratic
form whereas computing the Estrada index usually requires evaluating the n quadratic forms eiT e�Aei, for i = 1,… , n. Again,
TC(G) can be computed without having to compute any of the individual entries of the matrix exponential, see section 7.
In Table 1 we report (for � = 1) the normalized Estrada index EEn(G) =

1
n
Tr(eA), the total network communicability (8),

and the exponential of the dominant eigenvalue for the adjacency matrices of several real-world undirected networks. The first
two are social networks, the third one is the protein-protein interaction network of beer yeast (Saccharomyces cerevisiae), the
following six are different types of scientific collaboration (coauthorship) networks, and the remaining two are infrastructure
networks (a computer server network and a road network). The first thing to observe is that all three measures of connectivity
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are consistent, in that they all agree on which networks are highly connected and which are not. This is not surprising given the
close relationship between the three metrics. The second thing to observe is the great variability of these connectivity measures
for different types of networks. This can only partially be explained by the difference in the number of nodes: for example, the
Zachary Karate Club network consists of just 34 nodes, while the Minnesota Road Network has 2642 nodes. We mention that all
these networks are extremely sparse, with average degree less than 5 for most networks. According to these three measures the
most highly connected network is SNAP/as-735, an autonomous server network which has certainly been designed with high
connectivity and robustness in mind. The least connected network, not surprisingly, is the (grid-like) road network of the state
of Minnesota. The network diameters are also strongly correlated with these measures of connectivity.

4.3 Communicability distance
Communicability between nodes can also be used to define a notion of distance on undirected graphs. Estrada [49, 51] has shown
that letting

dc(i, j) =
√

C(i, i) + C(j, j) − 2C(i, j) , where C(i, j) = [eA]ij , (9)
defines a distance on the set of nodes of an undirected graph G. To see this, let A = QDQT be the spectral decomposition of
the adjacency matrix A, and let uj denote the jth column of QT . Letting xj = eD∕2uj , we have

dc(i, j)2 = (xi − xj)T (xi − xj) = ‖xi − xj‖22 ,

showing that dc(i, j) is just the Euclidean distance of the vectors xi, xj ∈ ℝn. For a similar distance based on the resolvent
(I − �A)−1 instead of the matrix exponential, see [35].
Communicability distance has been shown to have a number of interesting applications. In [56], it has been applied to the

problem of triadic closure prediction, producing the best available results so far. Applications to urban traffic modeling can be
found in [1, 130], while the related notion of communicability angles is able to identify the critical (i.e., most diffusive) links
in consensus dynamics problems [69]. A notion of spatial efficiency based on the communicability geometry is introduced and
used to analyze real-world networks in [64]. Applications to visualization and machine learning can be found in [116]. Finally,
an extension of communicability geometry to multiplex networks can be found in [54], where it is applied to the study of the
neuronal network of C. elegans.

4.4 Network modification problems
Network communicability is closely related to the notions of network efficiency and network robustness, which are of great
importance in the design and realization of actual networks in different fields of engineering. A network with high communi-
cability is likely to be efficient in the routing of messages or in the transport of goods, and also to be robust against localized
loss of connectivity (e.g., edge removal) due to random accidents and possibly even to deliberate attacks. There are also situ-
ations where high connectivity has negative effects: for example, in the spreading of contagion, whether on a social network,
or a financial network, or a computer network. Another example is in law enforcement or anti-terrorism operations, where it is
desirable to disrupt or weaken an existing highly connected network. Highly sparse networks that display excellent connectivity
properties are known in the computer science literature as expander graphs; we refer to [92] for an extensive survey.
Total network communicability is a global measure which can be used to compare different network designs before networks

are actually constructed, or to modify an existing network (via edge addition, deletion or rewiring) towards a desired goal.
Consider, for instance, the following problems:

1. Network updating: given a sparse network G = (V ,E) with |E| = m, and a budget of k ≪ m edges, choose which k pairs
of unconnected nodes in G to connect so as to increase the total network communicability as much as possible.

2. Network downdating: given G as above, choose which k existing edges (k ≪ m) to delete so as to decrease the total
communicability as little or as much as possible; the first problem corresponds to the goal of having similar connectivity
at a lower cost (fewer edges), the second to the goal of disrupting or weakening an existing network in order to drastically
reduce its effectiveness with minimal effort.

3. Network rewiring: given G as above, choose which k existing edges (k ≪ m) to rewire so as to increase, or decrease, the
total network communicability as much as possible.
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In all cases, the total network communicability can be used as a figure of merit to evaluate the relative effectiveness of
different updating/downdating/rewiring strategies. Of course, this is not the only measure of connectivity available but, together
with the one given by e�1 , it has the advantage of being much easier to compute, in the case of large sparse networks, than
most other measures, often at a cost of O(n) (i.e., linear in the number of nodes). In [8], a number of different heuristics are
compared to solve the updating/downdating problems listed above (the rewiring problem is similar and can be dealt with using
the same techniques). These heuristics are much faster, sometimes by orders of magnitude, than previously proposed methods,
and require only the identification of a small percentage of nodes in G having the highest centrality (for example, eigenvector
or total communicability centrality). Connecting highly central nodes that are not already connected tends to cause the largest
increase in total communicability (as well as in other measures); reciprocally, removing edges that connect highly central nodes
tends to induce the largest drop in total communicability. If the goal is to delete as many edges as possible without disconnecting
the network and with minimal decrease in the total communicability, then the best strategy is to remove edges between nodes
outside of the set of highly central nodes. Checking the connectivity of the network after each downdating can also be done
in time that is typically linear in n, for a sparse network. We refer the reader to [8] and the references therein for a detailed
discussion of this class of network modification problems.
We note that edge addition, deletion or rewiring all lead to low-rank modifications of the adjacency matrix. The important

problem of updating/downdating a matrix function after a low-rank change has been investigated in [17] and [118], where
applications to node centrality measures are also considered.

4.5 Communicability in directed networks
In the case of directed networks, several types of node communicabilities that take into account the directionality of communi-
cation can be introduced. The first option is to simply define the communicability of two nodes as was done in the undirected
case, via (6). The lack of symmetry in A, and therefore in eA (or, more generally, in f (A)) is just a reflection of the fact that in a
directed graph, traveling from node i to node j may be faster (or slower) than traveling from node j to node i. Likewise, sending
a message on a telecommunication network from node i to node j may be easier (or harder) than sending the same message from
node j to node i. Taking row sums of f (A) will then define a kind of total communicability measure that corresponds to the
centrality of nodes as broadcasters of information (hubs), while taking column sums of f (A) will result in a centrality measure
of nodes as receivers of information (authorities).
A more refined measure of communicability would distinguish further between four types of communicability: broadcaster-

to-receiver, broadcaster-to-broadcaster, receiver-to-receiver, and receiver-to-broadcaster. Such measures have been first studied
in [22], based on the bipartite model of a directed graph described in section 2. Let

 =
[

0 A
AT 0

]

(10)

be the adjacency matrix of the bipartite graph  = ( , ) obtained from the original digraph represented by A. In the bipartite
graph the first n nodes contained in  can be seen as the original nodes of the digraph when they play the role of broadcasters of
information, while the last n copies contained in  represent the original nodes in the role of receivers. It is worth mentioning

that the eigenvector of  corresponding to the leading eigenvalue �1() = �1 is the vector q1 =
[

u1
v1

]

, thus revealing the

connection between the HITS ranking scheme described in section 3 and eigenvector centrality applied to the bipartite graph .

Proposition 1. [22, Proposition 1] Let be as in (10) and let A = UΣV T be an SVD of A. Then

e =

[

cosh(
√

AAT ) U sinh(Σ)V T

V sinh(Σ)UT cosh(
√

ATA)

]

. (11)

An important feature of this matrix is that its entries are nonnegative. Thus, these quantities can be used to describe the
importance of nodes and how well they communicate when they are acting as broadcasters or receivers of information in the
graph [22]. Indeed, the entries of the two diagonal blocks cosh(

√

AAT ) and cosh(
√

ATA) provide centrality and communicabil-
ity indices for nodes and pairs of nodes when they are all seen as playing the same role in the network.More in detail, the diagonal
entries of the first diagonal block give the centralities for the nodes in the original network when they are seen as broadcasters
of information (hubs). Likewise, the diagonal of the second block contains the centralities for the nodes in their role of receivers
(authorities). Similarly to the off-diagonal entries of the matrix exponential of an undirected graphs, the off-diagonal entries of
these diagonal blocks measure how well two nodes, both acting as broadcasters (resp., receivers), exchange information.
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As for the off-diagonal blocks in (11), they contain information concerning how nodes exchange information when one node
is playing the role of broadcaster (resp., receiver) and the other is acting as a receiver (resp., broadcaster).
Thus, the total hub communicability and total authority communicability of G, defined as TℎC(A) = 1T cosh(

√

AAT )1 and
TaC(A) = 1T cosh(

√

ATA)1, respectively, account for the overall ability of the network of exchanging information when all its
nodes are playing the same role of broadcasters (TℎC(A)) or receivers (TaC(A)). These measures can be interpreted and justified
in terms of alternating walks on the original digraph G; for this and other details we refer to [22] and to [9], as well as to the
discussion of generalized matrix functions in subsection 6.7. The efficient computation of these quantities for large graphs is
discussed in [10] and [13].

5 TEMPORAL COMMUNICABILITY

The notion of complex network we have used so far is of a static nature: a network represents a snapshot of the interactions
taking place in a system at a certain time. But many real-life complex systems evolve in time: this additional feature can be
described through temporal networks. The presentation given in this section is mostly based on [36, 86].
Given a set of n nodes, consider an ordered sequence {G[k]}k=1,…,M of unweighted, undirected simple graphs defined over the

given nodes. We assume here to have chosen an ordered sequence t1 < t2 < … < tM of time points. Each graph G[k] records
the state of the network at time tk and may be represented by the associated symmetric adjacency matrix A[k].
Centrality and communicability measures based on counting walks can be extended to temporal networks through the use

of dynamic walks. A dynamic walk is a sequence of edges connecting nodes in the network, with the added constraint that
the sequence of edges must respect the time ordering. As in the static case, the reasoning here is that nodes participating in
many dynamic walks are capable of communicating well with other nodes in the network, and can therefore spread or receive
information effectively.
Let �(A[k]) be the spectral radius of the kth adjacency matrix, and denote by �∗ = maxk{�(A[k])} the maximum spectral

radius over all the adjacency matrices. The dynamic communicability matrix is defined as

Q = (I − �A[1])−1(I − �A[2])−1…(I − �A[M])−1, (12)

where the parameter � satisfies 0 < � < 1∕�∗, thus ensuring that each resolvent matrix in (12) can be expressed as a power
series in the corresponding adjacency matrix. If we write each resolvent as a power series and expand the product in (12), we
see that Q contains all products of the form

�w(A[tk1 ]A[tk2 ]…A[tkw ]), (13)

where tk1 ≤ tk2 ≤… ≤ tkw . Observe that entry (i, j) in the product A[tk1 ]A[tk2 ]…A[tkw ] counts the number of dynamic walks of
length w from node i to node j, where the k-th edge of the walk comes from time-step tk. Consequently, Qij is a weighted sum
of dynamic walks of all possible lengths from node i to node j, where walks of length w are weighted by a factor �w. Hence,
Qij is a measure of communicability between nodes i and j, with node i in the role of broadcaster and node j as the receiver.
The i-th row sum

BC(i) =
n
∑

j=1
Qij = Q ⋅ 1

is a measure of how well node i broadcasts information to the rest of the network; therefore it provides a notion of broadcast
centrality. On the other hand, the j-th column sum

RC(j) =
n
∑

i=1
Qij = QT ⋅ 1

measures how well node j receives information from all other nodes in the network and provides a notion of receive centrality.
Note that, in general, the broadcast and receive centrality of each node are different, as the matrix Q is not symmetric. Keeping
in mind that each adjacency matrix is symmetric, we have

QT =
(

(I − �A[1])−1(I − �A[2])−1…(I − �A[M])−1
)T =

= (I − �A[M])−1(I − �A[M−1])−1…(I − �A[1])−1,

that is, broadcast and receive centralities are related by a reversal of the time ordering.
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We mentioned that the parameter � should be chosen in the interval (0, 1∕�∗). It is interesting to study the limit behavior of
the BC and RC rankings when � → 0 or � → 1∕�∗. Let us write each resolvent in (12) as a power series, expand the product
and collect terms w.r.t. powers of �:

Q = I + �

( M
∑

k=1
A[k]

)

+ (�2).

The vector of BC measures can now be expressed as

BC = Q ⋅ 1 = I ⋅ 1 + �
( M
∑

k=1
A[k]

)

1 + (�2). (14)

The quantity AD =
(

∑M
k=1 A

[k]
)

1 above is a measure of aggregated degree: it ranks nodes according to the number of distinct
contacts weighted by the duration of contact time (the longer the contact time between two nodes, the higher their corresponding
AD values). From (14) we see that, for � → 0, BC rankings converge to AD rankings; the same is true for RC rankings. Therefore
the parameter � should be chosen sufficiently far away from 0 so as not to merely replicate aggregate degree. On the other hand,
� should not be taken too close to 1∕�∗. Indeed, if � ≈ 1∕�∗, the matrix (I − �A[k]) such that �(A[k]) = �∗ will be close to
singular, and the corresponding resolvent factor will dominate the computation of Q, thus making the computation of Q very
sensitive to small changes in �.
In some applications, one may want to use a modified definition of Q where only walks that use at most one link per time-

window are taken into account. This can be an appropriate choice if one needs to eliminate the possibility of long walks, or in
ultra-high frequency regimes, where it is physically unfeasible for information to pass through more than one link per time step.
As discussed in [86], in such cases one may define

Q̂ = (I − �A[1])(I − �A[2])⋯ (I − �A[M]),

that is, replace each resolvent factor in (12) by its first-order approximation.
One can also use the matrix exponential instead of the resolvent in the definition of dynamic communicability, as suggested

by Estrada [53]:
Q̃ = eA[1]eA[2] ⋯ eA[M] .

In the exponential-based definition, the number of walks of length w is weighted by a factor 1∕w! instead of �w, so that long
walks are much more penalized than in the resolvent-based definition. This can sometimes lead to an inability to distinguish
between nodes in the ranking process, especially when working with many time steps and many adjacency matrices. However,
as seen in the static case, it is possible to include an “inverse temperature” parameter � in the exponential, leading to weight
factors �k∕k!. The parameter � can then be tuned to better capture the behavior of the network.
For an application of dynamic communicability to a real-world temporal network arising in the study of a contagion model,

see [36].

6 OTHER MATRIX FUNCTIONS USED IN NETWORK ANALYSIS

In this section we provide a brief overview of some other matrix functions that have found applications in network analysis.

6.1 Spectral measure of graph bipartivity
Bipartivity is an important graph property that reflects important structural features of real-world networks. It plays an important
role, for instance, in the study of granular materials [136] and in the study of the transportation efficiency of European airlines
[58]. Many real world networks, while not exactly bipartite, are “nearly bipartite”; to make this notion precise, it is desirable to
have a quantitative measure of how “far” a graph is from being bipartite.
It is obvious that in a bipartite graph any closed walk must have even length. The hyperbolic sine and cosine, defined by

sinh(x) = 1
2
(ex − e−x) and cosh(x) = 1

2
(ex + e−x)

obviously satisfy
sinh(x) + cosh(x) = ex,
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have the power series expansions

sinh(x) =
∞
∑

k=1

x2k+1

(2k + 1)!
, cosh(x) =

∞
∑

k=1

x2k

(2k)!
,

and are, respectively, odd and even functions. Both are entire, and therefore the matrix functions sinh(A) and cosh(A) are defined
for any square matrix A.
Define now the following quantity:

bs(G) =
Tr(cosh(A))

Tr(eA)
.

Note that bs(G) is always between
1
2
and 1. If A is the adjacency matrix of a bipartite graph, it must be

[

eA
]

ii = [cosh(A)]ii
for every i = 1,… , n, and therefore bs(G) = 1. Based on these simple observations, in [68] it was proposed to use bs(G) as
a measure of graph bipartivity: the closer bs(G) to 1, the closer G to being bipartite. If, on the other hand, bs(G) is close to
1
2
, the graph is far from being bipartite. How close bs(G) must be to 1 for G to be considered “nearly bipartite” is, of course,

context-dependent and involves a certain degree of subjectivity. It is also possible to devise edge manipulation techniques aimed
at increasing (or decreasing) the degree of bipartivity of a network: to this end, bs(G) provides a way to monitor the effect of
different edge addition/deletion/rewiring strategies.

6.2 Functions of the graph Laplacian
So far we have limited our discussion to functions of the adjacency matrix of a network. In many important problems, however,
it is appropriate to study functions of L = D − A, the graph Laplacian of G. For an undirected graph, the Laplacian matrix
L is symmetric positive semidefinite, with zero row and column sums. The smallest nonzero eigenvalue of the Laplacian of a
connected graph is known as its algebraic connectivity [73], and the corresponding eigenvector as its Fiedler vector. Loosely
speaking, the algebraic connectivity of G measures how hard it is to disconnect G into two subgraphs of comparable size by
removing selected edges: the larger the algebraic connectivity, the harder it is to disconnect G into two roughly equal subgraphs
by removing a small number of edges. The sign of the entries of the Fiedler vector can be used to assign nodes of G to either
subgraph. Hence, the graph Laplacian plays a role in the important problem of graph partitioning.
The Laplacian is also central to the study of diffusion processes and random walks on graphs. These are used sometimes

to model dynamic phenomena taking place on networks, and sometimes as tools for exploring, or probing, network structure
by studying the behavior of the solution to certain evolution equations posed on the network. An important example is that
of consensus in multi-agent systems; see, e.g., [115]. The simplest model of diffusion on a graph is probably the initial value
problem for the heat equation on G:

dx
dt
= −L x, t > 0; x(0) = x0. (15)

This is a system of linear ordinary differential equations (ODEs). Here x(t) can be interpreted as the concentration of some
substance on the nodes of G, or perhaps as the “temperature” of each node, at time t. The initial distribution x0 is usually a
nonnegative vector, which can be assumed to be normalized so that ‖x0‖1 = 1. In this case, it can be interpreted as a probability
distribution on the nodes of G. It is well known that the solution of (15) is unique and is given for all t ≥ 0 by

x(t) = e−tLx0 = S(t) x0 ,

where we have set S(t) = e−tL. The family {S(t)}t≥0 forms a continuous one-parameter commutative semigroup, i.e.,

S(0) = I, S(t1 + t2) = S(t1)S(t2) = S(t2)S(t1) , ∀t1, t2 ≥ 0 .

The graph Laplacian L satisfies
S′(0) = lim

t→0+

1
t
(S(t) − I) = −L ;

we say that −L is the infinitesimal generator of the semigroup. The matrix-valued function S(t) is also called the heat kernel
on G. Another notion of heat kernel based on the normalized Laplacian will be briefly discussed in the next subsection.
It is easy to prove that for all t ≥ 0, S(t) is a doubly stochastic matrix; i.e., it has entries between 0 and 1, and row and columns

sums equal to 1 (recall that S(t) is symmetric, since G is undirected). It follows that for all t the solution vector x(t) = S(t)x0 is
nonnegative with entries adding up to 1: the l1-norm of x(t) is constant and equal to 1. Hence, for all t > 0, the solution x(t) is
a probability distribution on the nodes of G, and its evolution describes a continuous time Markov process. Since G is assumed
to be connected, L is irreducible and there is a unique steady-state distribution x∗ = limt→∞ x(t). This equilibrium is easily
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determined to be the unique positive solution to the homogeneous linear system Lx = 0, normalized so that ‖x∗‖1 = 1, i.e., the
constant vector x∗ =

1
n
1. In other words, the steady state is just “thermal equilibrium”. The rate of convergence of the solution

vector x(t) reflects structural properties of the graph and is governed by the algebraic connectivity of G. In more detail, let

L = QΛQT =
n
∑

k=1
�k qkqTk (16)

be the eigendecomposition of the Laplacian of the (connected) graph G. Recalling that the eigenvalues of L satisfy 0 = �1 <
�2 ≤… ≤ �n and that the eigenvector associated with the simple zero eigenvalue, normalized in the l2-norm, is q1 =

1
√

n
1, we

obtain

e−tL = 1
n
11T +

n
∑

k=2
e−t�kqkqTk .

Therefore, we have

e−tLx0 =
1
n
(1T x0)1 +

n
∑

k=2
e−t�k(qTk x0)qk ←→ c1 for t→∞ , (17)

where c = 1
n
(1T x0) is positive if the initial (nonzero) vector x0 is nonnegative; in particular, c = 1

n
if x0 is normalized in the

1-norm. We note that if the graph G is k-regular we have L = kI − A, and for t = 1 the heat kernel is given by e−L = e−keA .
Hence, apart from the constant factor e−k, for a regular graph the exponential of the adjacency matrix of G is closely related to
the exponential of the (negative) graph Laplacian.
It is clear from (17) that the rate of convergence to equilibrium is governed primarily by the smallest nonzero eigenvalue �2

of L, i.e., on the algebraic connectivity ofG. The larger is �2, the faster the convergence to equilibrium. As an extreme example,
consider Kn, the complete graph on n nodes, in which every node is connected to any other node. The Laplacian of this graph
has only two distinct eigenvalues, 0 and n, and equilibrium is reached extremely fast. This is not surprising since the complete
graph has the smallest diameter possible, and is “maximally connected”. More interesting examples of highly connected graphs
are given by the already mentioned expander graphs, i.e., graphs that are at the same time highly sparse and have a relatively
large value of �2. Informally, such graphs are characterized by the property that it is impossible to disconnect them into two
roughly equal-size subgraphs without cutting a similarly large number of edges. Expander graphs have important applications,
for example in the design of robust communication and computer networks; we refer again to the extensive survey [92] for
precise definitions and results.
Recently, the use of the fractional graph Laplacian has attracted some attention due to its potential to generate random walks

that can efficiently explore large networks [123, 124]. For � ∈ (0, 1), the fractional graph Laplacian is the matrix

L� = QΛ�QT , (18)

where Λ� is the diagonal matrix with entries given by ��1 = 0, ��2 ,… , ��n (cf. (16)). In this definition, the principal (positive)
branch of the �th root �i is chosen. If G is connected, L� is generally a full matrix: in other words, L� is a non-local operator.
It can be shown that, like L, the matrix L� is a singularM-matrix. If Δ represents the diagonal matrix containing the diagonal
entries of L� , the matrix S = I − L�Δ−1 is stochastic and defines a random walk on G. Since S is dense, the random walk
on G is not constrained to move from node to neighboring node, but has a nonzero probability of “jumping” from one node to
any other node. In particular, there is a non-negligible probability of making long-range jumps (“superdiffusion”); hence, the
random walk associated with S = I−L�Δ−1 can be expected to more efficiently explore a large, sparse network than the “local”
random walk associated with I − LD−1, whenever the diameter of G is not small. The continuous-time process

dx
dt
= −L� x, t > 0, x(0) = x0 , (19)

or the analogous one based on the normalized fractional Laplacian, has similar advantages over the standard one (15). For an
extension to directed graphs, based on the nonsymmetric LaplacianLout = D−A (whereD is the diagonal matrix of outdegrees),
see [19]. The development of efficient numerical methods for approximating the solution of the initial value problem (19) remains
an open problem and is an active area of current research.
Finally, we mention that a different proposal for speeding up the navigation of large graphs has recently been made in [59, 60]

based on the notion of k-path Laplacian, a natural generalization of the graph Laplacian; see [50].
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6.3 Heat Kernel PageRank
If G is a directed network in which every node i has nonzero outdegree douti , then the matrix W = ATD−1, where A is the
adjacency matrix and D is the diagonal matrix of outdegrees, is column stochastic, and for t > 0 the matrix exponential K(t) =
e−t(I−W ) = e−tetW is called the heat kernel ofG in [37]; see also [139]. The matrixK(t) is itself stochastic (for all t) and therefore
defines a Markov chain onG. It is easy to see that for a strongly connected graph, the solution x(t) = K(t)x0 of the diffusion-like
equation

dx
dt
= −(I −W ) x, t > 0, x(0) = x0, (20)

where (for example) x0 =
1
n
1, converges to the dominant eigenvector ofW (the PageRank vector) as t → ∞. The convergence

is faster than that of the discrete-time random walk defined byW . Applications and efficient algorithms for approximating the
heat kernel PageRank of large networks are discussed in [38]; see also [98].

6.4 Other differential equations on graphs
While the most commonly studied evolution equations on graphs are related to diffusion, other kinds of equations have also
attracted some interest [26, 107]. In this subsection we briefly discuss matrix functions arising in the solution of the wave and
Schrödinger equation on undirected graphs.
The simplest form of the wave equation on an undirected graph G takes the form of the following initial value problem for a

second-order system of ODEs:
d2x
dt2

= −Lx, x(0) = x0, x′(0) = v0 , (21)

where x0 and v0 are given vectors. Equation (21) can be recast as a first-order system with twice the number of unknown
functions, as follows. Recall that the graph Laplacian can be written as L = BBT , where B is the node-edge incidence matrix of
the network; note that B is, in general, rectangular. Letting v′(t) = BT x(t), problem (21) can be written as the Hamiltonian-like
initial value problem

dw
dt

= w, w(0) = w0 , (22)

where
w(t) =

[

u(t)
v(t)

]

,  =
[

0 −B
BT 0

]

, w0 =
[

u0
v0

]

.

The solution of (22) can be written, for all t ∈ ℝ, as

w(t) = et w0 = (t)w0 ,

where the matrix (t) = et is orthogonal for all t ∈ ℝ (since  is skew-symmetric) . The explicit form of (t) can be given in
terms of generalized matrix functions of B; see subsection 6.7. The efficient computation of the solution w(t) = et w0 for large
networks has been discussed in [13], see also [44] for related work.
The Schrödinger equation has also been proposed for the analysis of networks. One of the simpler forms of this equations is

i du
dt
= Lu, u(0) = u0 , (23)

where i =
√

−1 is the imaginary unit and the initial vector u0 satisfies ‖u0‖2 = 1; see [132].
The solution of (23) is given, for all t ∈ ℝ, by

u(t) = e−itL u0 = U (t)u0 ,

where now U (t) = e−itL is unitary for all t, since −itL is skew-Hermitian. The family {U (t)}t∈ℝ is a continuous one-parameter
group of unitary operators: note that ‖u(t)‖2 = 1 for all t, since the Euclidean norm is unitarily invariant. The state vector u(t)
yields the probability distribution vector

p(t) = [|u1(t)|2 , |u2(t)|2 ,… , |un(t)|2] ,

where |ui(t)|2 is the probability of finding the system in state ei at time t. This can be interpreted as a random walk on G for a
particle obeying the laws of quantum mechanics; to say that the system is in state ei at time t means that the particle (or, rather,
its wavefunction) described by the Hamiltonian L is localized at node i at time t, starting from the probability distribution given
by u0. The matrix formed with the amplitudes |[U (t)]ij]|2 is doubly stochastic and gives the transition probabilities from one
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state to another. In other words, its entries represent the probability of finding the “quantum walker” at node j at time t given
that it was at node i at time 0. The interest in the solution of the Schrödinger equation on graphs stems from the fact that it can
be used to characterize graph structure, see [132]; it has also important applications in quantum information science [96].

6.5 Graph energy
The concept of graph energy originates from quantum chemistry (Hückel’s molecular orbital theory). In this theory the energy
levels of conjugated hydrocarbons are given by the eigenvalues of the Hamiltonian matrix, which is of the formH = �I + �A,
whereA is the adjacency matrix of the skeleton graph describing the arrangement of the carbon atoms in the molecule and �, � <
0 (see, e.g., [131] for an accessible treatment). The smallest eigenvalue (ground state) of the system is given by �+��max(A); it is
non-degenerate (that is, simple) as long as the graph is connected, by the Perron-Frobenius Theorem. The sum of the eigenvalues
ofH corresponding to the positive eigenvalues ofA (the occupied states) is the energy of the system. The parameter � is largely
irrelevant and can be set to zero. Hence, the energy of the system is essentially determined by the sum of the negative eigenvalues
ofH = �A. Since � < 0, the energy is proportional to the sum of the positive eigenvalues of A.
The energy of an undirected graph G with adjacency spectrum �(A) = {�1,… , �n} is defined as

(G) =
n
∑

i=1
|�i| = Tr(|A|) ,

where |A| is the absolute value of A; see [102] for a comprehensive treatment. This matrix function is obtained from the
eigendecomposition of A by taking the absolute values of the eigenvalues, and can also be defined as |A| = (A2)

1
2 , where the

positive square root is taken. Note that since A has zero trace, we have that

(G) = 2
∑

�i>0
�i , (24)

i.e., the energy ofG is twice the sum of the positive eigenvalues of the adjacency matrix. Hence, up to the constant factor 2� this
notion of energy is essentially that encountered in Hückel’s molecular orbital theory (with � set to zero), thus justifying its name.
By expanding the matrix function (A2)

1
2 in a binomial series, it is easy to see that only closed walks of even length contribute

to the energy of G; a chemical interpretation of this fact can be found in [57], together with bounds on the graph energy for
certain types of graphs. Recently, it has been suggested that the vertex energies, i.e., the diagonal entries of |A|, could be used
to define node centrality measures in undirected networks [7]. Here we observe that in the case of directed networks there are
two candidate matrices to represent the matrix function f (A) = |A|, namely,

|A| = (AAT )
1
2 and |A| = (ATA)

1
2 .

These two matrices have the same trace:

Tr
[

(AAT )
1
2

]

= Tr
[

(ATA)
1
2

]

=
r
∑

i=1
�i(A) ,

where r = rank (A) and �i(A) denotes the ith singular value of A; therefore, they define the same notion of graph energy for a
digraph (which is also known as the nuclear norm of A, see [113]). The diagonal entries of these two matrices, however, differ;
a natural interpretation of the diagonal entries of the first one is to regard them as hub scores, while those of the second one can
be interpreted as authority scores. As we have seen, this idea has been proposed in [22] for the exponential and the resolvent.
The lack of smoothness of the function f (x) = |x| for x = 0 implies that computing |A| (or even just selected entries

of it, such as the diagonal ones) will lead to difficulties. In particular, since the adjacency matrix of a (non-empty graph) is
always indefinite, 0 ∈ (�min(A), �max(A)) and methods based on polynomial approximations of |x| will converge slowly: the
best approximation error of the function f (x) = |x| with polynomials of degree n is O(n−1) for n→∞. Similar difficulties can
be expected in the computation of

√

B with B = A2, since the square root is not differentiable at x = 0; note that adjacency
matrices are very often singular (and therefore 0 ∈ �(B)). Rational approximation methods, in contrast, can converge much
faster (see [117, 134],) but they have higher cost. This is an area of research still under development.
We also observe that (24) can be written as

(G) = 2Tr [ℎ(A)] , (25)
where ℎ(⋅) is the step function that takes the value ℎ(x) = 0 for x ≤ 0 and ℎ(x) = 1 for x > 0. Note that ℎ(A) is just the
orthogonal projector onto the invariant subspace of A spanned by the eigenvectors associated with the positive eigenvalues. If
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the first positive eigenvalue �k(A) of A is not too close to the eigenvalue to its immediate left, this discontinuous function can
be well approximated by a smooth (sigmoid) function, which itself can be approximated by a variety of methods. The wider the
“spectral gap” is, the faster the convergence of polynomial approximations to ℎ(A) will be; we refer to [21] for a discussion of
this problem in the context of electronic structure computations in quantum chemistry.

6.6 Gaussian matrix function
Most of the matrix functions considered so far tend to depend heavily on the extreme eigenvalues of A (or of L, in the case of
functions of the graph Laplacian). Thus, most of the information contained in the remaining eigenvalues (and corresponding
eigenvectors) is lost. There are, however, situations where the interior eigenvalues play an important role: these include the study
of magnetic properties of certain molecules arising as a result of spin interactions, and next-near neighbor (NNN) interactions
modeling the competition between agents that share the same resources in a complex system. In [2, 55], the following function
of the adjacency matrix A of an undirected graph G has been studied:

f (A; �; �ref) =
∞
∑

k=0
(−�)k

(

(�refI − A)2
)k

k!
= exp

[

−� (�refI − A)2
]

, (26)

where � > 0 is a parameter and �ref denotes a reference value, such as an interior eigenvalue of A or an approximation of such
an eigenvalue. This matrix function is designed to emphasize the contribution coming from the eigenvalues and eigenvectors
closest to the reference value �ref; the larger is �, the more weight this contribution is given relative to the rest of the spectrum.
Values like �ref = 0 and �ref = −1 are of particular interest in applications, see [55] and [2]. The choice of imaginary values
� = it, with t ∈ ℝ representing time, is also useful in certain physical applications; see [2].

6.7 Generalized matrix functions
Generalized matrix functions have been introduced at the end of subsection 2.2. Let

A = UrΣrV T
r

be the compact SVD of A. Let f ∶ ℝ+ → ℝ be a scalar function such that f (�i) is defined for all i = 1, 2,… , r. Recall that the
generalized matrix function induced by f is defined as

f ⋄(A) = Urf (Σr)V T
r , (27)

where

f (Σr) =

⎡

⎢

⎢

⎢

⎢

⎣

f (�1)
f (�2)

⋱
f (�r)

⎤

⎥

⎥

⎥

⎥

⎦

.

We observe that f ⋄(A) reduces to the standard matrix function f (A) whenever A is symmetric positive definite, or when A is
symmetric positive semidefinite and f satisfies f (0) = 0. We also note that the rank of f ⋄(A) can never exceed r, the rank of
A, a property which does not hold, in general, for standard matrix functions.
Generalized matrix functions were first introduced in [89] but they have long been overlooked. Only recently they have

undergone intensive study, largely motivated by applications in data science and network analysis; see [5, 9, 23, 114] for recent
work on the theory and applications of this kind ofmatrix functions. Efficient numerical methods for the evaluation of generalized
matrix functions and related quantities have been developed in [10, 13]; see also the related paper [14]. Here we discuss some
situations where generalized matrix functions occur naturally, with particular reference to network-related applications. It should
be mentioned that in several of these papers the authors were not aware of the notion of generalized matrix function, a connection
which was only noted in [9].
In [44], the authors address the problem of computing functions of real skew-symmetric matrices, in particular the evaluation

of the product eAb for a given skew-symmetric matrix A and vector b using the Lanczos algorithm. The authors observe that
any A ∈ ℝ2n×2n with AT = −A is orthogonally similar to a matrix of the form

 =
[

0 −B
BT 0

]

,
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where B is lower bidiagonal of order n. As a consequence, if B = UΣV T is an SVD of B, the matrix exponential eA is
orthogonally similar to the matrix

[

U cos(Σ)UT −U sin(Σ)V T

V sin(Σ)UT V cos(Σ)V T

]

, (28)

where the matrix in the upper right block is precisely − sin⋄(B). Note that this formula retains meaning even when B is rectan-
gular. The authors of [44] develop computational techniques for the matrix exponential based on (28). We also mention that in
the same paper the authors derive a similar expression, also found in [22], for the exponential of the symmetric matrix

 =
[

0 A
AT 0

]

. (29)

These expressions are extended to more general matrix functions in [45], where it is shown how these ideas can be used to
develop efficient geometrical integrators for the numerical solution of certain Hamiltonian differential systems. Here we observe
that these techniques can be applied to the integration of the wave equation (21) on networks already discussed in subsection
6.4. The same equation is discussed in [13], where generalized Chebyshev polynomials are used to approximate the solution;
the results in [13] show that for large networks, the Chebyshev-based approach is much faster and requires much less storage
than the Lanczos-based one for this type of problem.
In [39], the authors consider the problem of detecting (approximate) directed bipartite communities in directed networks.

Consideration of alternating walks in the underlying graph leads them to introducing a “non-standard matrix function” of the
form

f (A) = I − A + AAT

2!
− AATA

3!
+ AATAAT

4!
−⋯ ,

where A is the adjacency matrix of the graph. Using A = UΣV T this expression is readily recognized to be equivalent to

f (A) = U cosh(Σ)UT − U sinh(Σ)V T ,

which is a “mixture” of the standard matrix function cosh(
√

AAT ) and the generalized matrix function sinh⋄(A). This appears
to be the first paper in which a generalized matrix function (albeit not recognized as such) occurs in connection to a network
problem.
Generalized hyperbolic matrix functions were also considered in [22] in the context of directed networks, again based on the

notion of alternating walks in directed graphs. Themain goal of that paper was the extension of centrality measures for undirected
networks (such as subgraph centrality) to directed networks by means of the bipartite model of a digraph. We recall that in this
model the bipartite graph  associated with a digraph G is the undirected graph whose adjacency matrix is given by (29), where
A is the (nonsymmetric) adjacency matrix ofG. The centrality measures introduced in [22] extend the HITS hub/ranking method
by Kleinberg [97] in the same way that subgraph and Katz centrality can be regarded as extensions of eigenvector centrality.
Based on this work, in [9], the action of generalized matrix functions on a vector of all ones was used to define certain

centrality measures for nodes in directed graphs, as follows.

Definition 1. Let A = UrΣrV T
r be the adjacency matrix of a directed network. We call total hub communicability of node i the

quantity

Cℎ(i) = eTi sinh
⋄(A) 1 =

r
∑

k=1
sinh(�k)(vTk 1)uk(i)

and total authority communicability of node j the quantity

Ca(j) = 1T sinh⋄(A) ej =
r
∑

k=1
sinh(�k)(uTk 1)vk(j)

These quantities correspond to row or column sums of the off-diagonal blocks of e; therefore, Cℎ(i) quantifies the ability of
node i— playing the role of hub — to communicate with all the nodes in the network, when they are all acting as receivers of
information. Similarly, Ca(j) accounts for the ability of node j as an authority to receive information from all the nodes in the
graph, when they are acting as broadcasters of information. In [9] it was shown how to use these centrality measures in order to
modify a given directed network so as to tune its communicability properties, a problem already studied in [8] for the case of
undirected networks. Fast algorithms for estimating these network metrics have been presented in [10] and [13].
Finally, we mention that generalized matrix functions also arise when filter factors are used to regularize discrete ill-posed

problems. Several additional applications of generalized matrix functions (under the name of “singular functional calculus”)
can be found in [5]. For an extension to tensors, see [105].
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7 NUMERICAL METHODS

For small to moderate size networks (say, up to a few thousand nodes), it is possible to compute each individual entry of the
matrix function f (A) or f (L) using a variety of methods. For undirected graphs, using the eigendecomposition of the matrix is
usually the easiest way to carry out the desired calculation. For directed graphs the computation of matrix functions is somewhat
more delicate, but a number of techniques are available for handling small to moderate size problems, see [90]. Similarly, for
generalized matrix functions one can simply compute the (compact) SVD of A to obtain f ⋄(A).
In the case of large-scale networks, on the other hand, it is generally impossible to compute every entry of a matrix function.

Even if A is sparse, the matrix f (A) is generally a dense matrix and therefore impossible to store for large n. Fortunately, in
the case of large-scale graphs it is seldom required to compute all the entries of a matrix function; as we have seen, typical
calculations require computing the action of a matrix function on a vector, or a subset of selected entries (for example the ones
on the main diagonal). For these tasks there are efficient algorithms which use the matrix A (or L) only in the form of matrix-
vector products. Moreover, such computations may not need to be very accurate: for instance, centrality measures are generally
used to identify the top-ranked nodes, so there is no need to compute the centrality indices of all the nodes with high accuracy.
Bounds on selected entries of f (A) are often sufficient. In this section we review some numerical methods that are especially
well-suited to network analysis.

7.1 Krylov subspace methods
Krylov subspace methods are widely used for solving many large-scale linear algebra problems, including linear systems, eigen-
value problems, matrix equations and, last but not least, approximation of f (A)v. The main idea behind this class of methods
goes as follows:

• define a sequence {k} of suitable, low-dimensional nested subspaces of ℝn; these are called Krylov subspaces;

• consider the projection of the original problem onto these subspaces, yielding a sequence of approximations to the original
problem that are more and more accurate as the subspace dimension grows larger;

• solve the projected problems “exactly” on subspaces of increasing dimension, until sufficient accuracy is attained;

• expand the computed solution back to ℝn.

The classical definition of Krylov subspaces associated with a square matrix A and a nonzero vector v is

k(A, v) = span{v, Av, … , Ak−1v},

for k = 1, 2,… . With this choice, Krylov approximations of f (A)v take the form p(A)v, where p(x) is a polynomial, usually of
degree much less than n. In fact it holds k(A, v) = {q(A)v | q(x) is a polynomial of degree ≤ k − 1}.
Let A,v be theminimal polynomial ofAwith respect to v, that is, the monic polynomial of lowest degree such that A,v(A)v =

0, and set d = deg A,v. Then we have

1(A, v) ⊂ 2(A, v) ⊂⋯ ⊂ d(A, v) = d+1(A, v) =⋯ = n(A, v).

Equivalently, d is the smallest integer such that d(A, v) = d+1(A, v).
Well-known examples of Krylov subspace methods designed to solve linear systems include the conjugate gradient

method and its various generalizations and extensions, such as MINRES for the symmetric case, GMRES and BiCG for the
nonsymmetric case [103, 125].
Arnoldi’s method is an efficient way to compute an orthonormal basis of the Krylov subspacek(A, v), with v ≠ 0, as well as

the projection of A with respect to this subspace. Arnoldi’s method is based on the classical Gram-Schmidt orthogonalization
process and can be summarized as follows:

• Set q1 = v∕‖v‖2;

• For j = 1,… , k do:

– ℎi,j = qjTAqi, for i = 1, 2,… , j

– uj = Aqj −
∑j
i=1 ℎi,jqi
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– ℎj+1,j = ‖uj‖2
– If ℎj+1,j = 0 then STOP;
– qj+1 = uj∕‖uj‖2

If the algorithm does not stop before the k-th step, then the Arnoldi vectors {q1,… ,qk} form an orthonormal basis ofk(A, v).
The Arnoldi process produces the factorization

AQk = QkHk + ℎk+1,kqk+1ekT

where Qk = [q1,… ,qk] ∈ ℝn×k and Hk is the k × k upper Hessenberg matrix defined as Hk = (ℎi,j)ki,j=1. Moreover, the
following relation holds:

QT
kAQk = Hk,

implying thatHk is the orthogonal projection ofA ontok(A, v). IfA is real symmetric, the associatedHk is also symmetric and
therefore tridiagonal. In this case, the Arnoldi process reduces to the Lanczos process, which is based on a three-term recurrence
and is therefore cheaper than Arnoldi in complexity and storage.
A crucial feature of the Arnoldi/Lanczos process is that the matrix A is not needed explicitly; what is needed is the action of

A on a given vector. This property makes Krylov methods especially well-suited to solving problems where the matrixA is large
and sparse, so that matrix-vector products can be computed cheaply. It should be mentioned that the practical implementation
of the Arnoldi process requires great care to avoid loss of orthogonality of the Arnoldi vectors and to select appropriate restart
techniques and stopping criteria; discussion of these issues, however, is outside the scope of this work.
One widespread application of the Lanczos/Arnoldi processes is in large-scale eigenvalue computation. Since k is small, the

eigenvalues ofHk, called Ritz values, can be computed explicitly. A few of the Ritz values typically give a good approximation
of the extreme eigenvalues ofA, with the quality of the approximation improving as k increases; see e.g., [126] for a presentation
of Lanczos/Arnoldi eigenvalue convergence theory.
Here we focus on application of the Arnoldi/Lanczos process to the approximation of f (A)v. Once k steps of Arnoldi’s

process have been carried out, an approximation of f (A)v can be computed as

f (A) ≈ ‖v‖2Qkf (Hk)e1 = Qkf (Hk)QT
k v. (31)

Since f (A)v ∈ d(A, v), the approximation (31) is exact if k = deg A,v. But in practice a good approximation of f (A)v
may be obtained for a suitable choice of k ≪ n, even though k < d. Since k is small, the explicit computation of f (Hk) is
inexpensive. Note that, in general, f (Hk) might not be defined; however, sufficient conditions are available to ensure that it is
[90]. In particular, if f (z) and its first n derivatives are defined at all points z within the field of values of A, then f (Hk) is
well-defined. We recall that the field of values of a matrix A ∈ ℂn×n is the set of all complex numbers of the form z = x∗Ax as
x varies among all vectors in ℂn with ‖x‖2 = 1.
Deciding when (31) is a sufficiently accurate approximation of f (A)v is a nontrivial task. Roughly speaking, the quality of

the approximation depends heavily on the spectrum of A and on how accurately it is approximated by the first few steps of the
Arnoldi process. A result of Saad generalized by Higham [90] gives some insight into the convergence process: it states that

‖v‖2Qkf (Hk) e1 = p̃k−1(A)v.

where p̃k−1 is the unique polynomial of degree at most k − 1 that interpolates f on the spectrum ofHk.
For the case f (A) = eA, Saad [126] suggests the error estimate

‖eAv −QkeHkQT
k v‖2 ≈ ‖v‖2eTk e

Hke1 .

Hence, the approximation error can be estimated by monitoring the (k, 1) entry of eHk . See also [91] and [137] for more results
on approximation of eAv. We refer to [90, 79] for a general discussion of polynomial Krylov method for computing matrix
functions.
As previously mentioned, polynomial approximations may converge very slowly for certain types of functions, in which case

one may want to consider rational approximations [117, 134]. The approach outlined so far can be generalized to a rational
approximation framework. Fix a sequence of complex or infinite poles �1,… , �m; then the associated rational Krylov subspace
of order m+1 is defined asm+1(A, v, qm) = qm(A)−1span{v, Av, … , Amv}, where qm(x) =

∏m
j=1,�j≠∞

(x− �j). Similarly to the
standard (polynomial) case, a rational Krylov method computes an orthonormal basis matrix Vm+1 for the spacem+1(A, v, qm).
This basis matrix satisfies a rational Arnoldi decomposition of the form

AVm+1Km = Vm+1Hm,
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with respect to an unreduced upper Hessenberg pencil (Hm, Km) of size (m + 1) × m. See, e.g., [88] for a review of rational
Krylov methods for the computation of f (A)v, and the MATLAB toolbox RKToolbox [27] for an efficient implementation.
Finally, we mention that yet another approach for estimating f (A)v, based on vector extrapolation, has been recently

investigated in [106].

7.2 Methods based on quadrature formulas
As was mentioned above, the evaluation or estimation of selected entries or averages of entries of f (A) is often required in
network analysis. These quantities can be written in the form

uTf (A)v,

for specific choices of the vectors u and v. For instance, since f (A)ij = eTi f (A)ej , we have for exponential-based centrality and
communicability measures:

• subgraph centrality: SC(i, �) = [e�A]i,i = eTi e
�Aei,

• subgraph communicability: [e�A]i,j = eTi e
�Aej ,

• hub centrality: eTi cosh
(
√

AAT
)

ei,

• authority centrality: eTi cosh
(
√

ATA
)

ei,

• total node communicability: TC(i, �) = eiT e�A1,

and similar expressions for resolvent- and Katz-based measures. In this section we focus on the case of undirected, possibly
weighted networks.
Golub and Meurant developed in [82, 83] an elegant technique for estimating uTf (A)v, that exploits the connection between

Gauss-type quadrature rules, the symmetric Lanczos process and the properties of orthogonal polynomials. The first application
of this methodology to computations of centrality and communicability measures for networks goes back to [20]. We recall here
the main ideas. We will first need to estabiish a condition on the derivatives of f .

Definition 2. A real function f (x) is strictly completely monotonic (s.c.m.) on an interval I ⊂ ℝ if f (2j)(x) > 0 and f (2j+1)(x) <
0 on I for all j ≥ 0.

For instance, f (x) = 1∕x is s.c.m. on (0,∞) and f (x) = e−x is s.c.m. onℝ, although f (x) = ex is not. Therefore the functions
that are most popular in matrix-based network analysis, that is, the exponential and the resolvent function, are s.c.m. on suitable
subsets of the real line, or can be rewritten as such, for example using ex = e−(−x).
Now, suppose that the real n × n matrix A is symmetric and that the function f (x) is s.c.m. on an interval containing the

spectrum of A. Consider the spectral decompositions A = QΛQT and f (A) = Qf (Λ)QT . For u, v ∈ ℝn we have

uTf (A)v = uTQf (Λ)QT v = pTf (Λ)q =
n
∑

i=1
f (�i)piqi,

where p = QTu and q = QT v. This expression can be reformulated as a Riemann-Stieltjes integral with respect to the discrete
(signed) measure �(�):

uTf (A)v =
b

∫
a

f (�)d�(�), �(�) =

⎧

⎪

⎨

⎪

⎩

0 � < a = �1
∑i
j=1 pjqj �i ≤ � < �i+1

∑n
j=1 pjqj b = �n ≤ �.

Here we are assuming that the eigenvalues of A are numbered in non-decreasing order: �1 ≤ �2 ≤… ≤ �n. Note that for u = v,
the measure �(�) is positive. The general Gauss-type quadrature rule withN nodes is written as

b

∫
a

f (�)d�(�) =
N
∑

j=1
wjf (tj) +

M
∑

k=1
vkf (zk) + R[f ],

whereR[f ] denotes the remainder, for which explicit formulas depending on higher derivatives of f (x) are available. The nodes
{tj}Nj=1 and the weights {wj}Nj=1 are unknown, whereas theM nodes {zk}Mk=1 are prescribed. In particular, ifM = 0 we obtain
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the Gauss rule; the choiceM = 1 and z1 = a or z2 = b yields the Gauss-Radau rule, whereas ifM = 2, z1 = a and z2 = b we
have the Gauss-Lobatto rule.
The s.c.m. hypothesis on f (x) implies that the sign of R[f ] is known. Therefore these rules yield upper/lower bounds on

uTf (A)v. Indeed, the Gauss rule gives a lower bound, the Gauss-Lobatto rule gives an upper bound, whereas the Gauss-Radau
rule can be used to obtain both a lower and an upper bound. If, on the other hand, f (x) is not s.c.m, Gauss-type quadrature rules
can only provide estimates of bilinear forms.
It is not necessary to compute Gauss nodes and weights explicitly. The evaluation of these quadrature rules is reduced to com-

putation of orthogonal polynomials via three-term recurrence, or, equivalently, computation of entries and spectral information
of the associated tridiagonal matrix via Lanczos’ method. Indeed, Golub and Meurant [83] prove the following relation:

N
∑

j=1
wjf (tj) = eT1 f (JN )e1 = [f (JN )]11,

where the tridiagonal matrix JN corresponds to the three-term recurrence relationship satisfied by the set of polynomials
orthonormal with respect to d�:

JN =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

!1 1
1 !2 2

⋱ ⋱ ⋱
N−2 !N−1 N−1

N−1 !N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The eigenvalues of JN are the Gauss nodes, whereas the Gauss weights are given by the squares of the first entries of the
normalized eigenvectors of JN .
Consider for instance the case u = v = ei, which corresponds to computing the (i, i) entry of f (A). The entries of JN can be

computed using the symmetric Lanczos algorithm:

jxj = rj = (A − !jI)xj−1 − j−1xj−2, j = 1, 2,…
!j = xTj−1Axj−1,
j = ‖rj‖2

with initial vectors x−1 = 0 and x0 = ei.
The case u ≠ v can be handled using the polarization identity:

uTf (A)v = 1
4
[

wTf (A)w − zTf (A)z
]

, w = u + v, z = u − v .

Setting u = ei, v = ej we obtain bounds for the (i, j) entry of f (A) at the cost of evaluating two quadratic forms. Other possible
approaches are discussed in [83].
One way of obtaining a priori upper and lower bounds on [f (A)]ij consists in carrying out a single step of Lanczos’ algorithm

by hand; for quantities like the Estrada index, these bounds are orders ofmagnitude better than those previously found in literature
[20]. Alternatively, one may explicitly perform a certain number of Lanczos iterations: each additional Lanczos step corresponds
to adding another node to the chosen Gauss-type rule, resulting in tighter and tighter bounds. A MATLAB implementation is
provided in the MMQ toolbox by Meurant [104]. If A is sparse, arithmetic complexity per iteration is typically O(n) or less, and
experimental evidence suggests that for many types of networks the number of iterations required to achieve a given accuracy
exhibits a weak dependence on n.
The standard Golub-Meurant approach may become expensive when n is large and f -centrality values are needed for several

nodes. For instance, suppose one needs to determine a few nodes with the largest f -subgraph centrality in a large graph: this
task would require the computation of upper and lower bounds for all the diagonal entries of f (A). In such cases, one may
apply techniques based on low rank approximation, as suggested in [71] for undirected graphs. For k ≪ n, one can estimate
the k largest eigenvalues �1,… , �k (now numbered in non-increasing order) and the associated eigenvectors q1,… ,qk using
the block Lanczos algorithm [83]. This partial spectral factorization yields the approximations A ≈

∑k
i=1 �iqiqi

T and f (A) ≈
∑k
i=1 f (�i)qiqi

T . Using the latter approximation, one can select a (small) set of nodes that contains the nodes of interest for the
original problem, and then apply quadrature rules to refine the bounds. Note that eigenvector centrality is equivalent to the rank-
one approximation A ≈ �1q1q1T . When the spectral gap �1 − �2 is large, the contribution of the dominant eigenvector to the
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exponential-based centrality measures is very significant, and the rankings obtained with these measures tend to be similar to
those given by eigenvector centrality. This is not the case when the gap is small; see the experiments reported in subsection 8.3.
In their work, Golub and Meurant also explain how to extend their Gauss-type quadrature approach to the block case. The

goal here is approximation of expressions of the formW Tf (A)W , where the matrixW ∈ ℝn×k, with k ≪ n, has orthonormal
columns. This block version, however, does not yield bounds on the sought quantities. The extension of Laurie’s anti-Gauss
quadrature rules to matrix-valued measures and their use in combination with block Gauss rules has been proposed in [72] to
compute upper/lower bounds on entries of f (A), both in the symmetric and nonsymmetric case. These techniques can also be
applied to cases where the function f is not s.c.m., provided that suitable conditions on the decay of its Taylor coefficients are
verified. Further generalizations are provided in [119] and in [4].
We also mention the use of partial SVD in combination with Gauss quadrature rules for the analysis of directed networks.

As pointed out in Section 4.5, functions such as the hyperbolic sine and cosine of
√

ATA and
√

AAT yield centrality and
communicability information on the associated directed network. For large n, however, explicity computing the SVD of A is
impractical and low-rank approximation techniques may help reduce the computational burden. The approach proposed in [14]
first computes a partial singular value decomposition, then determines a subset of “most important” nodes (or nodes between
which it is easier to travel), and finally applies quadrature rules to rank nodes in this subset.
When A is nonsymmetric (as in the case of directed networks), it is difficult to extend the approach based on quadrature rules.

At present, the best available approach to approximate selected entries [f (A)]ij for largeA is perhaps the use of an Arnoldi-based
method for the computation of f (A)ej , followed by extraction of the sought components.
Further developments of quadrature-based techniques for approximation of matrix functions rely on generalized averaged

Gauss rules and their block generalizations: see [121, 122].
As mentioned at the end of Section 6.7, a quadrature-based approach in a similar vein as Golub-Meurant (with Golub-Kahan

bidiagonalization replacing the Lanczos process) can also be applied to bound or estimate selected entries of generalized matrix
functions; see [10]. For functions that are oscillatory, techniques based on Chebyshev polynomial approximation offer a valid
alternative [13].
Finally, methods based on extrapolation for the estimation of bilinear forms involving matrix functions have been developed

in [74, 75].

8 SOME EXAMPLES

We illustrate and compare the behavior of different measures of centrality on four examples: a small undirected graph, a small
directed graph and two large real-life networks.

8.1 An example for an undirected graph
Our first example is a network of 15th century Florentine families [33]. Each node corresponds to a family and edges denote
marriages between families. The graph is depicted in Figure 1 .
We compute degree, eigenvector, subgraph, total communicability (the last two with parameter � = 1), total and Katz cen-

trality (with the parameter � chosen approximately at the midpoint of the allowed range). The rankings found by the various
centrality measures are collected in Table 2 . While all rankings agree on the preminence of the Medici family, the other fami-
lies take different positions depending on the chosen measure, although there is a general consensus on which families belong
in the top part of the ranking and which ones are instead at the bottom.

8.2 An example for a directed graph
Let us consider the directed graph G on four nodes with adjacency matrix

A =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 1 0
1 0 1 0
0 1 0 1
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

Below we show the digraph G and its associated undirected bipartite graph .



MICHELE BENZI AND PAOLA BOITO 25

Peruzzi

Castellani

Barbadori

Bischeri

Strozzi

Medici

Guadagni

Lamberteschi

Ridolfi

Tornabuoni

Albizzi

Ginori

AcciaiuoliSalviati
Pazzi

FIGURE 1 Network of 15th century Florentine families (adapted from [33]).

TABLE 2 Rankings for different measures of centrality applied to the Florentine families network.

rank degree eigenvector subgraph total comm. Katz

1st Medici Medici Medici Medici Medici
2nd Guadagni Strozzi Strozzi Strozzi Strozzi
3rd Strozzi Ridolfi Peruzzi Ridolfi Guadagni
4th Peruzzi Tornabuoni Tornabuoni Tornabuoni Ridolfi
5th Bischeri Guadagni Guadagni Guadagni Tornabuoni
6th Castellani Bischeri Ridolfi Bischeri Bischeri
7th Ridolfi Peruzzi Bischeri Peruzzi Albizzi
8th Tornabuoni Castellani Castellani Albizzi Peruzzi
9th Albizzi Albizzi Albizzi Castellani Castellani
10th Barbadori Barbadori Barbadori Barbadori Barbadori
11th Salviati Salviati Acciaiuoli Salviati Salviati
12th Lamberteschi Acciaiuoli Salviati Acciaiuoli Acciaiuoli
13th Ginori Barbadori Lamberteschi Pazzi Pazzi
14th Acciaiuoli Lamberteschi Ginori Lamberteschi Lamberteschi
15th Pazzi Ginori Pazzi Ginori Ginori

The matrix A is irreducible (G is strongly connected) with spectral radius �(A) = 1.8393 (to four decimal digits). If D is the
matrix of out-degrees, the matrix P = ATD−1 is column stochastic and its dominant eigenvector, which is the PageRank vector
of the network, is given by

p =
[

0.1905 0.3810 0.2857 0.1429
]T ,

hence the corresponding ranking of the nodes is 2 (top), 3, 1, and 4 (bottom).
The same ranking can be obtained from the diagonal entries of eA:

diag(eA) =
[

1.8414 2.6377 2.0287 1.2323
]T ,

and from the diagonal entries of the Katz resolvent for � = 0.5 (note that 1
�1
= 0.5437):

diag((I − 0.5A)−1) =
[

3.3333 5.3333 4.0000 2.0000
]T .
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FIGURE 2 A small directed graph (left) and the associated undirected bipartite graph (right).

Hence, on this graph several of the most important centrality measures give consistent results. This is often observed for very
small networks.
Things are more interesting if we look at hub and authority scores, i.e., if we distinguish between the role of a node as a

broadcaster and as a receiver of information. The simplest such measure is given by the out- and in-degree vectors:

dout =
[

2 2 2 1
]T , din =

[

1 3 2 1
]T .

We see that out-degree results in a tie of nodes 1, 2 and 3 for first place as hub, with node 4 ranked last, while the in-degree
scores give node 2 as the top authority, followed by node 3, with nodes 1 and 4 tied for last place.
The right and left dominant eigenvectors of A (normalized in the l2-norm) are given by

x1 =
[

0.5774 0.5774 0.4846 0.3139
]T , y1 =

[

0.3659 0.6729 0.5648 0.3071
]T .

Hence, eigenvector centrality gives the hub ranking 1-2 (tied), 3, 4 and the authority ranking 2, 3, 1, 4 (which is the same
ranking obtained with the metrics that do not distinguish between hubs and authorities). Note that neither out-degree, nor (right)
eigenvector centrality are able to distinguish node 1 from node 2. Similar results are obtained using total communicability,
whether exponential or resolvent-based:

eA1 =
[

6.9901 6.9901 6.1938 4.1112
]T , 1T eA =

[

4.7203 8.4636 6.9901 4.1112
]

and
(I − 0.5A)−11 =

[

14 14 12 8
]T , 1T (I − 0.5A)−1 =

[

9.3333 16.6667 14 8
]

.

On the other hand, the SVD-based centrality measures yield somewhat different rankings. The HITS ranking is the one
provided by the dominant left and right singular vectors:

u1 =
[

0.6555 0.3351 0.5422 0.4051
]T , v1 =

[

0.1685 0.8058 0.4980 0.2726
]T .

The corresponding hub and authority rankings are given by 1 (top), 3, 4, 2 (bottom) and 2 (top), 3, 4, 1 (bottom), respectively;
there are no ties. Note that in spite of some differences, the importance of node 1 as a hub and of node 2 as an authority is revealed
by all hub/authority measures. This is further confirmed by looking at the diagonal entries of the exponential of the (symmetric)
adjacency matrix of the bipartite graph  associated with G. Indeed, the first four diagonal entries of e are given by

[

2.3319 2.2289 2.2812 1.6414
]

while the last four entries are given by
[

1.5906 3.0209 2.2796 1.5922
]

.

Note also the strong agreement of all the centrality measures considered about the bottom ranking of node 4.
We end by commenting that in most applications, network scientists do not rely on a single centrality measure, but often

calculate several such measures; the most important nodes are those that score high for a majority of the measures considered.
Hence, consensus between different centrality measures is a desirable outcome. In this sense we can safely conclude that for the
small digraph G of this example, the top hub node is node 1 and that the top authority node is node 2.
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8.3 Examples of real-world undirected networks
In the first test of this section we use the scientific collaboration network ca-CondMat taken from the SuiteSparse Matrix
Collection [43]. The associated (symmetric) adjacencymatrix has size 23 133×23 133, with 186 936 nonzero entries. The largest
eigenvalue is 37.95, the spectral gap is 7.31. Clearly in this case it is crucial to apply numerical methods that exploit the sparsity
of the adjacency matrix. We determine:

• degree centrality, computed as A ⋅ 1,

• eigenvector centrality,

• subgraph centrality, i.e, the vector of diagonal entries of e�A computed via quadrature rules [104], with � = 0.5,

• total communicability e�A ⋅ 1 (with � = 0.5) computed via Lanczos’ method [87],

• Katz centrality (I − �A)−1 ⋅ 1, with � ≈ 0.5∕�1.

Table 3 shows, for each centrality vector, the indices of the ten top-ranked nodes and the time (in seconds) required for the
computation. Note that node 5013 is ranked first in three cases, fourth and fifth in the other two rankings. In general, several
nodes feature in most of the rankings, although at different places.

TABLE 3 Rankings and timings (in seconds) for different measures of centrality applied to the ca-CondMat network.

degree eigenvector subgraph total comm. Katz

1st 15576 5013 5013 5013 11302
2nd 11302 21052 21052 21052 15756
3rd 16897 18746 18746 11302 21052
4th 21052 11302 11302 18746 5013
5th 5013 9872 9872 9872 16897
6th 21833 13768 13768 13768 3352
7th 21068 5500 5500 5500 21833
8th 3352 20667 17245 20667 21068
9th 9886 17245 20667 17245 9886
10th 9876 4081 4081 4081 9876

time 1.39e−3 8.50e−2 178.02 0.102 2.20e−2

For this experiment we have used MATLAB 2018a running under Ubuntu 18.04 on a laptop equipped with a quad-core Intel
i3-7130U processor at 2.70 GHz and 4GB RAM. Eigenvector centrality was computed using the eigs function in MATLAB
(with default setting of the parameters). The subgraph centralities are computed using the Gauss rule (which provides lower
bounds) computed using the Lanczos algorithm; the iteration was stopped when the difference between subsequent estimates was
below 10−6 or when a maximum of 10 steps (quadrature nodes) was reached. The total communicabilities were computed using
Güttel’s funm_kryl code with a stopping accuracy set to 10−6, see [87]. Finally, Katz centrality was obtained with MINRES
using MATLAB’s built-in function minres; convergence was attained in just 9 iterations (the system is very well-conditioned
for the chosen value of �). Note that eigenvector, subgraph, and total communicability centrality return very similar (albeit not
identical) top-10 lists.
On this example, most ranking measures can be computed very fast. The exception is subgraph centrality, requiring the

calculation of all the 23 133 diagonal elements of e�A, an average of 0.0077 seconds per node. Since all of the centralities can in
principle be computed independently of one another, the cost of subgraph centrality could be reduced in a parallel environment.
However, given the strong agreement with total communicability (observed in many other cases as well), the latter appears to
be preferable for large networks.
As a second example, we show centrality results for the US road network usroads-48, also taken from [43]. This is an undi-

rected network with 126 146 nodes. The associated adjacency matrix has 323 900 nonzero entries. The two largest eigenvalues
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are �1 = 3.9107 and �2 = 3.8403; therefore the spectral gap �1 − �2 = 0.0705 is considerably smaller than the spectral gap in
the previous example. Table 4 shows rankings and timings for the computation of degree, eigenvector, subgraph, total commu-
nicability and Katz centrality. The choice of algorithms and parameters is the same as above; here MINRES converges after 10
iterations with relative residual 4.7e−7.

TABLE 4 Rankings and timings (in seconds) for different measures of centrality applied to the usroads-48 network.

degree eigenvector subgraph total comm. Katz

1st 58080 44182 58080 44182 44182
2nd 1452 44067 44182 55471 55471
3rd 9241 44154 55471 102130 102130
4th 19694 44087 43734 43734 43734
5th 25970 44323 102130 44906 44906
6th 31409 44255 44906 71416 71416
7th 41855 44356 45671 25970 25970
8th 42726 44035 71416 45671 58080
9th 43734 44133 120961 44067 45671
10th 44182 44294 1452 19694 19694

time 2.50e−3 1.10 1.80e+3 0.202 9.93e−2

For this network the agreement among the rankings is noticeably less strong that in the previous example. This behavior is
arguably related to the small size of the spectral gap and is consistent with the findings in [25]. Indeed, when the gap is small
the non-dominant eigenpairs give a substantial contribution to subgraph, total communicability and Katz centrality, resulting in
different rankings from the one obtained with eigenvector centrality.

9 CONCLUSIONS AND PERSPECTIVES

In this paper we have given a broad overview of the use of matrix functions in network analysis. These include centrality and
communicability metrics, and the description of diffusive processes on graphs, including discrete and continuous time random
walks. Functions of matrices arise naturally in the statistical mechanics approach to the analysis of complex networks. While
most of the literature concerns static networks, matrix functions can also be used in the context of temporal networks.
Overall, the application of matrix functions as a modeling tool in network science is by now well-established. Computational

aspects have also been vigorously developed in recent years, in particular Krylov subspace methods have been shown to be
quite effective for network science applications. These methods are able to handle both symmetric and unsymmetric problems
(corresponding to undirected and directed graphs, respectively) and convergence is often fast. Another recent research direction
has concerned the updating or downdating of a matrix function when the network undergoes a low-rank change.
Future work is likely to focus on the development of matrix and tensor functions arising in the study of temporal networks, and

on the extension of existing techniques to more sophisticated network models such as multiplex and other multilayer networks.
As an example of recent work in this area we refer to [133].
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