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Abstract

We prove the existence of positive solutions for the equation on Sn

−4 (n−1)
(n−2)∆g0u + n(n − 1)u = (1 + εK0(x))u2∗−1 , where ∆g0 is the

Laplace-Beltrami operator on Sn, 2∗ is the critical Sobolev exponent,
and ε is a small parameter. The problem can be reduced to a finite
dimensional study which is performed via Morse theory.
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1 Introduction

If (M, g) is a Riemannian manifold of dimension n ≥ 3, with scalar curvature R,

and one considers the conformal metric g′ = u
4

n−2 g, where u is a smooth positive
function, then the scalar curvature R′ of (M, g′) is given by the following relation,
see [3]

(1.1) −4
(n− 1)

(n− 2)
∆gu+Ru = R′u

n+2
n−2 .
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Here ∆g denotes the Laplace-Beltrami operator on (M, g). We also recall that for
n = 2, if one sets g′ = e2ug, then

(1.2) −∆gu+R = R′eu.

The problem of prescribing scalar curvature is the following: assigned a function S
on M , one looks for a metric g′ conformal to g, for which R′ ≡ S. Equivalently, one
has to find a positive solution u to equation (1.1) or (1.2). This problem is quite
delicate: for example, in [14] or [19] some non existence results on Sn and on Rn
are shown. The Scalar Curvature Problem on Sn has been mainly faced under two
types of assumptions

1) Assumptions of global type

2) Assumptions at prescribed levels

In the case 1), the hypotheses involve the critical points of S at all levels. Roughly,
a typical result says that a solution exists provided S is a Morse function with
∆S 6= 0 at every critical point, and

(1.3)
∑

x∈Crit(S),∆S(x)<0

(−1)m(S,x) 6= (−1)n.

Here m(S, x) is the Morse index of S at x. For n = 2 this result has been given
in [9], and in [4] for n = 3, see also [7]. For n ≥ 4 the situation is more delicate,
and, in general one has to require a flatness condition. More precisely, see [15], [16],
for every xi ∈ Crit(S), it is assumed to exist βi ∈ (n − 2, n) such that in some
orthonormal coordinates (yj) centered at xi it is

(1.4) S(y) = S(0) +

n∑
j=1

aj |yj |βi + o(|y|βi),

with aj 6= 0 and
∑n
j=1 aj 6= 0. Suitable flatness conditions on the derivatives of S are

also required. For every x ∈ Crit(S), set ∆̃S(x) =
∑n
j=1 aj , and i(x) = ]aj : aj < 0.

Then solutions of (1.1) are obtained provided

(1.5)
∑

x∈Crit(S),∆̃S(x)<0

(−1)i(x) 6= (−1)n.

The case 2) deals with assumptions at some prescribed levels of S. Typically, S
must possess two maxima x0 and x1 which are connected by some path x(t), and

(1.6) x saddle point for S, inf
t
S(x(t))≤ S(x)<S(x0) ⇒ ∆S(x) > 0.

Results of this kind have been obtained in [8], [13] for n = 2, and in [5] for n ≥ 3.
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Morse Theory has been used in [12] for n = 2, and in [20] for n = 3. In particular,
in [20] it is shown that a solution of (1.1) exists provided S is a Morse function and

(1.7) D0 −D1 +D2 6= 1, or D0 −D1 > 1.

Here Dq = ]{x ∈ Crit(S) : m(S, x) = 3 − q,∆S(x) < 0}. Note that the first
condition in (1.7) is equivalent to (1.3).

In our paper we consider the case (M, g) = (Sn, g0), n ≥ 3, and S close to a
constant, i.e. S of the form S = 1 + εK0(x), for |ε| small. So we are reduced to
study the problem on Sn

(1.8) −4
(n− 1)

(n− 2)
∆g0u+ n(n− 1)u = (1 + εK0)u

n+2
n−2 , u > 0.

Our main results are given in Section 4. The first one, Theorem 4.1, deals with
case 1). Under suitable non-degeneracy assumptions on K0, existence of solutions
is found if

(1.9)

q∑
j=0

(−1)q−jFj − (−1)q ≤ −1, for some q = 1, . . . , n− 1.

Here Fj = ]{x ∈ Crit(K0) : m(K0, x) = j,∆K0(x) > 0}. When ε < 0, Theorem
4.1 extends, in the perturbative setting, the results in [20] to all dimensions, see
Remark 4.2. Our second main result, Theorem 4.4, and its generalization Theorem
4.6, deals with case 2). The main difference with respect to [5] is that we require
condition (1.6) to hold just for the saddle point of Morse index n− 1. Remark 4.5
gives precise comparisons with the results in [5], [8], and [13].

Our approach follows that of [1] and [2], where functionals of the form fε =
f0 − εG, |ε| small, are studied. In particular, also [2] deals with problem (1.8), and
recovers existence under condition (1.5) for an order of flatness β ∈ (1, n). See also
[10] for other perturbation results.

In the present case f0 possesses a manifold of critical points Z ∼ R+ × Rn =
{(µ, ξ) : µ > 0, ξ ∈ Rn}. One can show that Z perturbs to another manifold
Zε ' Z which is a natural constraint for fε. Moreover, it turns out that fε|Zε =
b0 − εG(z) + o(ε), where b0 is a constant. In this way, one is led to study the
finite-dimensional functional Γ = G|Z . In Proposition 3.5 it is shown that, from the
properties on Γ at µ = 0 and at infinity, we can apply Morse Theory under general
boundary condition, see [18]. Using this technique, we can treat the cases 1) and
2) with the same approach.

In Section 5 we state some generalizations of the above discussed results, which
also include conditions of the type (1.5).

The above results are stated in the preliminary note [17].
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Notations

We will work mainly in the space

E = D1(Rn) =

{
u ∈ L2∗

(Rn) :

∫
|∇u|2 < +∞

}
,

which coincides with the completion of C∞c (Rn) with respect to the Dirichlet norm.
Given a function f : X → R, where X is an Hilbert space or a Riemannian manifold,
we denote with f ′ or with ∇f its gradient, and we set Crit(f) = {x : f ′(x) = 0};
if f is of class C2, and if x ∈ Crit(f), m(f, x) is the Morse index of f at x. Given
a, b ∈ R, we set also fa = {x ∈ X : f(x) ≤ a}, and f ba = {x ∈ X : a ≤ f(x) ≤ b}.
Bmr (y) stands for the m-dimensional closed ball of radius r centred at y ∈ Rm,
while BR is BR = {u ∈ E : ‖u‖ ≤ R}. Embedding Sn in Rn+1 as Sn = {x ∈
Rn+1 : ‖x‖ = 1}, we denote by σ : Sn → Rn the stereographic projection through
the north pole PN of Sn, PN = (0, . . . , 0, 1), and we define R : Sn → Sn to be
the reflection through the hyperplane xn+1 = 0. Given y ∈ Rn+1

+ , we denote by

y1, . . . , yn+1 its components. The function Π : Rn+1
+ → Rn denotes the projection

onto the last n coordinates, and R̄n+1
+ is the closure of Rn+1

+ .

2 Preliminaries

The abstract perturbation method

In this section we recall the abstract perturbation method developed in [1]. Let E
be an Hilbert space, and let f0, G ∈ C2(E,R). Our aim is to find critical points of
the perturbed functional

(2.1) fε(u) = f0(u)− εG(u), u ∈ E.

The fundamental tool is the following Theorem (see [1], Lemmas 2 and 4).

Theorem 2.1 Suppose f0 satisfies the following conditions

f1) f0 possesses a finite dimensional manifold of critical points Z; let b0 = f0(z),
for all z ∈ Z;

f2) f ′′0 (z) is a Fredholm operator of index zero for all z ∈ Z;

f3) for all z ∈ Z, it is TzZ = Kerf ′′0 (z).

Then, given R > 0, there exist ε0 > 0, and a C1 function w = w(z, ε) : N =
Z ∩BR × (−ε0, ε0)→ E which satisfies the following properties

i) w(z, 0) = 0 for all z ∈ Z ∩BR;

ii) w(z, ε) is orthogonal to TzZ, ∀(z, ε) ∈ N ;
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iii) the manifold
Zε = {z + w(z, ε) : z ∈ Z ∩BR}

is a natural constraint for f ′ε, namely: if u ∈ Zε and f ′ε|Zε(u) = 0, then it is
also f ′ε(u) = 0.

The inclusion TzZ ⊆ Kerf ′′0 (z) is always true: f3) is a non-degeneracy condition
which allows to apply the Implicit Function Theorem. Since in our case the elements
of Z are positive functions, one can deduce that the critical points of fε on Zε are
non-negative functions. Using standard regularity arguments and the maximum
principle, see for example [21] Appendix B, it is possible to prove that the critical
points of fε|Zε are actually regular and positive functions.

Morse theory for manifolds with boundary

For a complete treatment about this topic we refer to [11], where a refinement of the
theory in [18] is presented. Let M be a Riemannian manifold, and let f ∈ C1(M).
If p is an isolated critical point of f , with f(p) = c, and if q ≥ 0, the q th critical
group of f at p is

Cq(f, p) = Hq(f
c ∩ Up, (f c \ {p}) ∩ Up),

where Up is a neighborhood of p such that Crit(f) ∩ Up = {p}, and Hq are the
singular homology groups. By the excision property, the critical groups are well
defined, i.e. they do not depend on Up. If f is of class C2 and p is a non-degenerate
critical point, then clearly Cq(f, p) ' Z for q = m(f, p), and Cq(f, p) = 0 otherwise.
If M possesses a smooth boundary ∂M = Σ, which is an oriented submanifold with
codimension 1, then the outward unit normal ν(x) at x ∈ Σ is well defined.

Definition 2.2 f ∈ C1(M) is said to satisfy the general boundary condition on
f ba if the following two properties hold

(i) Crit(f) ∩ (Σ ∩ f ba) = ∅;

(ii) the restriction f |Σ ∩ f ba has only isolated critical points.

Let (Σ−)ba =
{
x ∈ Σ ∩ f ba : (f ′(x), ν(x)) ≤ 0

}
, and suppose that f has only iso-

lated critical points in f ba. Let {x1, . . . , xj , . . . } be the critical points of f ba, and
{y1, . . . , yj , . . . } those of f |(Σ−)ba

; the Morse type numbers of f on f ba and on (Σ−)ba
are respectively defined as follows:

mq =

∞∑
j=1

rank Cq(f, xj), q = 0, 1, 2, . . . ,

µq =

∞∑
j=1

rank Cq(f |Σ− , yj), q = 0, 1, 2, . . . .
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The augmented Morse type numbers are

Mq = mq + µq, q = 0, 1, 2, . . . .

The following Theorem is a version of the Morse inequalities for manifolds with
boundary.

Theorem 2.3 Let f ∈ C1(M), and let a, b be regular values for f and for f |Σ. Sup-
pose that f has only isolated critical points and that satisfies the general boundary
condition on f ba. Then the following version of the Morse inequalities holds

(2.2)
∑
j≥0

Mjt
j =

∑
j≥0

βjt
j + (1 + t)Q(t),

where βq = rank Hq(f
b, fa), j = 0, 1, 2, . . . , and Q(t) is a formal power series with

non-negative coefficients.

We recall that the meaning of (2.2) is the following

q∑
j=0

(−1)q−jMj ≥
q∑
j=0

(−1)q−jβj , q = 0, 1, 2, . . . ;(2.3)

∞∑
q=0

(−1)qMq =

∞∑
q=0

(−1)qβq. q = 0, 1, 2, . . . .(2.4)

3 Application to the scalar curvature problem

Solutions of equation (1.1), with (M, g) = (Sn, g0), can be obtained by variational
methods, as critical points of the functional
(3.1)

J(u) = 2
(n− 1)

(n− 2)

∫
Sn
|∇g0u|2 +

1

2
n(n− 1)

∫
Sn
u2 − 1

2∗

∫
Sn
S|u|2

∗
, u ∈ H1(Sn),

where 2∗ = 2n
(n−2) is the critical Sobolev exponent. For n ≥ 3, let E = D1(Rn), and

denote with

(3.2) z0 = cn
1

(1 + |x|2)
n−2
2

, cn = [4n(n− 1)]
n−2
4 ,

the unique (up to dilation and translation) solution to the problem

(3.3)

{
−4 (n−1)

(n−2)∆u = u
n+2
n−2 in Rn

u > 0, u ∈ E.
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The stereographic projection σ : Sn → Rn induces an isomorphism ι : H1(Sn)→ E
given by (ιu)(x) = z0(x)u(σ−1(x)), and J(u) = f(ιu), where

f(u) = 2
(n− 1)

(n− 2)

∫
Rn
|∇u|2 − 1

2∗

∫
Rn
S̄|u|2

∗
, u ∈ E.

Here S̄ : Rn → R is the function given by S̄(x) = S(σ−1(x)).
Since we consider the case S = 1 + εK0, it is S̄(x) = 1 + εK(x), with K(x) =

K0(σ−1(x)). Thus we are reduced to find solutions of

(3.4)

{
−4 (n−1)

(n−2)∆u = (1 + εK(x))u
n+2
n−2 in Rn

u > 0, u ∈ E.

Throughout this paper, it will be always understood that K(x) originates from a
smooth function K0 defined on Sn, and we suppose that ∇g0K0(PN ) 6= 0.

This problem has been recently tackled in [2] by using an abstract perturbation
result developed in [1]. f(u) can be written as f(u) = fε(u) = f0(u)−εG(u), where

f0(u) = 2
(n− 1)

(n− 2)

∫
Rn
|∇u|2 − 1

2∗

∫
|u|2

∗
; G(u) =

1

2∗

∫
Rn
K|u|2

∗
, u ∈ E.

The functional f0 possesses a manifold Z of critical points given by

Z =

{
zµ,ξ = µ−

n−2
2 z0

(
x− ξ
µ

)
, µ > 0, ξ ∈ Rn

}
' R+ × Rn.

Z is an (n + 1)-dimensional manifold which is homeomorphic to the half space
Rn+1

+ = {(µ, ξ) : µ > 0, ξ ∈ Rn}, so hypothesis f1) in Theorem 2.1 is satisfied with
b0 = f0(z0). Condition f2) holds too, since f ′′0 (z) = I − C,C compact for every
z ∈ Z, while f3) is consequence of the following Lemma (see [2] or [6]).

Lemma 3.1 For every zµ,ξ ∈ Z, it is Tzµ,ξZ = Kerf ′′0 (zµ,ξ). Namely if u ∈ E
solves

−4
(n− 1)

(n− 2)
∆u = (2∗ − 1) z2∗−2

µ,ξ u,

then there holds

u = αDµzµ,ξ + 〈∇xzµ,ξ, β〉, for some α ∈ R, β ∈ Rn.

By Theorem 2.1 iii), critical points of fε|Zε are also critical points of fε. The
following Proposition, proved in [2], is very useful for the study of the reduced
functional fε|Zε .

Proposition 3.2 Setting ϕε(µ, ξ) := fε(zµ,ξ + w(ε, zµ,ξ)), there holds

(3.5) ϕε(µ, ξ) = b0 − εΓ(µ, ξ) + o(ε), ϕ′ε(µ, ξ) = −εΓ′(µ, ξ) + o(ε), as ε→ 0,

where ε−1o(ε)→ 0 as ε→ 0 uniformly on the compact sets of Rn+1
+ , and

(3.6) Γ(µ, ξ) =
1

2∗

∫
K(x)z2∗

µ,ξ(x)dx.
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Since w(ε, zµ,ξ) is constructed using local inversion theorem, the functions ϕε is
defined only on a compact set of Rn+1

+ , depending on ε. However, as ε → 0, the

domain of ϕε invade all of Rn+1
+ . The behavior of the function Γ has been studied

in [2]: we collect the main features of this study in the following Proposition .

Proposition 3.3 The function Γ is of class C2, and can be extended to the hyper-
plane {µ = 0} by setting

(3.7) Γ(0, ξ) =
1

2∗

∫
K(ξ)z2∗

0 (x)dx ≡ c0K(ξ),

where 2∗ c0 =
∫
z2∗

0 . Moreover the first and the second derivatives of Γ at {µ = 0}
are given by

(3.8) Γµ(0, ξ) = 0, Γµξi(0, ξ) = 0, Γµµ(0, ξ) = c1∆K(ξ); ∀ξ ∈ Rn,

where n 2∗ c1 =
∫
|x|2z2∗

0 (x)dx.

It is also useful to study the function Γ at infinity, i.e. for µ+|ξ| large; this can be
done by using the Kelvin transform y → y

|y|2 in Rn. Define the function K̂ : Rn → R

as K̂(x) = K
(

x
|x|2

)
, and consider the functional Γ̂(µ, ξ) = 1

2∗

∫
K̂(x)z2∗

µ,ξ(x)dx,

which is the counterpart of Γ(µ, ξ) for the function K̂.

Lemma 3.4 There holds

Γ(µ, ξ) = Γ̂(µ̄, ξ̄), µ̄ =
µ

µ2 + ξ2
, ξ̄ =

ξ

µ2 + ξ2
,

i.e. the function Γ modifies by means of a Kelvin transform in Rn+1
+ .

Proof. It is immediate to check that, from the relation between K and K0, there
holds K0 ◦R = K̂ ◦σ. If one substitutes K with K̂, and considers the corresponding
functionals f̂ , Ĝ, it can be easily deduced that f(u) = f̂(u∗), G(u) = Ĝ(u∗), where

u ∈ E and u∗(x) = |x|2−nu
(

x
|x|2

)
. An easy computation shows that

(zµ,ξ)
∗ = zµ̄,ξ̄, µ̄ =

µ

µ2 + ξ2
, ξ̄ =

ξ

µ2 + ξ2
.

Since Γ(µ, ξ) = G(zµ,ξ), it follows that

Γ(µ, ξ) = G(zµ,ξ) = Ĝ(zµ̄,ξ̄) = Γ̂(µ̄, ξ̄),

and this concludes the proof of the Lemma.

8



Since (µ̄, ξ̄) → (0, 0) when µ + |ξ| → +∞, the problem of studying Γ at infinity
becomes equivalent to study Γ̂ near (0, 0).

Proposition 3.5 Suppose K ∈ C2(Rn) is a Morse function such that

(L) x ∈ Crit(K) ⇒ ∆K(x) 6= 0.

For s > 0, let B̃s = Bn+1
s2−1
2s

(
s2+1

2s , 0
)

. Then, for s sufficiently large, Γ satisfies the

general boundary condition on B̃s.

Proof. Note that ∂B̃s is the n-dimensional sphere centred on the axis ξ = 0, which
intersects this axis at the points s and 1

s . In particular, it follows that ∂B̃s is

invariant under the Kelvin transform x→ x
|x|2 in Rn+1. It is clear that Γ ∈ C1(B̃s).

We will prove (i) of Definition 2.2 by estimating the component of∇Γ normal to ∂B̃s
near the points (0, ξ), ξ ∈ Crit(K), and the tangent component on the remainder of
∂B̃s. From expression (3.6), using the change of variables x = µy+ξ, one infers that
Γ(µ, ξ) = 1

2∗

∫
K(µy + ξ)z2∗

0 (y)dy; the Dominated Convergence Theorem implies

(3.9) Γξi(µ, ξ)→ Kξi(ξ), Γξiξj (µ, ξ)→ Kξiξj (ξ) as µ→ 0,

uniformly for ξ in a fixed compact subset of Rn. Fixed r > 0, ∂B̃s ∩ Bn+1
2r (0) is

the graph of a smooth function hs : Π(∂B̃s ∩Bn+1
2r (0))→ R for s large. Moreover,

hs → 0 in the C2 norm as s→ +∞, so from (3.9) it follows that

∇Γ(x, hs(x))→ (0,∇K(x)), as s→ +∞,

for x ∈ Bnr (0), since Bnr (0) ⊆ Π(∂B̃s ∩Bn+1
2r (0)). In particular we deduce that

(3.10) x ∈ Bnr (0),∇K(x) 6= 0 ⇒ ∇ξΓ(x, hs(x)) 6= 0 for s large.

From equation (3.8) we have also

Γµ(x, hs(x)) = c1∆K(x)hs(x) (1 + o(1)), ∀x ∈ Bnr (0),

where o(1)→ 0 uniformly as s→ +∞. Hence

(3.11) x ∈ Bnr (0),∆K(x) 6= 0 ⇒ ∇µΓ(x, hs(x)) 6= 0 for s large.

From condition (L) and using (3.10) and (3.11), it follows that ∇Γ(hs(x), x) 6= 0
for every x ∈ Bnr . To prove (i) it is sufficient to show that ∇Γ is different from 0
on ∂B̃s also for µ+ |ξ| large.

Since, as noticed before, B̃s is invariant under the Kelvin transform, the problem
of studying ∇Γ on ∂B̃s at infinity becomes equivalent to study ∇Γ̂ on ∂B̃s near
the origin. In particular, since

∇Γ(µ, ξ) =
1

|(µ̄, ξ̄)|2

[
∇Γ̂(µ̄, ξ̄)− 2

|(µ̄, ξ̄)|2
(
∇Γ̂(µ̄, ξ̄) (µ̄, ξ̄)

)
(µ̄, ξ̄)

]
,

then∇Γ(µ, ξ) = 0 if and only if∇Γ̂(µ̄, ξ̄) = 0. But∇K0(PN ) 6= 0, hence∇K̂(0) 6= 0.
This implies that also ∇Γ̂ 6= 0 on ∂B̃s near the point (0, 0), thus (i) is proved.
Condition (ii) follows from (3.9) and from the fact that the critical points of K are
non degenerate.
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Remark 3.6 Suppose a and b are regular values for K, and that K satisfies

(Lba) x ∈ Kb
a, x ∈ Crit(K) ⇒ x is non-degenerate, and ∆K(x) 6= 0.

Then, for s sufficiently large, a, b are regular values for Γ on ∂Bs, and Γ satisfies
the general boundary condition on ∂B̃s ∩ Γba. The proof follows that of Proposition
3.5.

In the following, for brevity, we denote with B a large ball B̃s for which Propo-
sition 3.5 holds. We also set ΓB = Γ|B .

4 Main results

We will prove existence of solutions to (3.4) by means of Theorem 2.1, finding
critical points (µ, ξ) of ϕε with µ > 0. Arguing by contradiction, we will assume
throughout this section that ϕε possesses no such a critical point.

Theorem 4.1 Suppose K ∈ C2(Rn) is a Morse function which satisfies (L). For
j = 0, . . . , n − 1, let Fj be the number of critical points of K with Morse index j
and with ∆K > 0. Suppose also that condition (1.9) holds. Then for |ε| sufficiently
small, problem (3.4) has solution.

Proof. We first consider the case ε > 0: the case ε < 0 requires just some little
modification. Proposition 3.5 cannot be directly applied to ϕε on B, since condition
(ii) of Definition 2.2 does not hold in general. In fact we cannot deduce a non-
degeneracy condition for the critical points of ϕε on ∂B, because we can provide
C1 estimates only. Thus we slightly modify ϕε near the critical points {z1, . . . , zh}
of Γ|∂B , in order to deal with a function which satisfies the general boundary
condition. Fix δ > 0 so small that the balls Bn+1

δ (z1), . . . Bn+1
δ (zh) are all disjoint,

compactly contained in Rn+1
+ , and such that ∇Γ 6= 0 in Bn+1

δ (zi). Such a choice is
possible because Γ satisfies the general boundary condition in B.

Choose a smooth cut-off function ψδ such that ψδ ≡ 1 in Bn+1
δ
2

(zi), and such that

ψδ ≡ 0 outside each Bn+1
δ (zi). Consider the functions ϕδε = ψδ εΓ+(1−ψδ) (b0−ϕε).

For ε sufficiently small, ϕδε is defined on the whole B; moreover, by (3.5) it is
∇ϕδε 6= 0 on ∂B, since also ∇Γ 6= 0 there. For ε small, the function ϕδε|∂B possesses
only isolated critical points, which, by construction, are those of Γ|∂B . Thus ϕδε
satisfies the general boundary condition on B. Hence, we can apply Theorem 2.3
to ϕδε on B, with a = εca, and b = εcb, where ca < c0 inf K, and cb > c0 supK.
From (3.6) we deduce that c0 inf K ≤ Γ ≤ c0 supK, so, if ε and δ are sufficiently
small, a and b are regular values for ϕδε on B and on ∂B, and also (ΓB)ba = B. Since
we are assuming that ϕε possesses no critical point, then neither ϕδε has interior
critical point in B, so it is mj = 0 for all j. Moreover, since the only critical points
of ϕδε on ∂B are those of Γ, from (3.9) it follows that they are non-degenerate, and
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µj = Fj for all j. Since B is contractible, β0(B) = 1, and βj(B) = 0 for all j ≥ 1;
applying (2.3) to the present case we obtain

q∑
j=0

(−1)q−jFj =

q∑
j=0

(−1)q−jµj =

q∑
j=0

(−1)q−jMj ≥
q∑
j=0

(−1)q−jβj = (−1)q,

but this is in contradiction with (1.9).

Remark 4.2 a) Set S = 1 + εK0, and let Dj = ]{x ∈ Crit(S) : M(S, x) =
n−j,∆S(x) < 0}. Then for q = 1 and ε < 0, condition (1.9) becomes D0−D1 > 1.
Thus Theorem 4.1 extends, in the perturbative case, the result in [20].

b) With the same arguments as before, we can prove existence also under condi-
tion (1.3). In fact, since

∑
xi∈Crit(S)(−1)m(S,xi) = 1 + (−1)n, hypothesis (1.3) is

equivalent to

(4.1)
∑

xi∈Crit(S),∆S(xi)>0

(−1)m(S,xi) 6= 1.

In order to get existence, we have only to repeat the proof of Theorem 4.1 and to
use equation (2.4) instead of (2.3) at the end, to deduce

1 = χ(B) = χ((ΓB)ba) =
∑
q≥0

(−1)qMq =
∑

xi∈Crit(K),∆K(xi)>0

(−1)m(K,xi),

which is in contradiction with (4.1).
c) For n = 2, in [8] is proved existence of solutions of (1.2) if D0 − D1 6= 1.

Theorem 4.1 with ε < 0 and q = 1, partially extends this result, but in a different
way from (1.3).

We can use relative homology to study the topological changes in the sublevels
of Γ. This allows us to provide some existence results under some “localized” hy-
potheses on K, of the type 2).

Lemma 4.3 Let a ∈ R be a regular value for Γ and for Γ|∂B. Let fn : Rn+1
+ → R,

fn → Γ on B in the C1 norm. Then (fn)a ∩ B is homeomorphic to (ΓB)a for n
sufficiently large.

Proof. We just give a sketch, details are left to the reader. First of all we consider
the case in which Γ is a function with compact support in Rn+1, and a 6= 0. For
ρ > 0, let aρ = {x ∈ Rn+1 : |x− Γ−1(a)| < ρ}: we take ρ > 0 so small that ∇Γ 6= 0
in aρ. Since a is a regular value for Γ, and since fn converge to Γ uniformly, the sets
(fn)a and Γa coincide outside aρ. In aρ we can consider the flow ẋ = ∇Γ(x), which
is well defined because Γ ∈ C2. For n large, since fn → Γ in C1, the levels {fn = a}
are transversal to ∇Γ; so we can continuously deform them into {Γ = a} using
the gradient flow of Γ. When Γ is just defined on B, it is sufficient to substitute
∇Γ with a suitable pseudo-gradient field γ for Γ near {Γ = a} which leaves ∂B
invariant.
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The following Theorem improves, in the perturbative and non-degenerate case,
a result in [5]: in fact, we make assumptions only on the saddle points with Morse
index 1.

Theorem 4.4 Suppose K has a local minimum x0, and that there exists x1 6= x0

with K(x1) ≤ K(x0). Let x(t) : [0, 1] → Rn be a curve with x(0) = x0, x(1) = x1,
and set a = K(x0), b = maxtK(x(t)). Suppose also that K satisfies (Lba), and that
the following condition holds

(H) x ∈ Crit(K), a < K(x) ≤ b,m(x,K) = 1 ⇒ ∆K(x) < 0.

Then for |ε| small, problem (3.4) admits a solution.

Proof. We can suppose that x(t) is a smooth curve of “mountain pass type”, i.e.
the supremum of K on x(t) is not greater than the supremum of K on any curve
joining x0 to x1. In particular, the supremum on x(t) is attained only at a finite
number of points x2, . . . xh whose Morse index is 1. From Proposition 3.3 we have
that Γ(0, x0) = c0 a, and since ∆K(x0) > 0, from (3.8) it follows that (0, x0) is a
strict local minimum for Γ. Moreover (3.7) implies that Γ(0, x1) = c0K(x1) ≤ c0 a,
so Γ possesses a mountain pass geometry at x0. Let C be the class of curves C =
{c : [0, 1]→ R̄n+1

+ | c(0) = x0, c(1) = x1}, and set

Γ̄ = inf
c∈C

sup
t

Γ(c(t)).

We claim that c0 a < Γ̄ < c0 b. The first inequality is trivial; in order to prove the
second, consider the family of curves y(t) : [0, 1]→ Rn+1

+ , depending on a parameter
η > 0, defined in the following way

y(t) =

{
(0, x(t)) if |x(t)− xj | ≥ η, for all j = 2, . . . , h;

(
√

1− |x(t)− xj |2, x(t)) if |x(t)− xj | < η, for some j = 2, . . . , h.

Equation (3.8) implies Γ(y(t)) = K(x(t))+c1∆K(x(t)) (y1(t))2 (1+o(1)); moreover,
from hypothesis (H), it follows that ∆K(xj) < 0, for j = 2, . . . , h. Hence for η
sufficiently small, there holds supt Γ(y(t)) < suptK(x(t)), so our claim is proved.
We can choose τ > 0 such that the components of Aτ = {Γ < c0 a+τ} containing x0

and x1 are different. Let c(·) = (y1(·)+ω, y2(·), . . . , yn+1(·)). By continuity, for ω > 0
sufficiently small, we obtain c(t) ⊆ Rn+1

+ , c(0), c(1) ∈ Aτ , and supt Γ(c(t)) < c0 b.
Let B be the ball given by Remark 3.6; we can take B so large that the range of
c is contained in B, and B intersects both the components of Aτ containing x0

and x1. Fix ã regular for Γ and for Γ|∂B , such that max{Γ(c(0)),Γ(c(1))} < ã <
c0K(x0)+τ , and b̃ regular for Γ and for Γ|∂B , with Γ̄ < b̃ < c0 b. We need again some
small modification to get the general boundary condition; so we define the functions
ϕδε as in the proof of Theorem 4.1. If δ and ε are sufficiently small, then εã and εb̃ are

regular values for ϕδε, and from Lemma 4.3, it is H1((ϕδε)
εb̃, (ϕδε)

εã) ' H1(Γb̃,Γã),
since ε−1(b0 − ϕε)→ Γ in C1 on B. Moreover, by the definition of Γ̄, ã and b̃, it is
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Γ(c(1)) < ã, hence [c(1)−c(0)] is a 0-cycle in Γã, and is the boundary of the 1-chain

[c] in Γb̃B . On the other hand, by our choice of τ , [c(1)− c(0)] is not a boundary in
ΓãB ; it follows that [c(1) − c(0)] 6= 0 as a 0-cycle in ΓãB . Hence, if i is the inclusion

i : ΓãB → Γb̃B , it follows that i∗([c(1)− c(0)]) = 0. By the exactness of the homology

sequence of the pair (Γb̃B ,Γ
ã
B)

· · · −→ H1(Γb̃B ,Γ
ã
B)

∂∗−→ H0(ΓãB)
i∗−→ H0(Γb̃B) −→ · · · ,

and from the fact that i∗ has a nontrivial kernel, we deduce that H1(Γb̃B ,Γ
ã
B) 6= 0.

It follows that also H1((ϕδε)
εb̃, (ϕδε)

εã) 6= 0. The Morse type number µ1 of ϕδε on

(∂B)εb̃εã coincides with that of Γ, which is zero by assumption (H). The function

ϕδε|B satisfies the general boundary condition on Bεb̃εã, and there holds µ1 = 0,
β1 > 0, so, using (2.3) with q = 1 and then with q = 0, we obtain

(4.2) 0 = m1 = M1 ≥ β1 +M0 − β0 ≥ 1,

which is a contradiction.

Remark 4.5 a) A related result is given in [8], where S is assumed to be a Morse
function with non-zero Laplacian at each of its critical points. A solution is found if
S possesses at least two local maximum points, and at all saddle points it is ∆S > 0.
For ε < 0 we are in the same situation, but our assumptions involve only the saddle
points whose level is between a and b.

b) Suppose x0 and x1 are global minima for K, possibly degenerate, and let x(t)
be a ”mountain pass type” curve joining x0 to x1. Set a = inf K, b = suptK(x(t)),
and assume that

Crit(K) ∩ {a < K < b} = ∅; y ∈ x([0, 1]),K(x) = b ⇒ ∆K(x) < 0,

Also in this case Γ has the mountain pass geometry at (0, x0), and reasoning as

above, one can find ã and b̃, c0 a < ã < b̃ < c0 b such that H1(Γb̃B ,Γ
ã
B) 6= 0. Since

there is no critical value of K in K b̃
ã, the Morse type numbers of Γ on (∂B)b̃ã are

zero, and we are led again to (4.2). Hence, for ε < 0, we recover the existence result
under the assumptions in [13].

c) For n ≥ 3, in [5] it is assumed that S possesses only a finite number of
critical points, and that, again, two maxima x0 and x1 are connected by a curve
x(t). Moreover, at every saddle point of S between infx([0,1]) S and S(x0) it must
be ∆S > 0. Here the main difference, is that we make assumptions only at saddle
points with prescribed Morse index.

d) For ε > 0, Theorem 4.4 has no known counterpart.

Theorem 4.4 can be easily generalized in the following way.

13



Theorem 4.6 Suppose K possesses a local minimum x0 and l connected compo-
nents A1, . . . , Al of (Ka\x0), where a = K(x0). For j = 1, . . . , l, let cj : [0, 1]→ Sn

be a curve with cj(0) = x0, cj(1) ∈ Aj, and set b = maxj suptK(cj(t)). Suppose K
satisfies condition (Lba), and that it possesses at most l − 1 saddle points of Morse
index 1 in {a < K ≤ b}. Then for |ε| small, problem (3.4) admits a solution.

Proof. It is sufficient to reason as in the proof of Theorem 4.4. Define Cj = {c :
[0, 1]→ Rn+1

+ | c(0) = x0, c(1) ∈ Aj}, and set

Γ̃ = max
j
{ inf
c∈Cj

sup
t

Γ(cj(t))}.

Then, again, one proves that Γ̃ < c0 b. In this case, choosing ã and b̃ appropriately,
it turns out that β1 > l; so the result again follows from the Morse inequalities.

5 Further results

Isolated critical points with non-null Laplacian

We can recover the general boundary condition also when K possesses isolated
critical points, which can be possibly degenerate, if the Laplacian at these points
has a definite sign. In order to do this, for s > 0 we set

(5.1) Gs(µ, ξ) = Γ(2µ, ξ)− Γ(2µ− hs(ξ), ξ) + Γ(µ, ξ)− Γ(2hs(ξ), ξ) + Γ(0, ξ).

Here ξ belongs to a fixed compact set of Rn, and 2µ > hs(ξ), where hs is the
function defined in the proof of Proposition 3.5. Let ψδ be a cut-off function as
in the proof of Theorem 4.1 centred at the points (0, xj), where x1, . . . , xh are the
critical points of K. We can suppose that |∇ψδ| < 4

δ .

Theorem 5.1 Suppose that K possesses isolated critical points x1, . . . , xh, and that
∆K(xj) 6= 0, for j = 1, . . . , h. Assume that for any j = 1, . . . , h, rank Cq(K,xj) =
0 for q sufficiently large. Set Fq =

∑
j,∆K(xj)>0 rank Cq(K,xj), and suppose that

(5.2)

n∑
j=0

(−1)jFj 6= 1, or

q∑
j=0

(−1)q−jFj − (−1)q ≤ −1,

for some q = 0, . . . , n. Then for |ε| small, problem (3.4) admits a solution.

Proof. Again, we assume by contradiction that ϕε does not possess any critical point
(µ, ξ) with µ > 0. We show that the function ϕδ,sε = εψδGs + (1 − ψδ) (b0 − ϕε)
satisfies the general boundary condition on B for suitable values of δ, s and for ε
arbitrarily small. First we prove that ϕδ,sε does not possess any critical point (µ, ξ)
with µ > 0, so in particular condition (i) in Definition 2.2 holds.
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Given δ > 0, we set

Uδ =

h⋃
j=1

(
Bn+1
δ ((0, xj)) \Bn+1

δ
2

((0, xj))
)

; Cδ = inf
Uδ
|∇Γ|.

Since ∆K(xj) 6= 0, and since xj is an isolated critical point of K, we can deduce
from formulas (3.8) and (3.9) that Cδ > 0. From the definition of Gs it follows that

Gs(hs(ξ), ξ) = Γ(0, ξ),(5.3)

(Gs(hs(ξ), ξ))µ = 2Γµ(2hs(ξ), ξ) − 2Γµ(hs(ξ), ξ) + Γµ(hs(ξ), ξ),

and that Gs(µ, ξ) → Γ(µ, ξ), as s → +∞, C1-uniformly on bounded sets, since Γ
and∇Γ are Lipschitz functions. We also know from (3.8) that the following estimate
holds

Γµ(µ, ξ) = c1∆K(ξ)µ (1 + o(1)),(5.4)

where (µ, ξ) ∈ Bn+1
δ (0, xj), and where o(1)→ 0 uniformly as δ → 0. We can choose

δ to be so small that

(5.5) 16 |∆K(ξ)−∆K(xj)| < |∆K(xj)|, |ξ − xj | < δ; 16 |o(1)| < 1.

Next, if s is sufficiently large, there holds

(5.6) 20 sup
Uδ

|∇Gs −∇Γ| < Cδ; 40 sup
Uδ

|Gs − Γ| < δ Cδ.

Hence, from elementary computations we deduce

|∇ϕδ,sε − ε∇Γ| ≤ |∇ψδ| (|εGs − εΓ|+ |εΓ− (b0 − ϕε)|)
+ |ψδε∇Gs + (1− ψδ)∇ϕε − ε∇Γ|.

Since |∇ψδ| < 4
δ , using (5.6) it follows that

|∇ϕδ,sε − ε∇Γ| ≤ 1

10
εCδ +

1

20
εCδ + |∇ψδ| |εΓ− (b0 − ϕε)|+ |∇ϕε + ε∇Γ|.

Now take ε so small that 10 supUδ |∇ϕε+ε∇Γ| < εCδ, and such that 40 supUδ |εΓ−
(b0−ϕε)| < εδCδ. Taking into account (5.6), we deduce that 2 |∇ϕδ,sε −ε∇Γ| ≤ εCδ,
so by the definition of Cδ, it follows that ∇ϕδ,sε 6= 0 in Uδ. Using equations (5.4)
and (5.5), one proves that 2∆K(xj) (Gs(µ, ξ))µ ≥ c1 (∆K(xj))

2 (µ + hs(ξ)), for
(µ, ξ) ∈ Bn+1

δ (0, xj), so ∇ϕδ,sε 6= 0 also in Bn+1
δ
2

(0, xj). Since ϕδ,sε = b0 −ϕε outside

each Bn+1
δ (0, xj), we conclude that ∇ϕδ,sε never vanishes, and (i) is proved. As far

as (ii), if s is sufficiently large, and if ε is sufficiently small, then ∇ϕε 6= 0 on
Oδ = ∂B \ ∪jBn+1

δ (0, xj). Since ϕδ,sε equals b0 −ϕε on Oδ, all the critical points of
ϕδ,sε |∂B must be contained in the balls Bn+1

δ
2

(0, xj). But here, see the first formula
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in (5.3), ϕδ,sε = εGs coincide with εΓ(0, ξ) = εc0K(·), so its critical points are
isolated. This proves (ii), and thus ϕδ,sε satisfies the general boundary condition on
B. From the above computations it follows that the flow of ∇ϕδ,sε near its critical
points is inward B, reps. outward, if also ∇Γ is inward, resp. outward. Hence, the
j-th Morse type number µj of ∇ϕδ,sε on ∂B coincides with Fj , and moreover mj = 0
for all j, since ∇ϕδ,sε does not possess interior critical points. Now we conclude as
in Theorem 4.1 and in Remark 4.2.

β-degeneracy

The following Lemma, see [2] describes the behavior of Γ when a critical point of
K admits some degeneracy.

Lemma 5.2 Given ξ ∈ Rn, suppose that there exist βξ ∈ (1, n), and Qξ : Rn → R
such that

1) Qξ(λy) = λβξQξ(y), y ∈ Rn, λ > 0;

2) K(x) = K(ξ) +Qξ(x− ξ) + o(|x− ξ|βξ), as x→ ξ,

and let Tξ = 1
2∗

∫
Qξz

2∗

0 . Then

(5.7) lim
µ→0+

Γ(µ, ξ)− Γ(µ, 0)

µβ
= Tξ.

Moreover q = (0, ξ) is an isolated critical point of Γ.

This Lemma can be applied when K admits an expansion as in (1.4) near its
critical points. In fact, the topological structure of the sublevels of K is analogous
to the non-degenerate case. There exists a unique nonnegative number q for which
Cq(K,xi) 6= 0; this number coincides with i(x), and is the corresponding of the

Morse index. Moreover it turns out that Txi = Cβi ∆̃K, where Cβi > 0, and, we

recall, ∆̃K =
∑n
j=1 aj . Hence, the quantity ∆̃K plays the role of the Laplacian in

the non-degenerate case. So, Theorems 4.1, 4.4 and 4.6 can be stated with obvious
changes in the case when K is degenerate of order βi ∈ (1, n) at its critical points
xi.

Higher dimensions

The following result generalizes Theorem 4.4, substituting m-dimensional balls to
one dimensional curves.

Theorem 5.3 Suppose there exists a positive integer r < n, and a smooth embed-
ding h0 : Sr → Sn such that the maximum of K on h0(Sr) is attained at some crit-
ical point x0 ∈ Crit(K), with ∆K(x0) > 0, and m(K,x0) = r. Let h : Br+1

1 → Sn
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with h|∂Br+1
1 =Sr , and let a = K(x0), b = maxy∈Br+1

1
K(h(y)). Suppose K satisfies

condition (Lba), and that

(Br) z ∈ Crit(K) ∩Kb
a,m(z,K) = r + 1 ⇒ ∆K(z) < 0.

Then for |ε| small, problem (3.4) has a solution.

Proof. The proof follows that of Theorem 4.4, but here the mountain pass construc-
tion is substituted by a linking scheme. By the non-degeneracy of x0, there exists
an (n− r)-dimensional subspace H of Rn where K ′′(x0) is positive definite. Given
ζ > 0, we define the half-sphere Vζ to be

Vζ = {z ∈ R×H : |z − (0, x0)| = ζ} .

Taking into account (3.8), we deduce that for ζ sufficiently small it is infz∈Vζ K(z) >

K(x0). If we choose B appropriately, we find an homeomorphism h̃ : Sr → B such
that suph̃(Sr) Γ < infVζ Γ, and such that h̃(Sr) and Vζ homotopically link. It turns

out that h̃(Sr) and Vζ also homologically link, see [11], Chapter 2.1, so we can find

ã and b̃ such that Hr(Γ
b̃
B ,Γ

ã
B) 6= 0. To conclude, it is sufficient to use (2.3) with

q = r and r + 1.

Remark 5.4 If r = n−1, then condition (Br) is automatically satisfied. For n = 2
and r = 1 this result has been obtained in [12].

Remark 5.5 If Γ turns out to be a Morse function, then also some multiplicity
results can be obtained. In fact, the local degree of Γ at each of its critical points
is different from 0. From expression (3.5) one deduces that ϕε possesses as many
stationary points as Γ. A lower bound for this number, see [2], can be found via

Degree Theory, and is given by
∣∣∣∑n−1

q=0 (−1)qFq − (−1)n
∣∣∣. See also [20] for related

multiplicity results.
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