The Scalar Curvature Problem on S^n : an approach via Morse Theory

Andrea Malchiodi*

Rutgers University, Department of Mathematics Hill Center, Busch Campus 110 Frelinghuysen Road, 08854-8019 Piscataway, NJ, USA

Abstract

We prove the existence of positive solutions for the equation on $S^n - 4\frac{(n-1)}{(n-2)}\Delta_{g_0}u + n(n-1)u = (1 + \varepsilon K_0(x))u^{2^*-1}$, where Δ_{g_0} is the Laplace-Beltrami operator on S^n , 2^* is the critical Sobolev exponent, and ε is a small parameter. The problem can be reduced to a finite dimensional study which is performed via Morse theory.

Key words: Elliptic equations, Critical Sobolev exponent, Scalar Curvature, Perturbation method, Morse Theory.

1 Introduction

If (M,g) is a Riemannian manifold of dimension $n \geq 3$, with scalar curvature R, and one considers the conformal metric $g' = u^{\frac{4}{n-2}}g$, where u is a smooth positive function, then the scalar curvature R' of (M,g') is given by the following relation, see [3]

(1.1)
$$-4\frac{(n-1)}{(n-2)}\Delta_g u + Ru = R'u^{\frac{n+2}{n-2}}.$$

^{*}Supported by M.U.R.S.T., Variational Methods and Nonlinear Differential Equations

Here Δ_g denotes the Laplace-Beltrami operator on (M, g). We also recall that for n = 2, if one sets $g' = e^{2u}g$, then

(1.2)
$$-\Delta_g u + R = R' e^u.$$

The problem of prescribing scalar curvature is the following: assigned a function S on M, one looks for a metric g' conformal to g, for which $R' \equiv S$. Equivalently, one has to find a positive solution u to equation (1.1) or (1.2). This problem is quite delicate: for example, in [14] or [19] some non existence results on S^n and on \mathbb{R}^n are shown. The Scalar Curvature Problem on S^n has been mainly faced under two types of assumptions

1) Assumptions of global type

2) Assumptions at prescribed levels

In the case 1), the hypotheses involve the critical points of S at all levels. Roughly, a typical result says that a solution exists provided S is a Morse function with $\Delta S \neq 0$ at every critical point, and

(1.3)
$$\sum_{x \in Crit(S), \Delta S(x) < 0} (-1)^{m(S,x)} \neq (-1)^n.$$

Here m(S, x) is the Morse index of S at x. For n = 2 this result has been given in [9], and in [4] for n = 3, see also [7]. For $n \ge 4$ the situation is more delicate, and, in general one has to require a flatness condition. More precisely, see [15], [16], for every $x_i \in Crit(S)$, it is assumed to exist $\beta_i \in (n - 2, n)$ such that in some orthonormal coordinates (y_j) centered at x_i it is

(1.4)
$$S(y) = S(0) + \sum_{j=1}^{n} a_j |y_j|^{\beta_i} + o(|y|^{\beta_i}),$$

with $a_j \neq 0$ and $\sum_{j=1}^n a_j \neq 0$. Suitable flatness conditions on the derivatives of S are also required. For every $x \in Crit(S)$, set $\tilde{\Delta}S(x) = \sum_{j=1}^n a_j$, and $i(x) = \sharp a_j : a_j < 0$. Then solutions of (1.1) are obtained provided

(1.5)
$$\sum_{x \in Crit(S), \tilde{\Delta}S(x) < 0} (-1)^{i(x)} \neq (-1)^n.$$

The case 2) deals with assumptions at some prescribed levels of S. Typically, S must possess two maxima x_0 and x_1 which are connected by some path x(t), and

(1.6) x saddle point for S, $\inf_{t} S(x(t)) \leq S(x) < S(x_0) \Rightarrow \Delta S(x) > 0.$

Results of this kind have been obtained in [8], [13] for n = 2, and in [5] for $n \ge 3$.

Morse Theory has been used in [12] for n = 2, and in [20] for n = 3. In particular, in [20] it is shown that a solution of (1.1) exists provided S is a Morse function and

(1.7)
$$D_0 - D_1 + D_2 \neq 1$$
, or $D_0 - D_1 > 1$.

Here $D_q = \#\{x \in Crit(S) : m(S, x) = 3 - q, \Delta S(x) < 0\}$. Note that the first condition in (1.7) is equivalent to (1.3).

In our paper we consider the case $(M,g) = (S^n, g_0), n \ge 3$, and S close to a constant, i.e. S of the form $S = 1 + \varepsilon K_0(x)$, for $|\varepsilon|$ small. So we are reduced to study the problem on S^n

(1.8)
$$-4\frac{(n-1)}{(n-2)}\Delta_{g_0}u + n(n-1)u = (1+\varepsilon K_0)u^{\frac{n+2}{n-2}}, \quad u > 0.$$

Our main results are given in Section 4. The first one, Theorem 4.1, deals with case 1). Under suitable non-degeneracy assumptions on K_0 , existence of solutions is found if

(1.9)
$$\sum_{j=0}^{q} (-1)^{q-j} F_j - (-1)^q \le -1, \quad \text{for some } q = 1, \dots, n-1.$$

Here $F_j = \sharp \{x \in Crit(K_0) : m(K_0, x) = j, \Delta K_0(x) > 0\}$. When $\varepsilon < 0$, Theorem 4.1 extends, in the perturbative setting, the results in [20] to all dimensions, see Remark 4.2. Our second main result, Theorem 4.4, and its generalization Theorem 4.6, deals with case 2). The main difference with respect to [5] is that we require condition (1.6) to hold just for the saddle point of Morse index n - 1. Remark 4.5 gives precise comparisons with the results in [5], [8], and [13].

Our approach follows that of [1] and [2], where functionals of the form $f_{\varepsilon} = f_0 - \varepsilon G$, $|\varepsilon|$ small, are studied. In particular, also [2] deals with problem (1.8), and recovers existence under condition (1.5) for an order of flatness $\beta \in (1, n)$. See also [10] for other perturbation results.

In the present case f_0 possesses a manifold of critical points $Z \sim \mathbb{R}_+ \times \mathbb{R}^n = \{(\mu, \xi) : \mu > 0, \xi \in \mathbb{R}^n\}$. One can show that Z perturbs to another manifold $Z_{\varepsilon} \simeq Z$ which is a natural constraint for f_{ε} . Moreover, it turns out that $f_{\varepsilon}|_{Z_{\varepsilon}} = b_0 - \varepsilon G(z) + o(\varepsilon)$, where b_0 is a constant. In this way, one is led to study the finite-dimensional functional $\Gamma = G|_Z$. In Proposition 3.5 it is shown that, from the properties on Γ at $\mu = 0$ and at infinity, we can apply Morse Theory under general boundary condition, see [18]. Using this technique, we can treat the cases 1) and 2) with the same approach.

In Section 5 we state some generalizations of the above discussed results, which also include conditions of the type (1.5).

The above results are stated in the preliminary note [17].

Acknowledgements

The author wishes to thank Prof. A. Ambrosetti for having proposed the study of this problem and for his useful advices.

Notations

We will work mainly in the space

$$E = D^1(\mathbb{R}^n) = \left\{ u \in L^{2^*}(\mathbb{R}^n) : \int |\nabla u|^2 < +\infty \right\},$$

which coincides with the completion of $C_c^{\infty}(\mathbb{R}^n)$ with respect to the Dirichlet norm. Given a function $f: X \to \mathbb{R}$, where X is an Hilbert space or a Riemannian manifold, we denote with f' or with ∇f its gradient, and we set $Crit(f) = \{x : f'(x) = 0\}$; if f is of class C^2 , and if $x \in Crit(f)$, m(f, x) is the Morse index of f at x. Given $a, b \in \mathbb{R}$, we set also $f^a = \{x \in X : f(x) \le a\}$, and $f^b_a = \{x \in X : a \le f(x) \le b\}$. $B^m_r(y)$ stands for the m-dimensional closed ball of radius r centred at $y \in \mathbb{R}^m$, while B_R is $B_R = \{u \in E : \|u\| \le R\}$. Embedding S^n in \mathbb{R}^{n+1} as $S^n = \{x \in \mathbb{R}^{n+1} : \|x\| = 1\}$, we denote by $\sigma : S^n \to \mathbb{R}^n$ the stereographic projection through the north pole P_N of S^n , $P_N = (0, \ldots, 0, 1)$, and we define $\mathcal{R} : S^n \to S^n$ to be the reflection through the hyperplane $x_{n+1} = 0$. Given $y \in \mathbb{R}^{n+1}_+$, we denote by y_1, \ldots, y_{n+1} its components. The function $\Pi : \mathbb{R}^{n+1}_+ \to \mathbb{R}^n$ denotes the projection onto the last n coordinates, and \mathbb{R}^{n+1}_+ is the closure of \mathbb{R}^{n+1}_+ .

2 Preliminaries

The abstract perturbation method

In this section we recall the abstract perturbation method developed in [1]. Let E be an Hilbert space, and let $f_0, G \in C^2(E, \mathbb{R})$. Our aim is to find critical points of the perturbed functional

(2.1)
$$f_{\varepsilon}(u) = f_0(u) - \varepsilon G(u), \qquad u \in E.$$

The fundamental tool is the following Theorem (see [1], Lemmas 2 and 4).

Theorem 2.1 Suppose f_0 satisfies the following conditions

- f1) f_0 possesses a finite dimensional manifold of critical points Z; let $b_0 = f_0(z)$, for all $z \in Z$;
- f2) $f_0''(z)$ is a Fredholm operator of index zero for all $z \in Z$;
- f3) for all $z \in Z$, it is $T_z Z = Ker f_0''(z)$.

Then, given R > 0, there exist $\varepsilon_0 > 0$, and a C^1 function $w = w(z, \varepsilon) : N = Z \cap B_R \times (-\varepsilon_0, \varepsilon_0) \to E$ which satisfies the following properties

i) w(z,0) = 0 for all $z \in Z \cap B_R$;

ii) $w(z,\varepsilon)$ *is orthogonal to* $T_z Z$, $\forall (z,\varepsilon) \in N$;

iii) the manifold

$$Z_{\varepsilon} = \{ z + w(z, \varepsilon) : z \in Z \cap B_R \}$$

is a natural constraint for f'_{ε} , namely: if $u \in Z_{\varepsilon}$ and $f'_{\varepsilon}|_{Z_{\varepsilon}}(u) = 0$, then it is also $f'_{\varepsilon}(u) = 0$.

The inclusion $T_z Z \subseteq Ker f_0''(z)$ is always true: f3) is a non-degeneracy condition which allows to apply the Implicit Function Theorem. Since in our case the elements of Z are positive functions, one can deduce that the critical points of f_{ε} on Z_{ε} are non-negative functions. Using standard regularity arguments and the maximum principle, see for example [21] Appendix B, it is possible to prove that the critical points of $f_{\varepsilon}|_{Z_{\varepsilon}}$ are actually regular and positive functions.

Morse theory for manifolds with boundary

For a complete treatment about this topic we refer to [11], where a refinement of the theory in [18] is presented. Let M be a Riemannian manifold, and let $f \in C^1(M)$. If p is an isolated critical point of f, with f(p) = c, and if $q \ge 0$, the q^{th} critical group of f at p is

$$C_q(f,p) = H_q(f^c \cap U_p, (f^c \setminus \{p\}) \cap U_p),$$

where U_p is a neighborhood of p such that $Crit(f) \cap U_p = \{p\}$, and H_q are the singular homology groups. By the excision property, the critical groups are well defined, i.e. they do not depend on U_p . If f is of class C^2 and p is a non-degenerate critical point, then clearly $C_q(f,p) \simeq \mathbb{Z}$ for q = m(f,p), and $C_q(f,p) = 0$ otherwise. If M possesses a smooth boundary $\partial M = \Sigma$, which is an oriented submanifold with codimension 1, then the outward unit normal $\nu(x)$ at $x \in \Sigma$ is well defined.

Definition 2.2 $f \in C^1(M)$ is said to satisfy the general boundary condition on f_a^b if the following two properties hold

- (i) $Crit(f) \cap (\Sigma \cap f_a^b) = \emptyset;$
- (ii) the restriction $f|_{\Sigma} \cap f_a^b$ has only isolated critical points.

Let $(\Sigma_{-})_{a}^{b} = \{x \in \Sigma \cap f_{a}^{b} : (f'(x), \nu(x)) \leq 0\}$, and suppose that f has only isolated critical points in f_{a}^{b} . Let $\{x_{1}, \ldots, x_{j}, \ldots\}$ be the critical points of f_{a}^{b} , and $\{y_{1}, \ldots, y_{j}, \ldots\}$ those of $f|_{(\Sigma_{-})_{a}^{b}}$; the *Morse type numbers* of f on f_{a}^{b} and on $(\Sigma_{-})_{a}^{b}$ are respectively defined as follows:

$$m_q = \sum_{j=1}^{\infty} rank \ C_q(f, x_j), \qquad q = 0, 1, 2, \dots,$$
$$\mu_q = \sum_{j=1}^{\infty} rank \ C_q(f|_{\Sigma_-}, y_j), \qquad q = 0, 1, 2, \dots.$$

The augmented Morse type numbers are

$$M_q = m_q + \mu_q, \qquad q = 0, 1, 2, \dots$$

The following Theorem is a version of the Morse inequalities for manifolds with boundary.

Theorem 2.3 Let $f \in C^1(M)$, and let a, b be regular values for f and for $f|_{\Sigma}$. Suppose that f has only isolated critical points and that satisfies the general boundary condition on f_a^b . Then the following version of the Morse inequalities holds

(2.2)
$$\sum_{j\geq 0} M_j t^j = \sum_{j\geq 0} \beta_j t^j + (1+t)Q(t),$$

where $\beta_q = \operatorname{rank} H_q(f^b, f^a), \ j = 0, 1, 2, \dots, \ and \ Q(t)$ is a formal power series with non-negative coefficients.

We recall that the meaning of (2.2) is the following

(2.3)
$$\sum_{j=0}^{q} (-1)^{q-j} M_j \ge \sum_{j=0}^{q} (-1)^{q-j} \beta_j, \qquad q = 0, 1, 2, \dots;$$

(2.4)
$$\sum_{q=0}^{\infty} (-1)^q M_q = \sum_{q=0}^{\infty} (-1)^q \beta_q. \qquad q = 0, 1, 2, \dots$$

3 Application to the scalar curvature problem

Solutions of equation (1.1), with $(M, g) = (S^n, g_0)$, can be obtained by variational methods, as critical points of the functional (3.1)

$$J(u) = 2\frac{(n-1)}{(n-2)} \int_{S^n} |\nabla_{g_0} u|^2 + \frac{1}{2}n(n-1) \int_{S^n} u^2 - \frac{1}{2^*} \int_{S^n} S|u|^{2^*}, \qquad u \in H^1(S^n).$$

where $2^* = \frac{2n}{(n-2)}$ is the critical Sobolev exponent. For $n \ge 3$, let $E = D^1(\mathbb{R}^n)$, and denote with

(3.2)
$$z_0 = c_n \frac{1}{(1+|x|^2)^{\frac{n-2}{2}}}, \quad c_n = [4n(n-1)]^{\frac{n-2}{4}},$$

the unique (up to dilation and translation) solution to the problem

(3.3)
$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = u^{\frac{n+2}{n-2}} & \text{in } \mathbb{R}^n \\ u > 0, \ u \in E. \end{cases}$$

The stereographic projection $\sigma: S^n \to \mathbb{R}^n$ induces an isomorphism $\iota: H^1(S^n) \to E$ given by $(\iota u)(x) = z_0(x)u(\sigma^{-1}(x))$, and $J(u) = f(\iota u)$, where

$$f(u) = 2\frac{(n-1)}{(n-2)} \int_{\mathbb{R}^n} |\nabla u|^2 - \frac{1}{2^*} \int_{\mathbb{R}^n} \bar{S}|u|^{2^*}, \qquad u \in E.$$

Here $\bar{S}: \mathbb{R}^n \to \mathbb{R}$ is the function given by $\bar{S}(x) = S(\sigma^{-1}(x))$.

Since we consider the case $S = 1 + \varepsilon K_0$, it is $\overline{S}(x) = 1 + \varepsilon K(x)$, with $K(x) = K_0(\sigma^{-1}(x))$. Thus we are reduced to find solutions of

(3.4)
$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = (1+\varepsilon K(x))u^{\frac{n+2}{n-2}} & \text{in } \mathbb{R}^n\\ u > 0, \ u \in E. \end{cases}$$

Throughout this paper, it will be always understood that K(x) originates from a smooth function K_0 defined on S^n , and we suppose that $\nabla_{g_0} K_0(P_N) \neq 0$.

This problem has been recently tackled in [2] by using an abstract perturbation result developed in [1]. f(u) can be written as $f(u) = f_{\varepsilon}(u) = f_0(u) - \varepsilon G(u)$, where

$$f_0(u) = 2\frac{(n-1)}{(n-2)} \int_{\mathbb{R}^n} |\nabla u|^2 - \frac{1}{2^*} \int |u|^{2^*}; \qquad G(u) = \frac{1}{2^*} \int_{\mathbb{R}^n} K|u|^{2^*}, \quad u \in E.$$

The functional f_0 possesses a manifold Z of critical points given by

$$Z = \left\{ z_{\mu,\xi} = \mu^{-\frac{n-2}{2}} z_0\left(\frac{x-\xi}{\mu}\right), \mu > 0, \xi \in \mathbb{R}^n \right\} \simeq \mathbb{R}_+ \times \mathbb{R}^n.$$

Z is an (n + 1)-dimensional manifold which is homeomorphic to the half space $\mathbb{R}^{n+1}_+ = \{(\mu, \xi) : \mu > 0, \xi \in \mathbb{R}^n\}$, so hypothesis f1 in Theorem 2.1 is satisfied with $b_0 = f_0(z_0)$. Condition f2 holds too, since $f''_0(z) = I - C, C$ compact for every $z \in Z$, while f3 is consequence of the following Lemma (see [2] or [6]).

Lemma 3.1 For every $z_{\mu,\xi} \in Z$, it is $T_{z_{\mu,\xi}}Z = Kerf_0''(z_{\mu,\xi})$. Namely if $u \in E$ solves

$$-4\frac{(n-1)}{(n-2)}\Delta u = (2^* - 1) z_{\mu,\xi}^{2^* - 2} u,$$

then there holds

$$u = \alpha D_{\mu} z_{\mu,\xi} + \langle \nabla_x z_{\mu,\xi}, \beta \rangle, \quad \text{for some } \alpha \in \mathbb{R}, \ \beta \in \mathbb{R}^n.$$

By Theorem 2.1 *iii*), critical points of $f_{\varepsilon}|_{Z_{\varepsilon}}$ are also critical points of f_{ε} . The following Proposition, proved in [2], is very useful for the study of the reduced functional $f_{\varepsilon}|_{Z_{\varepsilon}}$.

Proposition 3.2 Setting $\varphi_{\varepsilon}(\mu, \xi) := f_{\varepsilon}(z_{\mu,\xi} + w(\varepsilon, z_{\mu,\xi}))$, there holds

 $\begin{array}{ll} (3.5) \quad \varphi_{\varepsilon}(\mu,\xi)=b_{0}-\varepsilon\Gamma(\mu,\xi)+o(\varepsilon), \quad \varphi_{\varepsilon}'(\mu,\xi)=-\varepsilon\Gamma'(\mu,\xi)+o(\varepsilon), \quad as \; \varepsilon \to 0, \\ where \; \varepsilon^{-1}o(\varepsilon) \to 0 \; as \; \varepsilon \to 0 \; uniformly \; on \; the \; compact \; sets \; of \; \mathbb{R}^{n+1}_{+}, \; and \end{array}$

(3.6)
$$\Gamma(\mu,\xi) = \frac{1}{2^*} \int K(x) z_{\mu,\xi}^{2^*}(x) dx.$$

Since $w(\varepsilon, z_{\mu,\xi})$ is constructed using local inversion theorem, the functions φ_{ε} is defined only on a compact set of \mathbb{R}^{n+1}_+ , depending on ε . However, as $\varepsilon \to 0$, the domain of φ_{ε} invade all of \mathbb{R}^{n+1}_+ . The behavior of the function Γ has been studied in [2]: we collect the main features of this study in the following Proposition .

Proposition 3.3 The function Γ is of class C^2 , and can be extended to the hyperplane $\{\mu = 0\}$ by setting

(3.7)
$$\Gamma(0,\xi) = \frac{1}{2^*} \int K(\xi) z_0^{2^*}(x) dx \equiv c_0 K(\xi),$$

where $2^* c_0 = \int z_0^{2^*}$. Moreover the first and the second derivatives of Γ at $\{\mu = 0\}$ are given by

(3.8)
$$\Gamma_{\mu}(0,\xi) = 0, \quad \Gamma_{\mu\xi_i}(0,\xi) = 0, \quad \Gamma_{\mu\mu}(0,\xi) = c_1 \Delta K(\xi); \quad \forall \xi \in \mathbb{R}^n,$$

where $n 2^* c_1 = \int |x|^2 z_0^{2^*}(x) dx$.

It is also useful to study the function Γ at *infinity*, i.e. for $\mu + |\xi|$ large; this can be done by using the Kelvin transform $y \to \frac{y}{|y|^2}$ in \mathbb{R}^n . Define the function $\hat{K} : \mathbb{R}^n \to \mathbb{R}$ as $\hat{K}(x) = K\left(\frac{x}{|x|^2}\right)$, and consider the functional $\hat{\Gamma}(\mu,\xi) = \frac{1}{2^*} \int \hat{K}(x) z_{\mu,\xi}^{2^*}(x) dx$, which is the counterpart of $\Gamma(\mu,\xi)$ for the function \hat{K} .

Lemma 3.4 There holds

$$\Gamma(\mu,\xi) = \hat{\Gamma}(\bar{\mu},\bar{\xi}), \qquad \bar{\mu} = \frac{\mu}{\mu^2 + \xi^2}, \ \bar{\xi} = \frac{\xi}{\mu^2 + \xi^2},$$

i.e. the function Γ modifies by means of a Kelvin transform in \mathbb{R}^{n+1}_+ .

Proof. It is immediate to check that, from the relation between K and K_0 , there holds $K_0 \circ \mathcal{R} = \hat{K} \circ \sigma$. If one substitutes K with \hat{K} , and considers the corresponding functionals \hat{f}, \hat{G} , it can be easily deduced that $f(u) = \hat{f}(u^*), G(u) = \hat{G}(u^*)$, where $u \in E$ and $u^*(x) = |x|^{2-n}u\left(\frac{x}{|x|^2}\right)$. An easy computation shows that

$$(z_{\mu,\xi})^* = z_{\bar{\mu},\bar{\xi}}, \qquad \bar{\mu} = \frac{\mu}{\mu^2 + \xi^2}, \ \bar{\xi} = \frac{\xi}{\mu^2 + \xi^2}$$

Since $\Gamma(\mu,\xi) = G(z_{\mu,\xi})$, it follows that

$$\Gamma(\mu,\xi) = G(z_{\mu,\xi}) = \hat{G}(z_{\bar{\mu},\bar{\xi}}) = \hat{\Gamma}(\bar{\mu},\bar{\xi}),$$

and this concludes the proof of the Lemma.

Since $(\bar{\mu}, \bar{\xi}) \to (0, 0)$ when $\mu + |\xi| \to +\infty$, the problem of studying Γ at infinity becomes equivalent to study $\hat{\Gamma}$ near (0, 0).

Proposition 3.5 Suppose $K \in C^2(\mathbb{R}^n)$ is a Morse function such that

(L)
$$x \in Crit(K) \Rightarrow \Delta K(x) \neq 0.$$

For s > 0, let $\tilde{B}_s = B_{\frac{s^2-1}{2s}}^{n+1}\left(\frac{s^2+1}{2s},0\right)$. Then, for s sufficiently large, Γ satisfies the general boundary condition on \tilde{B}_s .

Proof. Note that $\partial \tilde{B}_s$ is the *n*-dimensional sphere centred on the axis $\xi = 0$, which intersects this axis at the points *s* and $\frac{1}{s}$. In particular, it follows that $\partial \tilde{B}_s$ is invariant under the Kelvin transform $x \to \frac{x}{|x|^2}$ in \mathbb{R}^{n+1} . It is clear that $\Gamma \in C^1(\tilde{B}_s)$. We will prove (*i*) of Definition 2.2 by estimating the component of $\nabla \Gamma$ normal to $\partial \tilde{B}_s$ near the points $(0,\xi), \xi \in Crit(K)$, and the tangent component on the remainder of $\partial \tilde{B}_s$. From expression (3.6), using the change of variables $x = \mu y + \xi$, one infers that $\Gamma(\mu,\xi) = \frac{1}{2^*} \int K(\mu y + \xi) z_0^{2^*}(y) dy$; the Dominated Convergence Theorem implies

(3.9)
$$\Gamma_{\xi_i}(\mu,\xi) \to K_{\xi_i}(\xi), \quad \Gamma_{\xi_i\xi_j}(\mu,\xi) \to K_{\xi_i\xi_j}(\xi) \quad \text{as } \mu \to 0,$$

uniformly for ξ in a fixed compact subset of \mathbb{R}^n . Fixed r > 0, $\partial \tilde{B}_s \cap B_{2r}^{n+1}(0)$ is the graph of a smooth function $h_s : \Pi(\partial \tilde{B}_s \cap B_{2r}^{n+1}(0)) \to \mathbb{R}$ for s large. Moreover, $h_s \to 0$ in the C^2 norm as $s \to +\infty$, so from (3.9) it follows that

$$\nabla \Gamma(x, h_s(x)) \to (0, \nabla K(x)), \quad \text{as } s \to +\infty,$$

for $x \in B_r^n(0)$, since $B_r^n(0) \subseteq \prod(\partial \tilde{B}_s \cap B_{2r}^{n+1}(0))$. In particular we deduce that

(3.10)
$$x \in B_r^n(0), \nabla K(x) \neq 0 \Rightarrow \nabla_{\xi} \Gamma(x, h_s(x)) \neq 0$$
 for s large.

From equation (3.8) we have also

$$\Gamma_{\mu}(x, h_s(x)) = c_1 \Delta K(x) h_s(x) (1 + o(1)), \qquad \forall x \in B_r^n(0),$$

where $o(1) \to 0$ uniformly as $s \to +\infty$. Hence

(3.11)
$$x \in B_r^n(0), \Delta K(x) \neq 0 \Rightarrow \nabla_\mu \Gamma(x, h_s(x)) \neq 0$$
 for s large

From condition (L) and using (3.10) and (3.11), it follows that $\nabla\Gamma(h_s(x), x) \neq 0$ for every $x \in B_r^n$. To prove (i) it is sufficient to show that $\nabla\Gamma$ is different from 0 on $\partial \tilde{B}_s$ also for $\mu + |\xi|$ large.

Since, as noticed before, \tilde{B}_s is invariant under the Kelvin transform, the problem of studying $\nabla\Gamma$ on $\partial\tilde{B}_s$ at infinity becomes equivalent to study $\nabla\hat{\Gamma}$ on $\partial\tilde{B}_s$ near the origin. In particular, since

$$\nabla \Gamma(\mu,\xi) = \frac{1}{|(\bar{\mu},\bar{\xi})|^2} \left[\nabla \hat{\Gamma}(\bar{\mu},\bar{\xi}) - \frac{2}{|(\bar{\mu},\bar{\xi})|^2} \left(\nabla \hat{\Gamma}(\bar{\mu},\bar{\xi}) \left(\bar{\mu},\bar{\xi}\right) \right) (\bar{\mu},\bar{\xi}) \right],$$

then $\nabla\Gamma(\mu,\xi) = 0$ if and only if $\nabla\hat{\Gamma}(\bar{\mu},\bar{\xi}) = 0$. But $\nabla K_0(P_N) \neq 0$, hence $\nabla\hat{K}(0) \neq 0$. This implies that also $\nabla\hat{\Gamma} \neq 0$ on $\partial\hat{B}_s$ near the point (0,0), thus (i) is proved. Condition (ii) follows from (3.9) and from the fact that the critical points of K are non degenerate. **Remark 3.6** Suppose a and b are regular values for K, and that K satisfies

 (L^b_a) $x \in K^b_a, x \in Crit(K) \Rightarrow x \text{ is non-degenerate, and } \Delta K(x) \neq 0.$

Then, for s sufficiently large, a, b are regular values for Γ on ∂B_s , and Γ satisfies the general boundary condition on $\partial \tilde{B}_s \cap \Gamma_a^b$. The proof follows that of Proposition 3.5.

In the following, for brevity, we denote with B a large ball \tilde{B}_s for which Proposition 3.5 holds. We also set $\Gamma_B = \Gamma|_B$.

4 Main results

We will prove existence of solutions to (3.4) by means of Theorem 2.1, finding critical points (μ, ξ) of φ_{ε} with $\mu > 0$. Arguing by contradiction, we will assume throughout this section that φ_{ε} possesses no such a critical point.

Theorem 4.1 Suppose $K \in C^2(\mathbb{R}^n)$ is a Morse function which satisfies (L). For j = 0, ..., n - 1, let F_j be the number of critical points of K with Morse index j and with $\Delta K > 0$. Suppose also that condition (1.9) holds. Then for $|\varepsilon|$ sufficiently small, problem (3.4) has solution.

Proof. We first consider the case ε > 0: the case ε < 0 requires just some little modification. Proposition 3.5 cannot be directly applied to $φ_ε$ on *B*, since condition (*ii*) of Definition 2.2 does not hold in general. In fact we cannot deduce a non-degeneracy condition for the critical points of $φ_ε$ on ∂B, because we can provide C^1 estimates only. Thus we slightly modify $φ_ε$ near the critical points $\{z_1, \ldots, z_h\}$ of $Γ|_{∂B}$, in order to deal with a function which satisfies the general boundary condition. Fix δ > 0 so small that the balls $B_δ^{n+1}(z_1), \ldots B_\delta^{n+1}(z_h)$ are all disjoint, compactly contained in \mathbb{R}^{n+1}_+ , and such that $∇Γ \neq 0$ in $B_\delta^{n+1}(z_i)$. Such a choice is possible because Γ satisfies the general boundary condition in *B*.

Choose a smooth cut-off function ψ_{δ} such that $\psi_{\delta} \equiv 1$ in $B_{\frac{\delta}{2}}^{n+1}(z_i)$, and such that $\psi_{\delta} \equiv 0$ outside each $B_{\delta}^{n+1}(z_i)$. Consider the functions $\varphi_{\varepsilon}^{\delta} = \psi_{\delta} \varepsilon \Gamma + (1-\psi_{\delta}) (b_0 - \varphi_{\varepsilon})$. For ε sufficiently small, $\varphi_{\varepsilon}^{\delta}$ is defined on the whole B; moreover, by (3.5) it is $\nabla \varphi_{\varepsilon}^{\delta} \neq 0$ on ∂B , since also $\nabla \Gamma \neq 0$ there. For ε small, the function $\varphi_{\varepsilon}^{\delta}|_{\partial B}$ possesses only isolated critical points, which, by construction, are those of $\Gamma|_{\partial B}$. Thus $\varphi_{\varepsilon}^{\delta}$ satisfies the general boundary condition on B. Hence, we can apply Theorem 2.3 to $\varphi_{\varepsilon}^{\delta}$ on B, with $a = \varepsilon c_a$, and $b = \varepsilon c_b$, where $c_a < c_0 \inf K$, and $c_b > c_0 \sup K$. From (3.6) we deduce that $c_0 \inf K \leq \Gamma \leq c_0 \sup K$, so, if ε and δ are sufficiently small, a and b are regular values for $\varphi_{\varepsilon}^{\delta}$ on B and on ∂B , and also $(\Gamma_B)_a^b = B$. Since we are assuming that φ_{ε} possesses no critical point, then neither $\varphi_{\varepsilon}^{\delta}$ has interior critical point in B, so it is $m_j = 0$ for all j. Moreover, since the only critical points of $\varphi_{\varepsilon}^{\delta}$ on ∂B are those of Γ , from (3.9) it follows that they are non-degenerate, and $\mu_j = F_j$ for all j. Since B is contractible, $\beta_0(B) = 1$, and $\beta_j(B) = 0$ for all $j \ge 1$; applying (2.3) to the present case we obtain

$$\sum_{j=0}^{q} (-1)^{q-j} F_j = \sum_{j=0}^{q} (-1)^{q-j} \mu_j = \sum_{j=0}^{q} (-1)^{q-j} M_j \ge \sum_{j=0}^{q} (-1)^{q-j} \beta_j = (-1)^q,$$

but this is in contradiction with (1.9).

Remark 4.2 a) Set $S = 1 + \varepsilon K_0$, and let $D_j = \#\{x \in Crit(S) : M(S, x) = n - j, \Delta S(x) < 0\}$. Then for q = 1 and $\varepsilon < 0$, condition (1.9) becomes $D_0 - D_1 > 1$. Thus Theorem 4.1 extends, in the perturbative case, the result in [20].

b) With the same arguments as before, we can prove existence also under condition (1.3). In fact, since $\sum_{x_i \in Crit(S)} (-1)^{m(S,x_i)} = 1 + (-1)^n$, hypothesis (1.3) is equivalent to

(4.1)
$$\sum_{x_i \in Crit(S), \Delta S(x_i) > 0} (-1)^{m(S, x_i)} \neq 1.$$

In order to get existence, we have only to repeat the proof of Theorem 4.1 and to use equation (2.4) instead of (2.3) at the end, to deduce

$$1 = \chi(B) = \chi((\Gamma_B)_a^b) = \sum_{q \ge 0} (-1)^q M_q = \sum_{x_i \in Crit(K), \Delta K(x_i) > 0} (-1)^{m(K, x_i)},$$

which is in contradiction with (4.1).

c) For n = 2, in [8] is proved existence of solutions of (1.2) if $D_0 - D_1 \neq 1$. Theorem 4.1 with $\varepsilon < 0$ and q = 1, partially extends this result, but in a different way from (1.3).

We can use relative homology to study the topological changes in the sublevels of Γ . This allows us to provide some existence results under some "localized" hypotheses on K, of the type 2).

Lemma 4.3 Let $a \in \mathbb{R}$ be a regular value for Γ and for $\Gamma|_{\partial B}$. Let $f_n : \mathbb{R}^{n+1}_+ \to \mathbb{R}$, $f_n \to \Gamma$ on B in the C^1 norm. Then $(f_n)^a \cap B$ is homeomorphic to $(\Gamma_B)^a$ for n sufficiently large.

Proof. We just give a sketch, details are left to the reader. First of all we consider the case in which Γ is a function with compact support in \mathbb{R}^{n+1} , and $a \neq 0$. For $\rho > 0$, let $a_{\rho} = \{x \in \mathbb{R}^{n+1} : |x - \Gamma^{-1}(a)| < \rho\}$: we take $\rho > 0$ so small that $\nabla \Gamma \neq 0$ in a_{ρ} . Since a is a regular value for Γ , and since f_n converge to Γ uniformly, the sets $(f_n)^a$ and Γ^a coincide outside a_{ρ} . In a_{ρ} we can consider the flow $\dot{x} = \nabla \Gamma(x)$, which is well defined because $\Gamma \in C^2$. For n large, since $f_n \to \Gamma$ in C^1 , the levels $\{f_n = a\}$ are transversal to $\nabla \Gamma$; so we can continuously deform them into $\{\Gamma = a\}$ using the gradient flow of Γ . When Γ is just defined on B, it is sufficient to substitute $\nabla \Gamma$ with a suitable pseudo-gradient field γ for Γ near $\{\Gamma = a\}$ which leaves ∂B invariant. The following Theorem improves, in the perturbative and non-degenerate case, a result in [5]: in fact, we make assumptions only on the saddle points with Morse index 1.

Theorem 4.4 Suppose K has a local minimum x_0 , and that there exists $x_1 \neq x_0$ with $K(x_1) \leq K(x_0)$. Let $x(t) : [0,1] \to \mathbb{R}^n$ be a curve with $x(0) = x_0, x(1) = x_1$, and set $a = K(x_0), b = \max_t K(x(t))$. Suppose also that K satisfies (L_a^b) , and that the following condition holds

$$(H) x \in Crit(K), a < K(x) \le b, m(x, K) = 1 \quad \Rightarrow \quad \Delta K(x) < 0.$$

Then for $|\varepsilon|$ small, problem (3.4) admits a solution.

Proof. We can suppose that x(t) is a smooth curve of "mountain pass type", i.e. the supremum of K on x(t) is not greater than the supremum of K on any curve joining x_0 to x_1 . In particular, the supremum on x(t) is attained only at a finite number of points $x_2, \ldots x_h$ whose Morse index is 1. From Proposition 3.3 we have that $\Gamma(0, x_0) = c_0 a$, and since $\Delta K(x_0) > 0$, from (3.8) it follows that $(0, x_0)$ is a strict local minimum for Γ . Moreover (3.7) implies that $\Gamma(0, x_1) = c_0 K(x_1) \leq c_0 a$, so Γ possesses a mountain pass geometry at x_0 . Let C be the class of curves C = $\{c: [0, 1] \to \mathbb{R}^{n+1}_+ | c(0) = x_0, c(1) = x_1\}$, and set

$$\bar{\Gamma} = \inf_{c \in \mathcal{C}} \sup_{t} \Gamma(c(t)).$$

We claim that $c_0 a < \overline{\Gamma} < c_0 b$. The first inequality is trivial; in order to prove the second, consider the family of curves $y(t) : [0,1] \to \mathbb{R}^{n+1}_+$, depending on a parameter $\eta > 0$, defined in the following way

$$y(t) = \begin{cases} (0, x(t)) & \text{if } |x(t) - x_j| \ge \eta, \text{ for all } j = 2, \dots, h; \\ (\sqrt{1 - |x(t) - x_j|^2}, x(t)) & \text{if } |x(t) - x_j| < \eta, \text{ for some } j = 2, \dots, h. \end{cases}$$

Equation (3.8) implies $\Gamma(y(t)) = K(x(t)) + c_1 \Delta K(x(t)) (y_1(t))^2 (1+o(1))$; moreover, from hypothesis (H), it follows that $\Delta K(x_j) < 0$, for $j = 2, \ldots, h$. Hence for η sufficiently small, there holds $\sup_t \Gamma(y(t)) < \sup_t K(x(t))$, so our claim is proved. We can choose $\tau > 0$ such that the components of $A_{\tau} = \{\Gamma < c_0 a + \tau\}$ containing x_0 and x_1 are different. Let $c(\cdot) = (y_1(\cdot) + \omega, y_2(\cdot), \ldots, y_{n+1}(\cdot))$. By continuity, for $\omega > 0$ sufficiently small, we obtain $c(t) \subseteq \mathbb{R}^{n+1}_+$, $c(0), c(1) \in A_{\tau}$, and $\sup_t \Gamma(c(t)) < c_0 b$. Let B be the ball given by Remark 3.6; we can take B so large that the range of c is contained in B, and B intersects both the components of A_{τ} containing x_0 and x_1 . Fix \tilde{a} regular for Γ and for $\Gamma|_{\partial B}$, such that $\max\{\Gamma(c(0)), \Gamma(c(1))\} < \tilde{a} < c_0 K(x_0) + \tau$, and \tilde{b} regular for Γ and for $\Gamma|_{\partial B}$, with $\bar{\Gamma} < \tilde{b} < c_0 b$. We need again some small modification to get the general boundary condition; so we define the functions $\varphi_{\varepsilon}^{\delta}$ as in the proof of Theorem 4.1. If δ and ε are sufficiently small, then $\varepsilon \tilde{a}$ and $\varepsilon \tilde{b}$ are regular values for $\varphi_{\varepsilon}^{\delta}$, and from Lemma 4.3, it is $H_1((\varphi_{\varepsilon}^{\delta})^{\varepsilon \tilde{b}}, (\varphi_{\varepsilon}^{\delta})^{\varepsilon \tilde{a}}) \simeq H_1(\Gamma^{\tilde{b}}, \Gamma^{\tilde{a}})$, since $\varepsilon^{-1}(b_0 - \varphi_{\varepsilon}) \to \Gamma$ in C^1 on B. Moreover, by the definition of $\bar{\Gamma}, \tilde{a}$ and \tilde{b} , it is $\Gamma(c(1)) < \tilde{a}$, hence [c(1) - c(0)] is a 0-cycle in $\Gamma^{\tilde{a}}$, and is the boundary of the 1-chain [c] in $\Gamma^{\tilde{b}}_{B}$. On the other hand, by our choice of τ , [c(1) - c(0)] is not a boundary in $\Gamma^{\tilde{a}}_{B}$; it follows that $[c(1) - c(0)] \neq 0$ as a 0-cycle in $\Gamma^{\tilde{a}}_{B}$. Hence, if i is the inclusion $i : \Gamma^{\tilde{a}}_{B} \to \Gamma^{\tilde{b}}_{B}$, it follows that $i_*([c(1) - c(0)]) = 0$. By the exactness of the homology sequence of the pair $(\Gamma^{\tilde{b}}_{B}, \Gamma^{\tilde{a}}_{B})$

$$\cdots \longrightarrow H_1(\Gamma_B^{\tilde{b}}, \Gamma_B^{\tilde{a}}) \xrightarrow{\partial_*} H_0(\Gamma_B^{\tilde{a}}) \xrightarrow{i_*} H_0(\Gamma_B^{\tilde{b}}) \longrightarrow \cdots$$

and from the fact that i_* has a nontrivial kernel, we deduce that $H_1(\Gamma_B^{\bar{b}}, \Gamma_B^{\bar{a}}) \neq 0$. It follows that also $H_1((\varphi_{\varepsilon}^{\delta})^{\varepsilon \tilde{b}}, (\varphi_{\varepsilon}^{\delta})^{\varepsilon \tilde{a}}) \neq 0$. The Morse type number μ_1 of $\varphi_{\varepsilon}^{\delta}$ on $(\partial B)_{\varepsilon \tilde{a}}^{\varepsilon \tilde{b}}$ coincides with that of Γ , which is zero by assumption (H). The function $\varphi_{\varepsilon}^{\delta}|_B$ satisfies the general boundary condition on $B_{\varepsilon \tilde{a}}^{\varepsilon \tilde{b}}$, and there holds $\mu_1 = 0$, $\beta_1 > 0$, so, using (2.3) with q = 1 and then with q = 0, we obtain

(4.2)
$$0 = m_1 = M_1 \ge \beta_1 + M_0 - \beta_0 \ge 1,$$

which is a contradiction.

Remark 4.5 a) A related result is given in [8], where S is assumed to be a Morse function with non-zero Laplacian at each of its critical points. A solution is found if S possesses at least two local maximum points, and at all saddle points it is $\Delta S > 0$. For $\varepsilon < 0$ we are in the same situation, but our assumptions involve only the saddle points whose level is between a and b.

b) Suppose x_0 and x_1 are global minima for K, possibly degenerate, and let x(t) be a "mountain pass type" curve joining x_0 to x_1 . Set $a = \inf K$, $b = \sup_t K(x(t))$, and assume that

$$Crit(K) \cap \{a < K < b\} = \emptyset; \quad y \in x([0,1]), K(x) = b \Rightarrow \Delta K(x) < 0,$$

Also in this case Γ has the mountain pass geometry at $(0, x_0)$, and reasoning as above, one can find \tilde{a} and \tilde{b} , $c_0 a < \tilde{a} < \tilde{b} < c_0 b$ such that $H_1(\Gamma_B^{\tilde{b}}, \Gamma_B^{\tilde{a}}) \neq 0$. Since there is no critical value of K in $K_{\tilde{a}}^{\tilde{b}}$, the Morse type numbers of Γ on $(\partial B)_{\tilde{a}}^{\tilde{b}}$ are zero, and we are led again to (4.2). Hence, for $\varepsilon < 0$, we recover the existence result under the assumptions in [13].

c) For $n \geq 3$, in [5] it is assumed that S possesses only a finite number of critical points, and that, again, two maxima x_0 and x_1 are connected by a curve x(t). Moreover, at every saddle point of S between $\inf_{x([0,1])} S$ and $S(x_0)$ it must be $\Delta S > 0$. Here the main difference, is that we make assumptions only at saddle points with prescribed Morse index.

d) For $\varepsilon > 0$, Theorem 4.4 has no known counterpart.

Theorem 4.4 can be easily generalized in the following way.

Theorem 4.6 Suppose K possesses a local minimum x_0 and l connected components A_1, \ldots, A_l of $(K^a \setminus x_0)$, where $a = K(x_0)$. For $j = 1, \ldots, l$, let $c_j : [0, 1] \to S^n$ be a curve with $c_j(0) = x_0, c_j(1) \in A_j$, and set $b = \max_j \sup_t K(c_j(t))$. Suppose K satisfies condition (L_a^b) , and that it possesses at most l - 1 saddle points of Morse index 1 in $\{a < K \leq b\}$. Then for $|\varepsilon|$ small, problem (3.4) admits a solution.

Proof. It is sufficient to reason as in the proof of Theorem 4.4. Define $C_j = \{c : [0,1] \to \mathbb{R}^{n+1}_+ | c(0) = x_0, c(1) \in A_j\}$, and set

$$\tilde{\Gamma} = \max_{j} \{ \inf_{c \in \mathcal{C}_j} \sup_{t} \Gamma(c_j(t)) \}.$$

Then, again, one proves that $\tilde{\Gamma} < c_0 b$. In this case, choosing \tilde{a} and \tilde{b} appropriately, it turns out that $\beta_1 > l$; so the result again follows from the Morse inequalities. \Box

5 Further results

Isolated critical points with non-null Laplacian

We can recover the general boundary condition also when K possesses isolated critical points, which can be possibly degenerate, if the Laplacian at these points has a definite sign. In order to do this, for s > 0 we set

(5.1)
$$G_s(\mu,\xi) = \Gamma(2\mu,\xi) - \Gamma(2\mu - h_s(\xi),\xi) + \Gamma(\mu,\xi) - \Gamma(2h_s(\xi),\xi) + \Gamma(0,\xi).$$

Here ξ belongs to a fixed compact set of \mathbb{R}^n , and $2\mu > h_s(\xi)$, where h_s is the function defined in the proof of Proposition 3.5. Let ψ_{δ} be a cut-off function as in the proof of Theorem 4.1 centred at the points $(0, x_j)$, where x_1, \ldots, x_h are the critical points of K. We can suppose that $|\nabla \psi_{\delta}| < \frac{4}{\delta}$.

Theorem 5.1 Suppose that K possesses isolated critical points x_1, \ldots, x_h , and that $\Delta K(x_j) \neq 0$, for $j = 1, \ldots, h$. Assume that for any $j = 1, \ldots, h$, rank $C_q(K, x_j) = 0$ for q sufficiently large. Set $\mathcal{F}_q = \sum_{j,\Delta K(x_j)>0} \operatorname{rank} C_q(K, x_j)$, and suppose that

(5.2)
$$\sum_{j=0}^{n} (-1)^{j} \mathcal{F}_{j} \neq 1, \quad or \quad \sum_{j=0}^{q} (-1)^{q-j} \mathcal{F}_{j} - (-1)^{q} \leq -1,$$

for some q = 0, ..., n. Then for $|\varepsilon|$ small, problem (3.4) admits a solution.

Proof. Again, we assume by contradiction that φ_{ε} does not possess any critical point (μ, ξ) with $\mu > 0$. We show that the function $\varphi_{\varepsilon}^{\delta,s} = \varepsilon \psi_{\delta} G_s + (1 - \psi_{\delta}) (b_0 - \varphi_{\varepsilon})$ satisfies the general boundary condition on B for suitable values of δ , s and for ε arbitrarily small. First we prove that $\varphi_{\varepsilon}^{\delta,s}$ does not possess any critical point (μ, ξ) with $\mu > 0$, so in particular condition (i) in Definition 2.2 holds.

Given $\delta > 0$, we set

$$U_{\delta} = \bigcup_{j=1}^{n} \left(B^{n+1}_{\delta}((0,x_j)) \setminus B^{n+1}_{\frac{\delta}{2}}((0,x_j)) \right); \qquad C_{\delta} = \inf_{U_{\delta}} |\nabla \Gamma|.$$

Since $\Delta K(x_j) \neq 0$, and since x_j is an isolated critical point of K, we can deduce from formulas (3.8) and (3.9) that $C_{\delta} > 0$. From the definition of G_s it follows that

(5.3)
$$G_s(h_s(\xi),\xi) = \Gamma(0,\xi), (G_s(h_s(\xi),\xi))_{\mu} = 2\Gamma_{\mu}(2h_s(\xi),\xi) - 2\Gamma_{\mu}(h_s(\xi),\xi) + \Gamma_{\mu}(h_s(\xi),\xi),$$

and that $G_s(\mu,\xi) \to \Gamma(\mu,\xi)$, as $s \to +\infty$, C^1 -uniformly on bounded sets, since Γ and $\nabla\Gamma$ are Lipschitz functions. We also know from (3.8) that the following estimate holds

(5.4)
$$\Gamma_{\mu}(\mu,\xi) = c_1 \Delta K(\xi) \mu \left(1 + o(1)\right),$$

where $(\mu, \xi) \in B^{n+1}_{\delta}(0, x_j)$, and where $o(1) \to 0$ uniformly as $\delta \to 0$. We can choose δ to be so small that

(5.5)
$$16 |\Delta K(\xi) - \Delta K(x_j)| < |\Delta K(x_j)|, |\xi - x_j| < \delta; \qquad 16 |o(1)| < 1.$$

Next, if s is sufficiently large, there holds

(5.6)
$$20 \sup_{U_{\delta}} |\nabla G_s - \nabla \Gamma| < C_{\delta}; \qquad 40 \sup_{U_{\delta}} |G_s - \Gamma| < \delta C_{\delta}.$$

Hence, from elementary computations we deduce

$$\begin{aligned} |\nabla \varphi_{\varepsilon}^{\delta,s} - \varepsilon \nabla \Gamma| &\leq |\nabla \psi_{\delta}| \left(|\varepsilon G_s - \varepsilon \Gamma| + |\varepsilon \Gamma - (b_0 - \varphi_{\varepsilon})| \right) \\ &+ |\psi_{\delta} \varepsilon \nabla G_s + (1 - \psi_{\delta}) \nabla \varphi_{\varepsilon} - \varepsilon \nabla \Gamma|. \end{aligned}$$

Since $|\nabla \psi_{\delta}| < \frac{4}{\delta}$, using (5.6) it follows that

$$|\nabla \varphi_{\varepsilon}^{\delta,s} - \varepsilon \nabla \Gamma| \leq \frac{1}{10} \varepsilon C_{\delta} + \frac{1}{20} \varepsilon C_{\delta} + |\nabla \psi_{\delta}| |\varepsilon \Gamma - (b_0 - \varphi_{\varepsilon})| + |\nabla \varphi_{\varepsilon} + \varepsilon \nabla \Gamma|.$$

Now take ε so small that $10 \sup_{U_{\delta}} |\nabla \varphi_{\varepsilon} + \varepsilon \nabla \Gamma| < \varepsilon C_{\delta}$, and such that $40 \sup_{U_{\delta}} |\varepsilon \Gamma - (b_0 - \varphi_{\varepsilon})| < \varepsilon \delta C_{\delta}$. Taking into account (5.6), we deduce that $2 |\nabla \varphi_{\varepsilon}^{\delta,s} - \varepsilon \nabla \Gamma| \leq \varepsilon C_{\delta}$, so by the definition of C_{δ} , it follows that $\nabla \varphi_{\varepsilon}^{\delta,s} \neq 0$ in U_{δ} . Using equations (5.4) and (5.5), one proves that $2\Delta K(x_j) (G_s(\mu,\xi))_{\mu} \geq c_1 (\Delta K(x_j))^2 (\mu + h_s(\xi))$, for $(\mu,\xi) \in B_{\delta}^{n+1}(0,x_j)$, so $\nabla \varphi_{\varepsilon}^{\delta,s} \neq 0$ also in $B_{\delta}^{n+1}(0,x_j)$. Since $\varphi_{\varepsilon}^{\delta,s} = b_0 - \varphi_{\varepsilon}$ outside each $B_{\delta}^{n+1}(0,x_j)$, we conclude that $\nabla \varphi_{\varepsilon}^{\delta,s}$ never vanishes, and (i) is proved. As far as (ii), if s is sufficiently large, and if ε is sufficiently small, then $\nabla \varphi_{\varepsilon} \neq 0$ on $O_{\delta} = \partial B \setminus \bigcup_{j} B_{\delta}^{n+1}(0,x_j)$. Since $\varphi_{\varepsilon}^{\delta,s}$ equals $b_0 - \varphi_{\varepsilon}$ on O_{δ} , all the critical points of $\varphi_{\varepsilon}^{\delta,s}|_{\partial B}$ must be contained in the balls $B_{\delta}^{n+1}(0,x_j)$. But here, see the first formula

in (5.3), $\varphi_{\varepsilon}^{\delta,s} = \varepsilon G_s$ coincide with $\varepsilon \Gamma(0,\xi) = \varepsilon c_0 K(\cdot)$, so its critical points are isolated. This proves (*ii*), and thus $\varphi_{\varepsilon}^{\delta,s}$ satisfies the general boundary condition on B. From the above computations it follows that the flow of $\nabla \varphi_{\varepsilon}^{\delta,s}$ near its critical points is inward B, reps. outward, if also $\nabla \Gamma$ is inward, resp. outward. Hence, the j-th Morse type number μ_j of $\nabla \varphi_{\varepsilon}^{\delta,s}$ on ∂B coincides with \mathcal{F}_j , and moreover $m_j = 0$ for all j, since $\nabla \varphi_{\varepsilon}^{\delta,s}$ does not possess interior critical points. Now we conclude as in Theorem 4.1 and in Remark 4.2.

β -degeneracy

The following Lemma, see [2] describes the behavior of Γ when a critical point of K admits some degeneracy.

Lemma 5.2 Given $\xi \in \mathbb{R}^n$, suppose that there exist $\beta_{\xi} \in (1, n)$, and $Q_{\xi} : \mathbb{R}^n \to \mathbb{R}$ such that

1) $Q_{\xi}(\lambda y) = \lambda^{\beta_{\xi}} Q_{\xi}(y), \quad y \in \mathbb{R}^{n}, \lambda > 0;$ 2) $K(x) = K(\xi) + Q_{\xi}(x - \xi) + o(|x - \xi|^{\beta_{\xi}}), \text{ as } x \to \xi,$ and let $T_{\xi} = \frac{1}{2^{*}} \int Q_{\xi} z_{0}^{2^{*}}.$ Then

(5.7)
$$\lim_{\mu \to 0^+} \frac{\Gamma(\mu, \xi) - \Gamma(\mu, 0)}{\mu^{\beta}} = T_{\xi}.$$

Moreover $q = (0, \xi)$ is an isolated critical point of Γ .

This Lemma can be applied when K admits an expansion as in (1.4) near its critical points. In fact, the topological structure of the sublevels of K is analogous to the non-degenerate case. There exists a unique nonnegative number q for which $C_q(K, x_i) \neq 0$; this number coincides with i(x), and is the corresponding of the Morse index. Moreover it turns out that $T_{x_i} = C_{\beta_i} \tilde{\Delta} K$, where $C_{\beta_i} > 0$, and, we recall, $\tilde{\Delta} K = \sum_{j=1}^n a_j$. Hence, the quantity $\tilde{\Delta} K$ plays the role of the Laplacian in the non-degenerate case. So, Theorems 4.1, 4.4 and 4.6 can be stated with obvious changes in the case when K is degenerate of order $\beta_i \in (1, n)$ at its critical points x_i .

Higher dimensions

The following result generalizes Theorem 4.4, substituting m-dimensional balls to one dimensional curves.

Theorem 5.3 Suppose there exists a positive integer r < n, and a smooth embedding $h_0: S^r \to S^n$ such that the maximum of K on $h_0(S^r)$ is attained at some critical point $x_0 \in Crit(K)$, with $\Delta K(x_0) > 0$, and $m(K, x_0) = r$. Let $h: B_1^{r+1} \to S^n$ with $h|_{\partial B_1^{r+1}=S^r}$, and let $a = K(x_0)$, $b = \max_{y \in B_1^{r+1}} K(h(y))$. Suppose K satisfies condition (L_a^b) , and that

$$(B_r) z \in Crit(K) \cap K_a^b, m(z,K) = r+1 \quad \Rightarrow \quad \Delta K(z) < 0.$$

Then for $|\varepsilon|$ small, problem (3.4) has a solution.

Proof. The proof follows that of Theorem 4.4, but here the mountain pass construction is substituted by a linking scheme. By the non-degeneracy of x_0 , there exists an (n-r)-dimensional subspace H of \mathbb{R}^n where $K''(x_0)$ is positive definite. Given $\zeta > 0$, we define the half-sphere V_{ζ} to be

$$V_{\zeta} = \{ z \in \mathbb{R} \times H : |z - (0, x_0)| = \zeta \}.$$

Taking into account (3.8), we deduce that for ζ sufficiently small it is $\inf_{z \in V_{\zeta}} K(z) > K(x_0)$. If we choose B appropriately, we find an homeomorphism $\tilde{h}: S^r \to B$ such that $\sup_{\tilde{h}(S^r)} \Gamma < \inf_{V_{\zeta}} \Gamma$, and such that $\tilde{h}(S^r)$ and V_{ζ} homotopically link. It turns out that $\tilde{h}(S^r)$ and V_{ζ} also homologically link, see [11], Chapter 2.1, so we can find \tilde{a} and \tilde{b} such that $H_r(\Gamma_B^{\tilde{b}}, \Gamma_B^{\tilde{a}}) \neq 0$. To conclude, it is sufficient to use (2.3) with q = r and r + 1.

Remark 5.4 If r = n-1, then condition (B_r) is automatically satisfied. For n = 2 and r = 1 this result has been obtained in [12].

Remark 5.5 If Γ turns out to be a Morse function, then also some multiplicity results can be obtained. In fact, the local degree of Γ at each of its critical points is different from 0. From expression (3.5) one deduces that φ_{ε} possesses as many stationary points as Γ . A lower bound for this number, see [2], can be found via Degree Theory, and is given by $\left|\sum_{q=0}^{n-1}(-1)^{q}F_{q}-(-1)^{n}\right|$. See also [20] for related multiplicity results.

References

- AMBROSETTI, A., BADIALE, M., Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincarè Analyse Non Linéaire 15 (1998), 233-252. Preliminary note on C. R. Acad. Sci. Paris 323 Série I (1996), 753-758.
- [2] AMBROSETTI, A., GARCIA AZORERO, J., PERAL, I., Perturbation of $-\Delta u + u^{\frac{(N+2)}{(N-2)}} = 0$, the Scalar Curvature Problem in \mathbb{R}^N and related topics, J. Funct. Anal. **165** (1999), 117-149.
- [3] AUBIN, T., Some Nonlinear Problems in Differential Geometry, Springer-Verlag, 1998.
- [4] BAHRI, A., CORON, J.M., The scalar curvature problem on the standard three dimensional sphere, J. Funct. Anal. 95 (1991), 106-172.

- [5] BIANCHI, G., The scalar curvature equation on Rⁿ and on Sⁿ, Adv. Diff. Eq. 1 (1996), 857-880.
- [6] BIANCHI, G., EGNELL, H., A Note on the Sobolev Inequality, J. Funct. Anal. 100 (1991), 18-24.
- [7] CHANG, S. A., GURSKY, M. J., YANG, P., The scalar curvature equation on 2- and 3- spheres, Calc. Var. 1 (1993), 205-229.
- [8] CHANG, S. A., YANG, P., Prescribing Gaussian curvature on S², Acta Math. 159 (1987), 215-259.
- [9] CHANG, S. A., YANG, P., Conformal deformation of metrics on S², J. Diff. Geom. 27 (1988), 256-296.
- [10] CHANG, S. A., YANG, P., A perturbation result in prescribing scalar curvature on Sⁿ, Duke Math. J. 64 (1991), 27-69.
- [11] CHANG, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, 1993.
- [12] CHANG, K. C., LIU, J. Q., On Nirenberg's problem, Int. J. Math. 4 (1993), 35-58.
- [13] CHEN, W. X., DING, W., Scalar curvature on S², Trans. Amer. Math. Soc. 303 (1987), 365-382.
- [14] KAZDAN, J. L., WARNER, F., Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math. 101 (1975), 317-331.
- [15] LI, Y. Y., Prescribing scalar curvature on Sⁿ and related topics, Part 1, J. Diff. Equat. 120 (1995), 319-410.
- [16] LI, Y. Y., Prescribing scalar curvature on Sⁿ and related topics, Part 2, Existence and compactness, Comm. Pure Appl. Math. 49 (1996), 541-597.
- [17] MALCHIODI, A., Some existence results for the Scalar Curvature Problem via Morse Theory, Rend. Mat. Acc. Naz. Lincei, to appear.
- [18] MORSE, M., VAN SCHAAK, G., The critical point theory under general boundary conditions, Ann. of Math. 35 (1934), 545-571.
- [19] NI, W. M., On the Elliptic Equation $\Delta u + K(x)u^{\frac{(n+2)}{(n-2)}} = 0$, its Generalizations, and Applications to Geometry, Indiana Univ. Math. J. **31** (1982), 493-529.
- [20] SCHOEN, R., ZHANG, D., Prescribed scalar curvature on the n-spere, Calc. Var. 4 (1996), 1-25.
- [21] STRUWE, M., Variational methods, Springer-Verlag, 1996, 2nd edition.