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a b s t r a c t
When prices reflect all available information, the price dynamics is a martingale and the market is said to be ef-
ficient. However, much empirical evidence supports the conclusion about the inefficiency of financial markets,
especially at high-frequency timescales. We investigate the sources and dynamics of the inefficiency of the ETF
market at a 1min timescale by proposing a computational methodology for a genuine estimation of the Shannon
entropy. Since several sources of regularity lead to the detection of apparent inefficiencies, we build a multi-step
filteringmethod,which allows (i) to remove the seasonality of volatility and heteroskedasticity, (ii) to detect and
remove spurious effects due to price staleness, and (iii) to filter out microstructure noise. We corroborate our
findings with an extensive analysis of the ETF market. We conclude that, after removing all known patterns of
regularity, the market is not efficient at a one-minute time scale and on a weekly basis; however, the signal is
weak.
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1. Introduction

The fundamental price of a stock is a quantitative way to assess the
intrinsic value of a company. In principle, complete information about
a company permits us to know its fair price. When a company is quoted
on a stock exchange, themarket price of the stock is instead the result of
a highly complex process of matching between the supply and demand
of traders. In a market with complete information at each time, the
matching of supply and demand should incorporate all information in
the market price. Thus, the best forecast is the current observation and
the price dynamics is a martingale. Very short, this is what is known
as the Efficient Market Hypothesis (EMH) [1]. When this hypothesis is
verified, a market is called efficient. However, the definition of an infor-
mation set which is complete, i.e., including any variable having an im-
pact on price, is usually unfeasible, especially for a quantitative
approach. For this reason, it is preferred to work with a weak form of
the EMH, that is, the information set is assumed to include only the
past observations of the price dynamics [2].

As stated in [3], the hypothesis rejection of a martingale model sug-
gests the existence of trading rules increasing the expected return of
some actively managed portfolio with respect to a simple buy-and-
hold strategy. In other words, forecasting patterns of price dynamics
his), piero.mazzarisi@sns.it
with a given level of certainty allows devising trading strategies with a
positive profit on average.1 If so, the Efficient Market Hypothesis is not
verified and the market is said inefficient.

Different approaches have been proposed to testmarket inefficiency,
all of them are with the common rationale of measuring how much an
empirical price dynamics is far from the assumption of complete ran-
domness (martingale hypothesis). A time varying autocorrelation of
stock returns has been proposed as a measure of the degree of market
inefficiency for the U.S. stock market [4]. The R/S statistics and the
Hurst exponent have been used to rank the efficiency of emerging eq-
uity markets [5,6]. The algorithmic complexity of return time series
has been applied as ameasure of the relative efficiency of financial mar-
kets [7]. The algorithmic complexity has been used to check the Efficient
Market Hypothesis [8]. Finally, the approximate entropy (ApEn) [9] has
been proposed as ameasure of thedegree ofmarket efficiency over time
and for different markets [10–13].

A well-knownmeasure of randomness for symbolic dynamics is the
Shannon entropy. It represents the average amount of uncertainty re-
moved with the transmission of each symbol. In the case of financial
time series, price dynamics can be opportunely discretized and the
Shannon entropy can be computed over the resulting sequence of sym-
bols. This approachhas been considered, for example, in [14] to evaluate
predictability of financial time series. Many measures and methods
based on the definition of the Shannon entropy have been proposed in
1 Within this context, we neglect the role played by trading costs.
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recent years with the common goal of studyingmarket efficiency. Risso
has studied the Shannon entropy as a measure of efficiency for twenty
markets, comparing emerging markets with the developed ones [15].
A time-varying entropy of crude oil market efficiency has been studied
in [16]. Oh et al. [17,18] have connected the Shannon entropy with the
probability of having market crashes and financial crises. The entropy
calculated for energymarkets has been associatedwith historical events
and climatic factors in [19]. Ahn et al. [20] have used the entropy to state
that the degree of market inefficiency in the Chinese stockmarket has a
strong effect on the economic fundamentals. The relationship between
the entropy and risk measures has been investigated in [21]. The Shan-
non entropy as a measure of the risk of a portfolio has been considered
also in [22]. The conditional entropy has been used in [23] to measure
the randomness in stock and exchange markets at different time scales.
A generalization of the Shannon entropy, the Tsallis entropy [24], has
been proposed as a risk measure during financial crises and crashes
[25,26]. The permutation transition entropy has been introduced in
[27] to measure the complexity of financial time series. Marschinski
and Kantz [28] and Kwon and Yang [29] have studied the transfer en-
tropy introduced in [30] to investigate the strength and the direction
of the information transfer in the U.S. stock market. Finally, an entropy
measure has been used to identify different types of trading behaviors
based on historical prices and news in [31].

A naive computation of the Shannon entropy for opportunely
discretized price dynamics is not, however, the end of the story. There
are well-known regularity patterns in financial time series, for instance,
daily seasonality or volatility clustering.When not filtered out, such pat-
terns tend to decrease any measure of randomness; nevertheless, no
profitable strategies can be built upon them. Thus, there is a need for de-
vising a computational method for the evaluation of the Shannon en-
tropy that takes into account such regularity patterns. The first study
in this direction has been presented in [32], where volatility clustering,
intraday seasonality, and microstructure noise are filtered out before
the computation of the Shannon entropy as a measure of efficiency for
the Exchange Traded Funds (ETF).

Here, we propose a computational methodology for entropy estima-
tion, by accounting for many patterns of regularities in high-frequency
financial time series, in particular including price staleness [33,34], as
well as considering the evolution of entropy in time and at different
time scales. Finally, the genuine estimation of the Shannon entropy is
used to determine the degree of randomness of the time series of
price returns.

More specifically, we start from the method introduced in [35] for
the detection of outliers, then removing splits and merges. After that,
we remove step by step both daily seasonality and volatility patterns.
Then, we study the effect of price staleness on entropy estimation. In
particular, the presence of persistent 0-returns in a row because of the
lack of price adjustments or very small trading volumes tends to de-
crease any estimate of entropy: persistent 0-returns are converted
into a persistent sequence of the same symbol with the effect of larger
predictability associated with such a persistence pattern. Nevertheless,
no trading strategy is able to exploit it. In fact, the presence of
price staleness is possible because of very low liquidity or any trading
order to be executed should go deep in the limit-order book, thus
destroying the persistence pattern of 0-returns. We first show empiri-
cally that price staleness tends to decrease the estimate of entropy.
Then, we build a method for filtering out 0-returns associated
with price staleness and apply it to the Exchange Traded Funds market.
We show that the number of times we detect that the market is ineffi-
cient decreases significantly after filtering out 0-returns due to price
staleness. Finally, in the last step of the methodology, we study the ef-
fect of microstructure noise. After filtering out all mentioned sources
of the apparent inefficiencies, it is possible to conclude that the ETFmar-
ket is not efficient at a high frequency (1-min) on weekly, monthly,
and quarterly time intervals; however, the signal of market inefficiency
is weak.
2

The paper is organized as follows.We review the data handling pro-
cess and the computation of the Shannon entropy in Section 2. In
Section 3, we present the method of filtering 0-returns and apply it to
simulated and real data. The analysis of the efficiency of the ETFmarket
after filtering out microstructure noise is in Section 4. We present addi-
tional results of testing the Efficient Market Hypothesis in Section 5.
Section 6 concludes the paper.
2. Data handling and the estimation of entropy

2.1. Financial datasets and data handling

We consider two high frequency datasets of return time series. The
first one contains the time series of the prices of the 100 most liquid
stocks belonging to the Russell 3000 Index from 02.01.1998 to
23.06.2017. The second dataset contains the time series of the prices
of ETFs from 02.01.2003 to 01.12.2009. We consider 1-min closing
price data during a regular US trading session, from 9:30 to 16:00. The
choice of high liquidity is thus motivated by the need to consider stocks
which are traded very frequently, in such a way that the price dynamics
are observed at a 1min time scale. If there is no trading at some specific
minute, the missing value for the price is reconstructed as the last price
available. By using this method, each trading day contains 390 data
points. The tickers of ETFs and stocks are listed in the Appendix A.

Before applying our methodology for the entropy estimation, we
perform a data handling process. We remove outliers, interpreted as
values in the dataset with no economic sense, and splits. Then, well-
known sources of the regularities in prices are filtered out,
e.g., seasonality and volatility patterns [36–38], in order to focus on
the hidden sources of market inefficiency.

The data handling process is in four steps.
Step 1. Removing outlier values from the dataset;
Step 2. Detecting possible splits where the return is >0.2. We delete

such returns from the dataset;
Step 3. Filtering out the daily seasonalities;
Step 4. Filtering out the heteroskedasticity.
Steps 1 and 2 represent a data cleaning process. Steps 3 and 4 consist

in filtering out the apparent inefficiencies presented in the data. The
whitening procedure starts with removing the intraday volatility pat-
tern getting deseasonalized returns and continues with removing the
longmemory contribution to returns due to volatility getting standard-
ized returns. The details on each step are in the Appendix B. The ap-
proach of volatility estimation is described in Section 2.1.1.

We consider sub-intervals in order to detect the presence of market
inefficiency in a given time interval. We concentrate on weekly non-
overlapping intervals consisting of 5 working days. Weekly time inter-
val consists of 5 · 390 = 1950 data points. If we detect the presence
of inefficiency in a particular week, as described in Section 2.2.5, we
will refer to such aweek as an inefficientweek or aweekwith inefficiency.
Dividing a time series into short intervals also helps to measure the de-
gree of market inefficiency. We calculate it as the percentage of ineffi-
cient weeks for the considered set of assets in the market. If the
percentage is less or equal to 1 %, the level of significance for testing
the EMH, we will interpret it as a perfect randomness of prices in the
ETF market.

2.1.1. Volatility estimation
Volatility clustering refers to the fact that large returns tend to be

followed by other large returns of either sign, and vice versa for small
returns. The volatility clustering needs to be filtered out by re-scaling
each observation by the estimated value of the volatility at that time.

For a reason thatwill be clear below,we choose an algorithm for vol-
atility estimation in the case of missing observations [39]. It is based on
the Expectation-Maximization algorithm (EM) [40], but the values of
missing squared returns, r2, are updated after each step of the numerical
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maximization of a likelihood function: The volatility is assumed to fol-
low a GARCH(1,1) model.

σ2 tð Þ ¼ μ0 þασ2 t � 1ð Þ þ βr2 t � 1ð Þ

and the estimation of parameters θ = {μ0,α,β} is obtained by using
the following 4-steps algorithm.2

1. Choose initial values of θ and calculate σ2(θ);
2. Estimate the missing values as E[rt2] = σt

2;
3. Using the maximum likelihood estimation, find new values of θ and,

hence, new estimation of volatility;
4. Continue steps 2 and 3 until stopping criteria are satisfied.

2.2. The computation of the Shannon entropy

The unpredictability of asset returns in an efficient market implies
maximum uncertainty, which can be captured by an entropy measure.
The entropy attains its own maximum under the EMH hypothesis. A
measure significantly smaller needs to be intended as a signal of market
inefficiency.

2.2.1. The Shannon entropy
We consider the Shannon entropy computed over sequences of ran-

dom variables. The Shannon entropy is defined as the average amount
of information that the source transmits with each symbol [41]. The un-
certainty of transmission is proportional to the expected value of the
logarithm of the probability of receiving a sequence of symbols.

Definition 1. Let X= {X1,X2,…} be a stationary random process with a

finite alphabet Aand a measure μ. An n-th order entropy of X is

Hn μð Þ ¼ � ∑xn1 ∈ Anμ xn1
� �

log μ xn1
� �

with the convention 0 log 0=0. A process entropy (entropy rate) of X is

Let k ≤ n and x1
n ∈ An, xii+k−1 = xi…xi+k−1. For each a1

k ∈ Ak, empirical
frequencies are defined as

f ak1jxn1
� �

¼ # i ∈ 1,n � kþ 1½ � : xiþk � 1
i ¼ ak1

n o
:

h μð Þ ¼ lim
n!∞

Hn μð Þ
n

:

We set the base of the logarithm to be equal to the size of the alpha-
bet A.

2.2.2. Discretization
The Shannon entropy is defined over a finite alphabet. Prices move

on a discrete grid and the minimum price variation is bounded by a
tick size. However, the huge amount of possible discrete variations com-
bined with the absence of an upper bound for themmakes the compu-
tation of entropy infeasible in practical applications. Hence, we build a
coarse-grained grid in such a way that the patterns of price variations
have a more direct interpretation: "the price goes up”, "the price is sta-
tionary”, or "the price goes down”. More specifically, we consider 2-
symbols and 3-symbols alphabets.

We define price returns as rt ¼ ln Pt
Pt � 1

� �
, where Pt is the price at

time t and ln() is the natural logarithm. For the binary alphabet, we
distinguish positive returns from negative returns.

st ¼
0, rt < 0,
1, rt>0

�

The case rt =0 is not considered and is removed from the sequence
of symbols. The sub-samples of the sequence splitted by the presence of
2 Wemake several changes in themethod. First, we consider not only 0-returns asmiss-
ing values but also returns after each 0-return. Second,we calculate the likelihood function
using all available data including reconstructed returns. The comparison of performances
of different approaches and the computations of errors for different parameters of optimi-
zation can be found in the Supplemental Material S-7.

3

0-returns are then concatenated. This type of discretization is invariant
to any multiplicative factor. In particular, the volatility of returns in a
given period is not important for entropy computation.

The ternary alphabet is obtained by labelling returns according to
two tertiles of the empirical distribution of returns, namely

st ¼
1; rt ≤θ1;
0; θ1 < rt ≤θ2;
2; θ2 < rt ;

8<:
where θ1 and θ2 denote the two tertiles of the empirical distribution of
the time series rt = {r1,…, rN}. In other words, θ1 and θ2 divide the
sorted data rt into three parts, each containing a third of the total
number of the returns. This gives almost the same amount of unique
symbols {0,1,2} in the sequence st. We assume that θ1 < 0 and θ2 > 0,
thus symbol 0 represents the interval of small price variations. This
type of discretization is invariant under the addition of a constant
term to each value of returns. Thus, the mean of return dynamics does
not affect the entropy computation.

2.2.3. Empirical frequencies method
The Empirical Frequencies (EF) method is used to estimate an en-

tropy from a given finite sequence of symbols [42]. Themethod includes
the calculation of empirical probabilities of blocks of symbols and
substituting them in the formula for the entropy in Eq. 1. We define a
shift-invariant Borel probabilitymeasure μ on the space A∞ of sequences
x = {xn} drawn from a finite alphabet A. The process is ergodic3 with a
positive entropy h. Let μk be the true distribution of k-blocks (blocks
with length of k).

By considering an empirical k-block distribution as

bμk ak1jxn1
� �

¼ f ak1jxn1
� �

n � kþ 1
,

an empirical k-entropy is defined by

bHk xn1
� � ¼ � ∑ak1

bμk ak1jxn1
� �

log bμk ak1jxn1
� �� �

:

We exploit the following Theorem introduced in [43] (Theorem
II.3.5–6) to obtain a consistent estimate of the Shannon entropy.

Theorem 1. If μ is an ergodic measure of entropy h> 0, if k(n)→ ∞ as n

→ ∞, and if k nð Þ ≤ log nð Þ
h , then

lim
n!∞

1
k nð Þ

bHk nð Þ xn1
� � ¼ h a:s:

In practical applications, we set k= ⌊ log (n)⌋. The estimation of the
process entropy is

bhk ¼ bHk

k
:

2.2.4. Unbiased estimation
The estimation is biased when the sample of data is finite. The esti-

mator introduced by Grassberger [44], bhGk , is defined in order to correct

for the bias, so that E bhGk nð Þ

� �
¼ h for samples of length n. More precisely,
3 Statistical features of an ergodic process can be deduced from a single typical realiza-
tion.
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let fi, i = 1, …, M, be the empirical frequencies of all possible k-blocks,
where M = |A|k and nb = n − k + 1 represents the number of blocks
in consideration. The entropy estimate

bHk ¼ � ∑M
i¼1

f i
nb

log
f i
nb

¼ log nbð Þ � 1
nb

∑M
i¼1f i log f i

is then replaced by

bHG
k ¼ log nbð Þ � 1

nb
∑M

i¼1f i log exp G f ið Þð Þ,

where the sequence G(i) is defined recursively as

G 1ð Þ ¼ � γ � ln 2ð Þ

G 2ð Þ ¼ 2 � γ � ln 2ð Þ

G 2nþ 1ð Þ ¼ G 2nð Þ

G 2nþ 2ð Þ ¼ G 2nð Þ þ 2
2nþ 1

,n≥1:

with the Euler's constant γ=0.577215…. We estimate the process en-
tropy as

bhGk ¼
bHG
k

k
:

2.2.5. Monte Carlo simulations
Given an estimate of the Shannon entropy, its statistical significance

is studied by using Monte Carlo simulations.4 A random walk after the
discretization in 2-symbols or 3-symbols, as described in the
Section 2.2.2, is a Bernoulli sequence with equal probabilities for the oc-
currence of each symbol. We define a time series of returns as unpre-
dictable if the entropy estimate is consistent with the entropy of the
corresponding Bernoulli process. Any violation is interpreted as a signal
of inefficiency for that particular time series of returns.

The bound of significance was computed as follows. We consider
lengths of sequences that are multiples of 10. For each considered
length, we simulated 105 Bernoulli sequences with p ¼ 1

2 ,
1
2

	 

for the bi-

nary alphabet and p ¼ 1
3 ,

1
3 ,

1
3

	 

for the ternary alphabet.

Then, we computed the Shannon entropy for all of them. For each
length, we found the 99 % confidence interval (CI) associated with the
distribution of entropy estimates. Then, to determine CI for lengths
that are not multiples of 10, we used a piecewise linear interpolation.
We define a time series as inefficient in a given time interval if the esti-
mated entropy of the time series in this interval is less than the bound of
99 % one-sided CI of the Bernoulli process with the same length.

3. Entropy analysis results

Time series of price returns are characterized by some regularities
related to market patterns, which may apparently suggest the possibil-
ity of building up trading strategies to make risk-free profits. For exam-
ple, microstructure effects result in a non-zero autocorrelation of
returns at a high frequency. However, any trading strategy that tries
to exploit such an effect has a non-trivial impact on the price dynamics
with the result of zero profit on average, see [45,46]. Similar consider-
ations can be drawn also for intraday patterns and volatility clustering.
The impact of such effects on the estimation of entropy for return time
series has been already considered in the existing literature [32].
4 We use simulations here because they take less computation than iterating over all
cases. From combinatorics we know that the number of outcomes to distribute N blocks
over M values is equal to NþM � 1

M � 1

� �
. This value increases rapidly with the increase of N.

All programs including simulations are written using the MATLAB software.

4

Interestingly, there is another source of regularity characterizing
time series of returns. It leads to apparent inefficiency which cannot
be however exploited to build profitable strategies at high frequency
trading. This source of regularity is the presence of 0-returns in data,
which lowers the estimate of entropy. It can be interpreted as a spurious
effect and must be removed before consideration on market efficiency.

3.1. Zeros as a source of inefficiency

0-returns in financial time series arise because of many effects in-
cluding rounding, no trading, and price staleness. The 0-returns occur-
ring because of no trading implies a spurious autocorrelation of time
series; see [47]. Moreover, except for the non-trading, there is also the
effect of price staleness in the data shown in [33]. The authors of the ar-
ticle define price staleness as a lack of price adjustments yielding 0-
returns. The effect of staleness is one of the features that distinguish
real data from prices following a randomwalk. To explain the phenom-
enon of price staleness in the data, we refer to the work [48]:

“Classical models of price formation postulate that informed traders
react to new information not yet reflected in the transaction price of a
security and transact if the trade guarantees a profit net of execution
costs (e.g., [49,50]). Thus, due to lack of trading, a security with higher
transaction costs should experience less frequent price updates and a
larger number of "small” returns than a security with a lower cost of
transacting. Similarly, uninformed tradersmay not just buy and sell ran-
domly. They may also react to the size of transaction costs and choose
not to trade should these costs be considered too large.”

The presence of spurious zeros, zeros that appear due to no trading or
no price adjustments, affects any estimate of the Shannon entropy. The
value of entropy as a measure of randomness is affected by the 0-
returns in the data since the large amount of 0-returnsmakes a time se-
ries predictable. When 0-returns are persistent in time because of no
trading or noprice adjustments, the price dynamics look predictable be-
cause the price is constant in time. However, such an effect cannot be
seen as market inefficiency since no profitable strategy can be imple-
mented in this case.

In the next sections, we show empirically that the 0-returns are one
of the sources of apparent inefficiency. We construct a method of filter-
ing out 0-returns due to price staleness in Section 3.3. We test the
method of filtering out spurious 0-returns first on simulated data and
then on the real dataset. The results for the simulated data are in
Section 3.4. We show that spurious 0-returns generated non-
uniformly change the measure of entropy of the return time series.
However, the entropy as well as the amount of 0-returns due to
rounding goes back to its genuine value by implementing the method.
The main empirical result obtained on the real dataset in Section 4.2 is
that the amount of inefficient weeks decreases significantly after filter-
ing out 0-returns.

3.2. Influence of 0-returns on the entropy value

We first investigate the impact of 0-returns on the estimation of en-
tropy for the 2-symbols discretization. The presence of clustering and
intraday patterns in volatility does not influence the 2-symbols
discretization. In this case, the data whitening process described in
Section 2.1 has no impact on the estimation of the entropy, and any sig-
nal of the price inefficiency is not linked to the aforementioned patterns.

We focus the analysis on the set of 100most liquid stocks belonging
to the Russell 3000 index. For each stock, we consider the time series of
returns for each week of the period from 02.01.1998 to 23.06.2017. For
each stock, we average the fraction of 0-returns separately for the inef-
ficientweeks and for the efficientweeks.We show the averaged fraction
of 0-returns for weeks with inefficiency and for weeks without ineffi-
ciency in Fig. 1. The result points out an evident correlation between
the fraction of 0-returns and low entropy, a signal of the inefficiency
of market dynamics. This supports empirically that the inefficient
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Fig. 1. The fraction of 0-returns for weeks with and without inefficiency presented in two
histograms with 25 bins.
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weeks are characterized by the presence of a large number of 0-
returns.5

A larger fraction of 0-returns implies a smaller sample size for the
time series of symbols. However, this is not the reason for a biased esti-
mation. First, the estimator proposed by Grassberger has been applied
to correct for the bias associated with finite sample sizes. Second, we
show in the Appendix C that if one artificially shortens the sample
length by aggregating returns on bootstrapping, the entropy estimate
is not affected and has no downward bias.

3.3. Censoring spurious 0-returns

Since we found a correlation between the fraction of 0-returns and
the entropy value, we developed an algorithm to filter out spurious 0-
returns. There exist two effects resulting in 0-return for the price dy-
namics as pointed out in [33]: The first is the result of a price
discretization due to the tick size, and the second is an economic phe-
nomenon linked to traded volumes. The second channel consists of a
high transaction cost and the absorption of bounded volumes causing
no price changes and leading to price staleness. In the first case, since
the price does not change due to rounding, the return is equal to zero
at the minimum resolution available. On the other hand, the 0-returns
due to the price staleness effect hide information about the underlying
asset. Such 0-returns should be considered as spurious. Disentangling
these two effects is thus crucial to the end of entropy estimation.

Following [33,34], we model price staleness by assuming that ob-
served transaction prices are the result of the coupling of a random
walk with a Bernoulli process for the occurrence of the spurious 0-
returns.

Pi

~
¼ PiBi þ P

~

i � 1
1 � Bið Þ ð1Þ

where Bi is Bernoulli variables with values 0 or 1, Pi is an efficient price
discretized following the Geometric Brownian Motion, and Pi

~
is an

observed price. According to this model, the efficient price is diffusive,
even when we do not observe it because of price staleness.

By assuming the process (1) for the price dynamics of an asset, we
aim to infer from real data the probability for each 0-return to be gener-
ated because of rounding or price staleness, then filtering out 0-returns
5 Despite the fact that 0-returns are removed from the discretized sequence, they may
affect the 2-symbols sequence by changing the ratio between positive and negative
returns, the sample size of the resulting blocks of symbols after concatenation, and the
values after 0-returns.
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which are likely associatedwith the second effect. To this end, the prob-
ability of obtaining a 0-return because of rounding within some given
tick size is obtained under some approximations6 as

pt ¼ erf Rtð Þ þ 1
Rt

ffiffiffi
π

p exp � R2
t

� �
� 1

� �
ð2Þ

where Rt ¼ d
Ptσ t

ffiffiffiffiffi
2Δ

p , erf(x) is theGaussian error function, d is the tick size,
Δ is a time step, P is the rounded price, and σ t is an estimation of vola-
tility at time t.7 The result is obtained by considering the probability that
the pricemoves so slightly so that it is rounded to the same value as one
time step ago. The obtained probability is approximated using the ob-
served price and the volatility estimation. See the Appendix D.1 for de-
tails.

Given pt at each time step t, the expected number of 0-returns due to
rounding is the sum of all pt within the considered time period,

i.e., Nsave ¼ ∑N
1 pt ¼ bpN, where bp is an average probability. The variance

of the amount of 0-returns is equal to Var ¼ bp 1 � bp� �
N. If the observed

number of 0-returns Nreal is not significantly larger than the expected
one according to the model (2), i.e., Nreal ≤ Nsave þ 1:96

ffiffiffiffiffiffiffiffi
Var

p
, we do

not filter out any 0-return. Otherwise, in order to filter out 0-returns
due to price staleness, we replace by missing values the 0-returns
which appear not due to the rounding according to the approach below.

3.3.1. Approaches of identifying zeros
A 0-return is considered as spurious according to the following

method called probability-based. An expected timewhen a 0-return ap-
pears due to rounding is determined when the expected number of 0-

returns due to rounding, Z tð Þ ¼ ∑t
i¼1Pi, jumps to a new integer value,

⌊Z(t)⌋ − ⌊Z(t − 1)⌋ = 1. Then, moving from t = 0 to the final time, the
expected time when a 0-return appears due to rounding is matched
with the closest time with a real 0-return in the time series.8 We save
these 0-returns, but set other 0-returns at the amount Nc = Nreal −
Nsave as missing values. We assume that Nc 0-returns appear due to
price staleness. We set not only 0-returns due to price staleness but
also the values at the consecutive time step as missing for the reasons
we will discuss below in Remark 1.

The main feature of this approach is that we use only information on
prices for its implementation: we calculate the probability of getting 0-
returns due to rounding using prices, the estimation of volatility, and
the tick size. We consider this probability-based approach as basic and
use it for the analysis. Modifications of this approach including the
usage of the information about traded volumes and the estimation of
a bid-ask spread are in the Supplementary material S-2.

3.4. Filtering 0-returns on simulated data

To include 0-returns into the analysis, we consider here the three-
symbols alphabet, where one of the symbols corresponds to returns be-
tween the two tertiles of the empirical distribution. We aim to study
here the effect of 0-returns on the estimation of entropy for simulated
time series.

We model a price as the Geometric Brownian motion (GBM), Pt =
P0 + ∫0t PsσdWs, setting an initial price equal to 50 and a constant
volatility equal to 10−3. We take a time step equal to 1 min and
simulate 2000 data points. Then, we generate additional 0-returns
with a probability prt = pr0 + ∫0t μsds + ∫0tνdWs with constant ν =
10−3 and three different values of μt and pr0. The first two values
present cases where the additional 0-returns are distributed uniformly
normally. The bid-ask spread is set to be 0.
7 Returns used for the volatility estimation have been deseasonalized in a preliminary

step.
8 If we need to keep a 0-return from the sequence of 0-returns, we place it at the begin-

ning of this sequence.

Image of Fig. 1


Fig. 2. Examples of the probabilities of getting spurious 0-returns.
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but with different extents. The third case simulates a scenario where 0-
returns cluster together. Thefirst choice of the probability function is pr0
= 0.3, μ(t) = 0. The second choice of the probability function is pr0 =
0.2, μ(t) = 0. The third choice of the probability function is

pr0 ¼ 0:1 μ tð Þ ¼ � 1

4002
t � 1000ð Þ exp � t � 1000ð Þ2=4002

� �n
The examples of thefirst and third functions are in Fig. 2a and Fig. 2b,

respectively.

Remark 1. There are two reasons to consider returns after 0-returns as

missing values too.

tribution sharper and bell-shaped, as in the third case, the estimate of
entropy decreases significantly after adding spurious 0-returns. How-
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10 -3 Two estimations of volatility

estimation on 0s
the chosen method
diagonal
I. If, according to Eq. 1, the real price is hidden for one or more mi-
nutes, the first non-zero return is the sum of all returns that were
hidden. Thus, we do not have the value for the return at this minute,
but only know the aggregate information.

II. Denoting as missing values returns after 0-returns increases the ac-
curacy of the estimation of volatility. See Fig. 3 as an example. The
value of volatility is on the x-axis in the range from 5 · 10−4 to 2 ·
10−3. Two mean values of the estimations of volatility in the
case of the second choice of the probability function are on the y-
axis. The closer scatter plot to the diagonal, the more precise the es-
timation.

We aim to test if the method we have developed identifies spurious
0-returns well. After detecting the spurious 0-returns and setting them
asmissing values, the entropy value should increase so that the time se-
ries should be indistinguishable from a realization of a random walk
with some missing values. We calculate the entropies only for the last
1950 data points. First, we calculate the entropy of initial return time se-
ries, then with the additional 0-returns, and then after setting the spu-
rious 0-returns as missing values. We simulate 1000 time series with
≤ 1/3 of 0-returns.

How can we estimate the entropy of a sequence with missing
values?We keepmissing values in the sequence but consider the parti-
tions of the time series in blocks that do not contain missing values of
symbols.9 The description of the chosen method of the entropy estima-
tion and the proof of the consistency of the entropy estimator are in the
Appendix D.2. The results are shown in Tables 1- 3 below. The columns
of the tables represent themean entropy for all samples, its standard de-
viation, the number of samples that are not defined as inefficient, the
number of 0-returns averaged, and its standard deviation.
9 Other common approaches to deal with missing values are concatenating observed
sequences and using an interpolation to replace a missing observation with its recon-
structed value. The former may create new patterns containing parts of concatenated
blocks and the latter incorporates predictable patterns instead of the missing values.
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The large amount of spurious 0-returns added uniformly does not
sufficiently decrease the entropy value. We take two probability func-
tions with different mean values 0.2 and 0.3. In both cases, on average,
sequences with additional 0-returns have the entropy value close to
the value of the initial time series. The return series with missing values
have the entropy lower than the initial sequence. Since the lower bound
of CI also decreases, all sequences after filtering out 0-returns appear to
have no inefficiencies. (We compare each estimate with the lower
bound of 99 % CI for the entropy of Bernoulli sequences, which is
about 0.9935 for the length of 1950). Moreover, whenwemake the dis-

ever, when we use probability-based method described in the
Section 3.3.1, the entropy becomes closer to its initial value. The other
important aspect is that the probability-basedmethod keeps the amount
of 0-returns in the sequence quite close to the number of 0-returns ap-
pearing by rounding the efficient price in all three cases.

We expect similar results for real data. If spurious 0-returns are dis-
tributed uniformly, setting the spurious 0-returns as missing values
does not affect the value of entropy. However, if the 0-returns cluster to-
gether, for example, in the presence of high transaction costs, then a
predictable pattern due to spurious 0-returns needs to be removed
from the time series for a genuine estimation of entropy.
3.5. Filtering 0-returns on real data

To test the probability-based approach on real data, we take the SPY
ETF, which aims to track the Standard & Poor's 500 Index, and SPDR
volatility 10 -3

Fig. 3. The volatility and two estimations. The blue squares are the estimations of volatility
using only 0-returns as missing values. The red circles are the estimations of volatility
using 0-returns and the values after 0-returns as missing values.

Image of Fig. 2
Image of Fig. 3


Table 1
Results of filtering 0-returns with the 1st choice of probability function.

Time series Mean
entropy

Std. of
entropy

N of eff.
Series

N. of
0-returns

Std. for
0-returns

GBM 1.0002 0.0025 993 153.38 13.09
After adding 0-returns 1.0002 0.0026 994 619.77 23.77
After setting missing values 0.9978 0.0083 1000 147.96 4.99

Table 2
Results of filtering 0-returns with the 2nd choice of probability function.

Time series Mean
entropy

Std. of
entropy

N of eff.
Series

N. of
0-returns

Std. for
0-returns

GBM 1.0001 0.0027 987 155.49 12.31
After adding 0-returns 1.0002 0.0026 994 508.49 51.77
After setting missing values 0.9992 0.0061 1000 147.65 4.69

Table 3
Results of filtering 0-returns with the 3rd choice of probability function.

Time series Mean
entropy

Std. of
entropy

N of eff.
Series

N. of
0-returns

Std. for
0-returns

GBM 1.0002 0.0027 995 153.78 13.04
After adding 0-returns 0.9905 0.0051 287 613.02 27.64
After setting missing values 0.9984 0.0058 1000 149.27 5.05

Entropy of weekly data, SPY

2003 2004 2005 2006 2007 2008 2009
years

(a) SPY

Entropy of weekly data, DIA

2003 2004 2005 2006 2007 2008 2009
years

(b) DIA
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Dow Jones Industrial Average ETF Trust (DIA). The tick size is d= 0.01,
and the time step is Δ = 1 minute. We discretize returns after filtering
out the daily seasonalities and the heteroskedasticity. We use the prob-
ability-based approach described in Section 3.3.1.10 Fig. 4a and Fig. 4b
show the entropy of these returns including all 0-returns and the en-
tropy calculated after filtering out 0-returns.

For the ETF SPY, we observe 330 weeks. 36 of them are associated
with the estimate of entropy lower than the 99 % confidence bound
after the step of filtering out heteroskedasticity: we refer to these
weeks as inefficient weeks. After applying the method of 0-filtering
there are 10 inefficient weeks, but only 4 of them are from the group
of previously inefficient weeks. For the ETF DIA, we observe 333
weekswith 42 inefficient weeks after the step of filtering heteroskedas-
ticity. After applying themethod of 0-filtering there are 12, but only 8 of
them are from previously inefficient weeks. The main conclusions we
can make from this section are the following.

1. On average, the algorithm of filtering out 0-returns increases the en-
tropy value.

2. There are weeks where a low entropy value still cannot be explained
by intraday volatility pattern, heteroscedasticity, and 0-returns.

3. For some reason, our method can determine inefficiency for a
week which we considered as “efficient” in the sense described
in Section 2.2.5. Two possible explanations are random fluctua-
tions of the entropy measure as a random variable and detecting
significantly low values of the entropy that were not detected be-
fore due to a high level of confidence. We discuss this issue in the
Appendix E.

We investigate another reason for appearing new inefficiencies and
the possible source of remaining inefficiencies in the next section.

4. Periodic patterns, microstructure noise, and the ETF market

4.1. Periodic patterns

The goal of this section is to investigate a reason for low entropy
values by considering the process of calculating the empirical frequen-
cies. When estimating entropy, the frequencies of all possible k-blocks
are calculated. We are interested in finding some repeating patterns in
blocks that appear to be themost frequent, whichmay cause a decrease
in the entropy estimation. For each inefficient week of the ETF DIA after
filtering out 0-returns, we write down the most frequent block(s) of
symbols of length k which are met while calculating the entropy. The
10 We apply the approachonly toweekswith<1/3 of 0-returns and<10 consecutivemi-
nutes with 0-volume.
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complete table with results is in the Supplementary material S-8. The
most frequent blocks in weeks with the new inefficiencies are 000121,
011210, 020121, 021002, 201211, 202111, 210120. We highlight in
bold blocks where the same characters 1 or 2 do not appear in a row.
This may mean that the price fluctuates around its average value.
We assume that such an effect can be observed, for example, with a
bid-ask bounce. That is, such patterns occur when there is no move-
ment in the efficient price, but transactions occur at both the bid and
ask prices. We showwhen the existence of this pattern is statistically
significant.

Ifwe consider only positive and negative returns,wemove back for a
moment to the 2-symbols discretization. Let choose k = ⌊log2(L)⌋,
where L is the length of a 2-symbols sequence. Let's consider 2 se-
quences ‘1010…’ and ‘0101…’. We know that the expected amount of
blocks with these sequences for the process with the entropy h = 1 is
Fig. 4. The entropies calculated for the 3-symbols discretization before and after filter-
ing out 0-returns for the ETFs SPY and DIA with the corresponding 99 % Confidence
Intervals.

Image of Fig. 4


Table 4
Results of filtering out 0-returns with the probability-based approach.

ETF Total
weeks

Ineff.
before
0-filtering

Ineff.
after
0-filtering

New
ineff.

New ineff.
explained
by PP

Reject
H0
with
95 %

Reject
H0
with
99 %

SPY 330 36 10 6 0 0 0
DIA 333 42 12 4 1 1 0
IWM 294 34 5 3 0 0 0
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nb/2(k−1),where nb = L− k+ 1. Also, we construct a 99 % CI using the
formula for the standard deviation from the binomial distribution.

p ¼ 1

2 k � 1ð Þ

q ¼ 1 � pbσ2 ¼ nbpq

ð3Þ

Definition 2. If the actual amount of blocks ‘1010…’ and ‘0101…’ in a

sequence, npp, is greater than the upper bound of CI, that is,

npp>nb=2
k � 1ð Þ þ qαbσ

where qα is a quantile of the normal distribution, we determine the

EWJ 14 3 3 1 1 1 0
XLE 231 12 7 3 1 0 0
XLF 120 23 16 4 1 1 1
XLU 94 10 6 4 0 0 0
IVV 161 6 0 0 0 0 0
XLB 124 4 2 2 0 0 0

IWO 148 13 3 3 0 0 0

For the last two columns, 1 indicates the rejection of H0; 0 indicates a failure to reject H0.

sequence as one with periodic patterns (PP).

These periodic patternsmay appear due to a low price valuewith re-
spect to the tick size and a low volatility (which are also reasons for 0-
returns generated by rounding). If a price fluctuates randomly around
the mean value, crossing the same tick size twice in the opposite direc-
tions is more likely than crossing two tick sizes in the same direction.

We have markers for inefficiency and periodic patterns for each
week. Using the hypergeometric distribution,11 we may conclude if
there is a dependence between a detected inefficiency and PP. Thus,
we test the following hypotheses.

H0. : the appearance of a week with inefficiency and the appearance

of a week with periodic patterns are independent against an alternative
hypothesis.

weeks is 3.46. However, we detect a predictable time series with 99 % of
confidence. Since 3.46% is significantly>1 %,we can conclude that there
are other unaccounted sources of inefficiency in the price dynamics. For
Ha. : the appearance of aweekwith the inefficiency and the appearance

of a week with periodic patterns are dependent.

this reason, we discuss below the role of microstructure noise, another
stylized fact of financialmarketswhich is key for the entropy estimation
We say that H0 is rejected if

nineffþpp>mþ qαbσ ð4Þ

where nineff+pp is the number of weeks with inefficiency and periodic
patterns simultaneously; m ¼ nK

N ; σ̂
2 ¼ nK N � nð Þ N � Kð Þ

N2 N � 1ð Þ ; N is the total
number of weeks; K is the number of weeks with inefficiency; n is the
number of weeks with PP.

The results for SPY are that we have no 95 % confidence that the ran-
dom processes “occurrence of a week with inefficiency” and “occur-
rence of a week with periodic patterns” are dependent. On the
contrary, for DIA we do have 95 % confidence that there is the depen-
dence for the occurrence of weeks with inefficiency and weeks with PP.

4.2. Analysis of the ETF market

The goal of this section is to assess the impact of the 0-filtering pro-
cess on the ETFmarket and to test the dependence between the remain-
ing weeks with inefficiency and the presence of periodic patterns. We
take the set of 10 ETFs and test them for detecting weeks with ineffi-
ciency before and after the 0-filtering process. The characteristics we
are interested in are the total amount of weeks; the amount of weeks
with inefficiency before the 0-filtering; the amount of weeks with inef-
ficiency after the 0-filtering; the amount of new inefficient weeks that
appear only after the 0-filtering process; those new inefficient weeks
which contain periodic patterns according to Definition 2. Finally, we
test the hypothesisH0 presented in the previous section about the inde-
pendence of the events of occurring an inefficientweek and aweekwith
periodic patterns according to Eq. 4. We construct Table 4 with the re-
sults for all 10 ETFs.12
11 The hypergeometric distribution describes the probability of k successes in n draws
without replacement from the finite population of size N that contains exactly K objects.
12 See the Supplementary material S-2.1 for the comparison of results for the different
approaches of the 0-filtering.
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We conclude that for all 10 ETFs the number of inefficient weeks de-
creases after applying the filtering of 0-returns. The number of detected
weeks with inefficiency remains the same only in the case of the ETF
EWJ. The algorithm filters out apparent inefficiencies from all 6 weeks
considered for the ETF IVV. That is,we cannot detect any statistically sig-
nificant decrease in entropy for the ETF IVV by using non-overlapping
weekly time windows.

Finally, we note that the percentage of the total number of inefficient

of return time series at a high frequency.

4.3. Filtering microstructure noise

An observed price includes various microstructure effects caused by
transaction costs and price rounding. The difference between the efficient
price and the observed price with the microstructure effects is calledmi-
crostructure noise. In general, each new observation in a return time series
depends on theprevious values. Amodel that can explain thepresence of a
positive autocorrelation of data is the following. Assume to observe a price

Pt

~
that differs from the efficient price Pt by some error term ut, namely

ln Pt

~
¼ ln Pt þ ut

and the observed market return ~rt is

~rt ¼ rt þ ut−ut−1

where rt is the return of the efficient price. The observed return is affected
by the error term associated with the log-price at the previous time step.
The microstructure noise tends to be positively autocorrelated in time
[51]. If the error term ut follows an autoregressive AR(1) process, then
the observed returns are described by an ARMA(1,1) process.

The effect of such a noise term on the estimation of entropy has been
described in [32] by considering both AR(1) and MA(1) models. In
particular, the authors have found that larger (in absolute value)
autoregressive coefficients are associatedwith lower values of the Shan-
non entropy. This intuition is exploited by M. Ito and S. Sugiyama [4],
which use a time-varying autocorrelation of stock returns as a measure
of market inefficiency for the U.S. stock market.

Here, we consider a further step of filtering based on the estimation of
an ARMA model on the time series of returns after the 0-filtering. After
selecting the best (P,Q) of an ARMA(P,Q) model describing the data by
using the BIC criterion [52], we study the residuals in order to remove
any autocorrelation pattern from data. We consider only ARMA(P,Q)
models with P + Q ≤ 5. After filtering out 0-returns and replacing them



Table 5
Resulting table after filtering out the microstructure noise.

ETF Total weeks Ineff. before ARMA Ineff. after ARMA New ineff. Reject H0 with 95 % Weeks with ineff.

SPY 330 10 4 0 0 03-May-2007 - 09-May-2007
24-May-2007 - 31-May-2007
23-Feb-2009 - 27-Feb-2009
13-Nov-2009 - 19-Nov-2009

DIA 333 12 6 2 0 14-Apr-2003 - 21-Apr-2003
14-Jan-2004 - 21-Jan-2004
12-Feb-2004 - 19-Feb-2004
04-Feb-2008 - 08-Feb-2008
17-Nov-2008 - 21-Nov-2008
16-Dec-2008 - 22-Dec-2008

IWM 294 5 2 0 0 02-Dec-2008 - 08-Dec-2008
16-Dec-2008 - 22-Dec-2008

EWJ 14 3 1 0 0 16-Oct-2009 - 22-Oct-2009

XLE 231 7 1 0 0 21-Sep-2005 - 27-Sep-2005

XLF 120 16 5 0 0 22-Sep-2008 - 26-Sep-2008
20-Oct-2008 - 24-Oct-2008
03-Jun-2009 - 09-Jun-2009
11-Sep-2009 - 17-Sep-2009
09-Oct-2009 - 15-Oct-2009

XLU 94 6 1 0 0 11-Sep-2009 - 17-Sep-2009

IVV 161 0 1 1 0 22-Feb-2006 - 28-Feb-2006

XLB 124 2 4 2 0 28-Feb-2007 - 06-Mar-2007
16-Jul-2007 - 20-Jul-2007
16-Apr-2008 - 22-Apr-2008
21-May-2008 - 28-May-2008

IWO 148 3 0 0 0

The presence of periodic patterns in weeks with inefficiency is defined with 95 % of confidence.
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by missing values, we use the methodology introduced in [53] to deal
with the estimation of an ARMA(P,Q) model with missing observations,
in particular by using the Kalman filter. Other approaches of determining
the order of an ARMA model including the maximization of entropy and
an out-of-sample testing are presented in the Supplementary material
S-3.

For the analysis of results, we introduce coinefficiency for a group of as-
sets. We say that two or more assets have coinefficiency if they have the
sameweek with inefficiency. Moreover, if the hypothesis of the indepen-
dence of appearing inefficiencies for a given time period is rejected with
the significance of 0.05 according to the binomial distribution, we say
that the coinefficiency is a statistically significant event (by analogy of de-
fining periodic patterns with Eq. 3). New inefficient weeks are found in
the comparison with the results obtained with the probability-based ap-
proach. Results for 10 ETFs are in Table 5.13 Filtering microstructure
noise using BIC gives a low percentage of new inefficient weeks equal to
0.27 %,whichmakes the results consistentwith the previous step offilter-
ing.Moreover,filteringmicrostructurenoise removes thedependencebe-
tween weeks with periodic patterns and weeks with inefficiency. The
number of coinefficiencies is equal to 2 for this approach; both of them
are statistically significant and are highlighted in bold in the table.

Filtering microstructure noise gives a low percentage of inefficient
weeks equal to 1.35 %. This is a clear signal that the Efficient Market Hy-
pothesis is not totally realistic for real-world market dynamics. Indeed,
after filtering all known sources of apparent inefficiencies, the percentage
of weeks detected as inefficient is >1 %, namely the confidence level used
in our testing procedure. Thus, themarket is not totally efficient at a 1min
time scale. Regarding the last step of filtration, namely, considering resid-
uals of an ARMAmodel, we should also notice that we filter out all possi-
ble linear dependencies for returns together with the effect of the
microstructure noise. As a consequence, the resulting measure of market
inefficiency excludes as well any linear effect of predictability.
13 See Supplementary material S-3.1 for the comparison of results for different ap-
proaches of filtering microstructure noise.
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5. Analysis of longer intervals and cointegration

In the previous sections, we discussed the issue of (in)efficiency of the
ETF market for weekly time intervals. Some questions may require more
careful study. For instance, reasons for the occurrence of coinefficiencies
are not yet investigated. Since the procedure of detecting an inefficient
week for a specific asset is made with a high level of confidence, the oc-
currence in the data of 10 ETFs cases of the coinefficiency should be inves-
tigated better. Thus, there can be some exogenous cause that leads to
more predictability for the several assets at the same time. A research in-
terest is to determine if there is some correlation between assets at a time
when both of themhave aweekwith inefficiency. Since some ETFs aim to
track indexes having some stocks in common, it is natural to expect that
some inefficient weeks appear simultaneously due to exogenous events
in themarkets.We test assets for cointegration in the Supplementaryma-
terial S-4.

Moreover, we concentrated on weekly time intervals. On a weekly
basis, we conclude that we filter out the main sources of apparent ineffi-
ciency, so that the percentage of intervals with inefficiency is close to the
level of significance. However, we restricted ourselves by the short time
intervals. In the Supplementary materials S-5 we consider monthly and
quarterly time intervals to analyze market inefficiency using rolling win-
dows but with greater length. The results are that the measure of market
inefficiency, by analogy with the case of weeks, is equal to about 11 and
10 % for months and quarters, respectively. A transition from weeks to
months significantly increases the measure of inefficiency. Important dif-
ferences between the two time intervals are the length of blocks taken
into consideration and the amount of data in which different predictable
patterns may be found. Finally, the dataset with the period of about 2.5
years is considered in the Supplementary material S-6.

6. Conclusions

We have studied the efficiency of the ETFmarket. To this aimwe ap-
plied the Shannon entropy as a measure of randomness that has also
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been used in the range of articles [15–18]. In contrast to the men-
tioned works, we filtered different sources of apparent inefficiency
of market dynamics before calculating the degree of market ineffi-
ciency. The method of filtering out apparent inefficiencies was first
introduced by Calcagnile et al. [32]. In our work, we have introduced
price staleness [33,34] as a source of apparent inefficiency besides
the apparent inefficiencies caused by daily seasonalities and hetero-
scedasticity.

Price staleness creates spurious 0-returns in the data. We constructed
the method for detecting spurious 0-returns according to the probability
of their occurrence.We set spurious 0-returns asmissing values. Thus, we
built and applied the modification of the Empirical Frequencies method
[42] for calculating entropy in the case of the presence of missing values
in the data. We have shown that 0-returns cause a false detection of inef-
ficiency.

The last step of data whitening is filtering out microstructure noise.
We have shown that for some ETFs there is a clear dependence between
a low estimate of entropy for discretized returns and the presence of pe-
riodic patterns, i.e., the switching sign of non-zero returns for each trad-
ing minute. Both periodic patterns and microstructure noise may have
their origin in a bid-ask bounce. We use a fitting ARMA model to get
rid of these effects. We have measured market inefficiency on a weekly
basis as the percentage of inefficient weeks among all assets taken into
consideration.

After the implementation of the multi-step filtering method,
which allows to remove daily patterns, heteroscedasticity, 0-returns,
and microstructure noise, the fraction of weeks with inefficiency
decreases to a value slightly >1 %. Taking into account the 99 % level
of confidence for the test for inefficiency, we can conclude that there
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exists slight evidence of inefficiency in the ETF market at a high-
frequency time scale. Molgedey and Ebeling [14] came to the similar
conclusion and stated that the Dow Jones Index is not fully random,
but nearly random.

We plan to use the methodology developed in this article to analyze
the predictability of other markets using more recent data. Another di-
rection for future research is related to the search for the optimal length
of the time interval for detecting market inefficiency.

Finally, we plan to develop our methodology on ultra-high fre-
quency time series, for example, by using tick-by-tick data.
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Appendix A. Datasets

We use a proprietary intraday financial time series dataset provided by kibot.com.
Tables 6 and 7 show the list of tickers for ETFs and Stocks respectively.

Table 6
List of ETFs.
Ticker
 Name ETF
 Asset tracked
PY
 SPDR S&P 500
 S&P 500 Index

IA
 DIAMONDS Trust Series 1
 Dow Jones Industrial Average Index

M
 iShares Russell 2000 Index
 Russell 2000 Index
WJ
 iShares MSCI Japan Index
 MSCI Japan Index

LE
 Energy Select Sector SPDR
 Energy Select Sector Index

LF
 Financial Select Sector SPDR
 Financial Select Sector Index

LU
 Utilities Select Sector SPDR
 Utilities Select Sector Index

V
 iShares S&P 500 Index
 S&P 500 Index

LB
 Materials Select Sector SPDR
 Materials Select Sector Index

O
 iShares Russell 2000 Growth Index
 Russell 2000 Growth Index
IW
Table 7
List of stock tickers.

Tickers for 100 Stocks
SFT
 MO
 AAPL
 LLY
 AIG
 CAT
 ADBE
 CL
 FDX
 EA

SCO
 HD
 BAC
 AMZN
 SPLS
 SCHW
 GLW
 PAYX
 KR
 NKE

TC
 HPQ
 TXN
 MCD
 XLNX
 LOW
 CA
 DUK
 BBBY
 MXIM

RCL
 DIS
 PG
 ABT
 COST
 IP
 RIG
 EMR
 NEM
 MAT

E
 MRK
 JNJ
 SLB
 WFC
 MMM
 LUV
 DOW
 NTAP
 COF

MAT
 WMT
 DD
 MDT
 JPM
 ALL
 WMB
 INTU
 SO
 SYMC

M
 KO
 BMY
 MSI
 WBA
 GPS
 CTXS
 ADI
 CAG
 LMT

FE
 AMGN
 MU
 AXP
 SBUX
 BBY
 KMB
 CVS
 LRCX
 CCL
BA
 T
 HAL
 XRX
 BK
 BHI
 USB
 BSX
 TER

WX
 PEP
 QCOM
 AMD
 KLAC
 AA
 UTX
 HON
 NE
 JCP
T
Data for stocks are provided by Kibot. For the description of Stocks' symbols, we refer to http://www.kibot.com/Historical_Data/Russell_3000_Historical_Intraday_Data. aspx

http://kibot.com
http://www.kibot.com/Historical_Data/Russell_3000_Historical_Intraday_Data
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Appendix B. Data cleaning and whitening
B.1. Outliers
We use the Brownlees and Gallo's algorithm of an outlier detection [35] with parameters k=20, δ=10 % , c=5, γ=0.05. The algorithm iden-
tifies price values which are too distant from the mean value with respect to the standard deviation. The algorithm removes a price Pi if

Pi � Pi kð Þ�� �� ≥ csi kð Þ þ γ

where Pi kð Þ and si(k) are respectively the δ -trimmed samplemean and standarddeviation of the k price records closest to time i. The δ lowest and the
δ highest observations are discarded when the mean and the standard deviation are calculated from the sample.
B.2. Stock splits
A stock split is a change in the number of company's shares and in the price of the single share such that amarket capitalization does not change. If
the number of stocks increases, it is called a forward split. Otherwise, the split is a stockmerge.We check the condition |r| > 0.2 in the return series to
detect unadjusted splits.
B.3. Intraday volatility pattern
The volatility of intraday returns has periodic behavior. It is higher near the opening and the closing of the market, showing a typical U-shaped
profile every day. For empirical evidence of the U-shaped intraday pattern of stock returns in NYSE, see [37]. We filter out the intraday volatility pat-
tern from the return series by using the followingmodelwith intraday volatility factors. If Rd, t is the raw return of day d and intraday time t, we define
deseasonalized returns as

~Rd;t ¼
Rd;t

ξt
ð5Þ

where

ξt ¼
1

Ndays
∑d0

Rd0 ,t

�� ��
sd0

Ndays is the number of days in the sample and sd is the standard deviation of the returns of day d. The procedure also normalizes the values of
overnight returns that tend to have larger magnitudes than the other 389 returns. Fig. 5 shows ξt, for the ETF SPY where t passes from 9:31 to
15:59. All picks appear every half hour (from the largest at 10:00 to 15:30).
B.4. Heteroskedasticity
The deseasonalized returnsR
~
defined by Eq. 5 are still heteroskedastic since different days can have different levels of volatility. In order to remove

this heteroskedasticity, we estimate the volatility σt and define the standardized returns by
intraday volatility pattern

0 50 100 150 200 250 300 350
minutes after 9:30

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 5. Intraday volatility pattern for the ETF SPY.
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Fig. 6. The estimated entropy and the averaged entropy of samples for the stock MSFT with the corresponding 99 % confidence intervals.
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rt ¼
R
~

t

σt

Appendix C. Testing dependence between the entropy estimation and the length of sequence

In this section we aim to test dependence between the entropy estimation and the length of sequence. For the study we take the price of the
Microsoft Corporation stock (MSFT). Then, we discretize returns using the 2-symbols discretization. There are 980 weeks in the considered time in-
terval from 02.01.1998 to 23.06.2017. The minimum length of a 2-symbols sequence is obtained in week 352 and is equal to 896. First, we calculate
the entropy value for every week. Then, we use sampling of the binary sequence to decrease its length for each week. For every week, we consider
1000 sub-samples of binary symbols choosing only 896 symbols for the sign of returns (keeping their ascending order in time). Then,we calculate the
average value of entropy of all samples and plot it for each week with the estimated value of entropy of the week. See Fig. 6.

The entropy value calculatedusing samplingdoes not decrease. On the contrary, the entropy of shortened sequences has a larger value. A probable
explanation is the destruction of existing dependencies in the returns sincewe choose samplingswith some gaps between symbols. The otherway to
show that entropy does not decrease with the amount of non-zero returns decreasing is by aggregating data to a less frequency. The amount of in-
formation does not increase with aggregation. Thus, the entropy value does not decrease with a smaller length. To show it empirically, we aggregate
data to 5 min, so we reduce the lengths of sequences by about five times. See Fig. 7.

Whenwe aggregate data for 5min, themaximum possible length of sequence is 390. In spite of the small length of sequence, the entropy is close
to 1. We may make the conclusion that a low entropy value may be characterized by a large fraction of 0-returns, but not by the length of the se-
quence.

Appendix D. Zeros
D.1. Expected 0-returns of rounded efficient price
Here, we calculate the approximate value of the amount of 0-returns generated by rounding of an efficient price. We consider the model for the
efficient price following the Geometric Brownian Motion.
entropy using aggregation, MSFT

years

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 170.85

0.9

0.95

1

1.05

entropy, 1m frequency
entropy, 5m frequency
CI for 1m
CI for 5m

Fig. 7. The entropies calculated for 1 min and 5 min frequencies for the stock MSFT with the corresponding 99 % confidence intervals.
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Pt ¼ P0 þ
Z t

0
σsPsdWs

Assuming that the price is rounded up to tick size d, we can find the probability that the efficient price will not change using the rounded (ob-
served) price P, the spot volatility σ, and the sampling frequency Δ. The probability that Piþ1 ¼ Pi given Pi is

pi ¼ P �Pi �
d
2

< Piþ1 < �Pi þ
d
2

 �
�P ¼ P þ x

x ∈ U � d
2,
d
2

that is, as shown in [33], equal toZ d
2

−d
2

Z xþd
2

x−d
2

f N 0;Piσ i

ffiffiffi
Δ

pð Þ zð Þdzdx;

where fN is the Normal density function.

Ii xð Þ ¼ P Pi−
d
2

< Piþ1 < Pi þ
d
2

 �
¼ P Pi þ x−

d
2

< Piþ1 < Pi þ xþ d
2

 �
¼ P x−

d
2

< Piþ1−Pi < xþ d
2

 �
¼
Z xþd

2

x−d
2

f N 0;Piσ i
ffiffiffi
Δ

pð Þ zð Þdz

Then, we estimate Piσi by Piσ i, where the returns that are used for the estimation of volatility are deseasonalized.

Ii xð Þ≈1
2

erf
xþ d

2ffiffiffi
2

p
si

 !
� erf

x � d
2ffiffiffi

2
p

si

 !" #
,

where si ¼ Piσ i

ffiffiffiffi
Δ

p
and erf(x) = ∫0y exp (−t2)dt is the Gaussian error function. Using integration by parts

R
erf yð Þdy ¼ y � erf yð Þ þ 1ffiffiffi

π
p exp � y2

� �
, we

obtain the result

1
d

Z d
2

−d
2

erf
xþ d

2ffiffiffi
2

p
s

0B@
1CAdx ¼

ffiffiffi
2

p
s

d
dffiffiffi
2

p
s
erf

dffiffiffi
2

p
s

� �
þ

exp −
d2

2s2

 !
−1ffiffiffi

π
p

0BBBB@
1CCCCA

1
d

Z d
2

� d
2

erf
x � d

2ffiffiffi
2

p
s

 !
dx ¼

ffiffiffi
2

p
s

d
dffiffiffi
2

p
s
erf � dffiffiffi

2
p

s

� �
þ

� exp � d2

2s2

� �
þ 1ffiffiffi

π
p

0@ 1A

pi Ri, 0ð Þ ¼ 1
d

Z d
2

� d
2

I xð Þdx ¼ erf Rið Þ þ 1ffiffiffi
π

p
Ri

exp � R2
i

� �
� 1

� �

where Ri ¼ d
si
ffiffi
2

p ¼ d
Piσ i

ffiffiffiffiffi
2Δ

p and the second argument 0 stands for the amount of ticks that the pricemoves. The result is extended for the approximation

of probability that the price moves by k ticks, pi(Ri,k) and by including a bid-ask spread in the Supplemental material S-1.
D.2. Entropy estimation in case with missing values
We adopt themethod of Empirical Frequencies for the case of the presence of missing values in data. First, we need to choose a suitable value for
the length of blocks, k. After correctly choosing the value of k, we consider partitions of the time series in blocks that do not contain missing values.

Definition 3. A non-decreasing sequence k(n) ≤ n is admissible if
lim
n!∞

bμk nð Þ �jxn1
� � � μk nð Þ

��� ��� ¼ 0 a:s:,

where the distance between two measures p and q on Ak is

p � qj j ¼ ∑ak1
p ak1
� �

� q ak1
� ���� ���:

We will rely on two theorems formulated for the case of complete data. See [42], Theorems III.2.1–2 for their proofs.
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Theorem I. If k(n) ≥ log (n)/(h − ϵ), where h is the entropy of the process μ, ϵ > 0, then k(n) is not admissible for μ.
Theorem II. If μ is i.i.d., Markov, or ϕ-mixing and k(n) ≤ log (n)/(h + ϵ), then k(n) is admissible for μ.
Now, let's denote the amount of k-blocks asnblocks(k). The exact value of nblocks(k) is unknownwithout knowing the location ofmissing values. The

proof of the Theorem I is based on the fact that, when k is large, the number of all blocks is bounded by the value 3k(h−ϵ) while the amount of all
unique blocks is 3k. Replacing n(k) by nblocks(k) we can repeat the proof and update the lower bound of not admissible k(nblocks) to be equal to log
(nblocks)/(h − ϵ). We set 3 as a base, since we usually assume that the alphabet is ternary.

We aim to prove the following theorem for the case of having missing values in the output of the random process μ.
Theorem 2. Assume that the process of generating missing values and μ are independent. If μ is i.i.d., Markov, or ϕ-mixing and k(nblocks) ≤ log

(nblocks)/(h + ϵ), then k(nblocks) is admissible for μ.
Proof of Theorem 2. When passing to the limit, it is assumed that n → ∞. Since k(nblocks) ≤ log (nblocks)/(h+ ϵ) ≤ log (n)/(h+ ϵ), thus k(nblocks) is

admissible if the data is complete. Note that the number of blocks is greater than or equal to 3(k/(h+ϵ)) > 0.

Let's fix a1
k. Without missing values bμn

k ¼ bμk ak1jxn1
� � ¼ f nk

n � kþ1 and bμn
k ! μk a.s. If N(n) values are missing, then

μk ak1jxn1
� �

¼ f nk � c nð Þ
n � kþ 1 � d nð Þ ¼

bμn
k n � kþ 1ð Þ � c nð Þ
n � kþ 1 � d nð Þ ¼ bμn

k n � kþ 1ð Þ
n � kþ 1 � d nð Þ � c nð Þ

n � kþ 1 � d nð Þ
where d(n) is the total number of blocks eliminated, N(n) ≤ d(n) ≤ k(n)N(n), and c(n) is the number of blocks a1k eliminated, 0 ≤ c(n) ≤ k(n)N(n). n−
k + 1 − d(n) = nblocks > 0.

There are three possible cases: I. d(n)/n → 0; II. d(n)/n → C, 0 < C < 1; III. d(n)/n → 1.
I.

μk ak1jxn1
� �

¼ bμn
k n � kþ 1ð Þ

n � kþ 1 � d nð Þ � c nð Þ
n � kþ 1 � d nð Þ

Note that 0 ≤ c(n) ≤ d(n), thus c(n)/n→ 0. Dividing by n the numerator and the denominator of both fractions and noting that k(n)/n→ 0, we can

conclude that μk ak1jxn1
� �! μk.

II. Assume that if the block xi is censored, it has a label (subindex) equal to 1, I(xi)=1, and otherwise I(xi)=0. Let introduce Bk∈ Ak such that Bk=
{xii+k−1,∃j∈ {i,…, i+ k− 1} : I(xj)=1, i∈ {1…n− k+1}}. Bk are all blocks eliminated. Applying the Birkhoff's ergodic theorem (see [43], Section 1.3)
with the characteristic functionχB, we get that P(Bk|x1n)→ μ(Bk). Taking Da1

k = Bk ∩ [a1k] and proceeding in the similar way, we also get that P(Da1
k |x1n)

→ μ(Da1
k). Here [a1k] = {xii+k−1 : aj = xj+i−1, j ∈ {1,…,k}, i ∈ {1,…,n − k + 1}}.
Fig. 8. Experimental probabilities associated with the entropy for 4 cases with the new inefficiencies of the ETF DIA.
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Now, d nð Þ
n ! μ Bkð Þ ¼ C and by independence c nð Þ

n ! μ Dak1

� �
¼ Cμk ak1

� �
. Therefore,

bμn
k n � kþ 1ð Þ � c nð Þ
n � kþ 1 � d nð Þ ¼ bμn

k
n � kþ1ð Þ

n � c nð Þ
n

n � kþ1
n � d nð Þ

n

! μk � Cμk

1 � C
¼ μk

Case III is in contradiction with the fact n − k + 1 − d(n) = nblocks > 0 since n � kþ1
n � d nð Þ

n ! 0.
Therefore, the values of k such that k(nblocks) ≤ log (nblocks)/(h + ϵ) are admissible in the case of missing data. Q.E.D.
In practice,we takemax(k : k< log (nblocks(k))). The length of Bernoulli sequences, lneeded to construct CI is also taken according to thenumber of

blocks. More precisely, we take l = nblocks + k − 1.

Appendix E. About new inefficiencies

In this section we analyze such particular weekswhich are detected as inefficient after filtering out spurious 0-returns, but the standardmethod-
ologywithoutfiltering such 0-returns classifies them as efficient.We define an experimental probability as the fraction of entropy values calculated for
105 Bernoulli sequences that are greater than the entropy of the time series.

Whenwe filtered out 0-returns, we determined 12weekswith inefficiency for the ETF DIA, but 4 of themwere not classified in such away before
the 0-filtering procedure. In order to investigate thedynamics of entropy,we take a newweekwith inefficiency, oneweek before, and oneweek after.
Wemove theweekly timewindow day by day, so that the week with the new inefficiency is the 6th. For each week, we find the experimental prob-
ability associated with the entropy value. See Fig. 8 for the results for all four new weeks with inefficiency. As before, we define a week with ineffi-
ciency if the experimental probability is larger than 0.99.

We notice that for the first and the fourth cases the value of the experimental probability before the 0-filteringwas>0.98. That is, the experimen-
tal probability does not change its value significantly after the 0-filtering but crosses the significance level that is set to be 0.99. For the third case, the
7thweek is classified as inefficient before and after the 0-filtering. It has 80 % data in commonwithweek 6, which is classified as inefficient only after
the 0-filtering, which makes results more coherent for two adjacent weeks. However, for the second case, a week with detected inefficiency before
the 0-filtering is the third, which has only 40 % data in common with week 6.

We conclude that one of the reasons for the appearance of new inefficient weeks is the possibility of the algorithm to detect weeks with ineffi-
ciency thatwere not detected due to a high level of confidence equal to 99 %. On the contrary, as in the example of the secondweek, sometimes iden-
tifying inefficient weeks may be the case of the extreme realization of the test statistic: the estimate of entropy is in the 1 % tail of the entropy
distribution associated with the Bernoulli process.

Appendix F. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.chaos.2022.112403.
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