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pair-production of stops that decay to a top and a neutralino. Most of the heavy stop
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at the LHC. New strategies for boosted top-tagging are needed and a simple, detector-

independent tagger can be constructed by requiring a muon inside a jet. Assuming 20%

systematic uncertainties, this future collider can discover (exclude) stops with masses up to

5.5 (8) TeV with 3000 fb−1 of integrated luminosity. Studying how the exclusion limits scale

with luminosity motivates going beyond this benchmark in order to saturate the discovery

potential of the machine.
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1 Introduction

Exploring the nature of our Universe at the smallest possible scales is the primary goal

of the particle physics community. This pursuit will require extending the energy frontier

program beyond the 14 TeV LHC.

Recently the idea of building a 100 TeV circular proton-proton collider has gained

momentum, starting with an endorsement in the Snowmass Energy Frontier report [1],

and importantly followed by the creation of two parallel initiatives: one at CERN [2] and

one in China [3]. For some recent studies of the capabilities of a 100 TeV collider see [4–

11]. Regardless of what is discovered during the upcoming run of the LHC, data from the

100 TeV machine will still be utilized to push new particle searches to higher mass scales.

The existence (or absence) of these states could have a dramatic impact on the way we

think about fundamental questions. Of particular interest to this work is the question

of weak scale naturalness, and specifically the possibility of TeV-scale top partners. Any

discoveries of such particles at the LHC would likely require further study at a higher-

energy machine. However, even in the event that the LHC does not find any top partners,

this program will continue to be of central importance by pushing the fine-tuning of the

Higgs mass into qualitatively new regimes.

Here we focus on the stop in supersymmetric (SUSY) extensions of the Standard Model

(for a SUSY status update after Run I of the LHC, see [12]). Naturalness considerations

imply that the stops should be light [13, 14] in order to regulate the Higgs mass, while

the masses of first and second generation squarks are less constrained. Explicit models

that realize the so-called “natural SUSY” spectrum have been constructed [15–21], and

often the dominant collider signatures can be reduced to a set of now-standard Simplified

Models [22] involving only the third generation squarks, a neutralino, and a gluino [23–25].
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A discovery of stops, or at least an understanding of the allowed parameter space of these

models, has direct implications for weak-scale naturalness.

We study the stop-neutralino Simplified Model, in which the stops are pair-produced,

and each stop decays to a top and a stable neutralino.1 This signature is well suited to

compare the physics implications of different machine parameters such as
√
s and total

integrated luminosity.

Searches for direct stop production have been carried out at both ATLAS and CMS,

providing limits on the stop mass of ≈ 800 GeV with 20 fb−1 at
√
s = 8 TeV [28–32]. The

high-luminosity upgrade of the LHC (HL-LHC) is expected to deliver 3000 fb−1 of data at√
s = 14 TeV, allowing for a discovery reach of ≈ 800 GeV stops and an exclusion reach of

≈ 1.5 TeV [33, 34].

Beyond naturalness considerations, this study is motivated by the exploration of new

kinematic regimes in top physics. In 100 TeV collisions, the tops from stop decays are

so highly boosted that current LHC analysis strategies, usually based on resolving the

individual decay products of the top, become ineffective. This work demonstrates that an

analysis that relies on a muon inside a jet can be used to discover (exclude) stop masses

up to ≈ 5.5 (8) TeV.

One issue in the specifications of the 100 TeV collider that has not yet been addressed

is the integrated luminosity needed to fulfill its physics potential. The baseline integrated

luminosity is taken to be 3000 fb−1, but we also consider scenarios yielding 300 fb−1 and

30000 fb−1. We find that 3000 fb−1 may be insufficient to saturate the physics reach of a

high-energy machine.

The rest of this paper is organized as follows. Section 2 studies generic properties of

heavy new physics decaying to boosted tops and compares the sensitivity of jet substructure

techniques and muon-in-jet requirements. Section 3 presents a cut flow optimized for heavy

stops that is based on the presence of a muon inside a jet and shows its sensitivity in the

stop-neutralino mass plane; an additional analysis is presented which optimizes the reach

for compressed spectra. Section 4 summarizes the implications of the analysis on future

accelerator and detector design, and discusses the implications of the mass sensitivity for

fine-tuning.

The results presented here rely on events generated at parton level with MadGraph5 [35],

showered with Pythia6 [36], and processed using Delphes [37] and the Snowmass combined

detector card [38]. The stop signals are normalized to the NLL + NLO cross sections

computed in [39]. The Snowmass background samples [40] were used, augmented by a high

statistics HT -binned QCD sample generated for this study.

2 Boosted tops at 100TeV

Signal events in the stop-neutralino Simplified Model include pair-produced stops (t̃) that

decay promptly into a top quark and a stable neutralino (χ̃0
1). Under the assumption that

1The minimal natural spectrum in the MSSM is slightly more complicated, due to the expectation that

both stops, the left-handed sbottom, and the Higgsinos will all be light. The model studied here provides

similar reach for the majority of the parameter space of these more complete models [26, 27].
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Figure 1. The pT distribution of the leading top quark formt̃ = 2, 6, 10 TeV assumingmχ̃0
1

= 1 GeV

[left]. The average size of top jets from stop decays as a function of mt̃ and mχ̃0
1

[right].

the stops are produced at rest, the boost of the top quark is given by

γt =
mt̃

2mt

(
1−

m2
χ̃0
1
−m2

t

m2
t̃

)
(2.1)

and the resulting top jet has a typical size of ∆R ∼ 1/γt ∼ mt/p
t
T .

The left panel of of figure 1 shows the pT distribution of the leading top quark for

three different stop masses (assuming a massless neutralino). For stops with a mass of a

few TeV or higher, the tops from the stop decay are highly boosted with pT � mt. The

right panel of figure 1 shows the mean distance between the W boson and the b from the

decay of the top as a function of mt̃ and mχ̃0
1
.

Given that the jet radius chosen for this study is ∆R = 0.5, the top will on average

be contained within a single jet. Stop searches at a 100 TeV collider will therefore have to

probe a kinematic regime not accessible to the 14 TeV LHC, where the top pT relevant for

most searches is less than a TeV.

One possible tool for separating signal from background is to tag these highly boosted

tops. Note that top taggers constructed for LHC energies are optimized for large radius

jets with ∆R ≈ 1.0− 1.5 (for a review, see [41]). It is therefore interesting to understand

if existing algorithms are suitable for events at 100 TeV. If the top tagger depends on an

intrinsic angular scale, for example the Johns Hopkins top tagger [42], then the choices

appropriate for tagging boosted tops at the LHC will need to be reconsidered. In contrast,

the HEP top tagger [43] does not make any assumption about the angular separation of

the top decay products.

Given the magnitude of the boost being considered, separating the individual con-

stituents of the top decay requires detector granularities higher than presently available in

hadronic calorimeters. For example, a 5 TeV top jet falls within a cone size of roughly ∆R ≈
0.07, while the typical size of a calorimeter cell at ATLAS is ∆η×∆φ ∼ O

(
0.1× 0.1

)
[44].
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Figure 2. HEP top tagger performance for jets with pT > 500 GeV [left] and > 5 TeV [right]. The

red solid curve shows the tagging efficiency for top quarks, and the blue dashed curve shows the

mis-tag rate for light-flavor QCD jets.

In order to understand this effect quantitatively, we generated a sample of t t and QCD

events at
√
s = 100 TeV, with a minimum generator-level pT cut on the leading top at

500 GeV or 5000 GeV. The hadron-level events were passed through a FASTJET [45, 46]

based code. This framework was validated against the results in [43] using a sample of

14 TeV events. In order to investigate the impact of finite calorimeter resolution, a simple

pixelation was applied by summing particle energies within square cells whose widths were

allowed to vary from 0 to 0.1. The events were then clustered using the Cambridge/Aachen

algorithm [47, 48], where ∆R = 1.5 (0.5) was taken for pT > 500 (5000) GeV. The HEP top

tagger was applied to the leading two jets in order to determine the efficiency for tagging

a top jet and the probability of mis-tagging a QCD jet. The results are shown in figure 2,

where top-tagging is found to be insensitive to the detector granularity for 500 GeV top

jets, but with a cell width & 0.02 is significantly degraded for 5 TeV top jets.

The jet radius changes approximately as the inverse of the top pT , ∆R ∼ mt/p
t
T ,

so in most of the parameter space of interest for this simplified model, this toy study

demonstrates that a much finer calorimeter segmentation than that used for LHC detectors

will be needed to exploit substructure techniques at higher-energy colliders. On the other

hand, tracking systems have much finer granularity than is needed by the HEP top tagger,

so it would be interesting to explore a Particle Flow or a purely track-based approach. We

leave this for future studies.

Instead, we consider an alternative strategy with less sensitivity to the detector re-

sponse. When a highly-boosted top decays leptonically, or when the resulting b (or even

c) quark decay yields a lepton, it is very likely that the lepton(s) will be collinear with the

top jet. Requiring a hard lepton inside a jet can therefore be used to tag boosted tops [49].

Tagging a top jet by a muon is similar to leptonic b-tagging techniques implemented at the

Tevatron [50–55] and at the LHC [56–59]. By definition these leptons will not be isolated

from nearby tracks or calorimeter activity, removing a common handle for rejecting fake
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Figure 3. Efficiency for finding a µ± with pT > 200 GeV within ∆R < 0.5 of the leading jet for

three choices of stop mass, along with the t t+W/Z, t t and QCD backgrounds.

leptons. For simplicity we therefore only consider the case where a muon is collinear with a

jet, and assume that a layered detector design similar to that employed by LHC experiments

will provide adequate rejection of fake muons. Rejection of fake electrons without the use

of an isolation requirement is more detector-dependent, and is not considered here.

Figure 3 shows the probability of finding a 200 GeV muon within a ∆R < 0.5 cone

of the leading jet as a function of the leading jet pT for several signal and background

samples.2 The signal efficiency for this requirement is roughly 15%, compared to t t+W/Z

efficiencies of 3%, t t efficiencies of about 2% and QCD efficiencies around 0.4%.

For the t t background, the top quarks constitute only ∼ 60% to the total jet pT in the

highly boosted regime, indicating a significant contribution from additional QCD radiation.

This leads to a lower efficiency for t t than in signal events, where more of the total pT is

carried by top jets.

Our results in this section ignore the impact of any additional p p interactions (pile-

up) in the event. However, we expect pile-up would only degrade the performances of

hadronic taggers compared to the muon-in-jet requirement. Furthermore, it has been

shown [60, 61] that minimum bias events do not change dramatically going from ∼ 10 TeV

to∼ 100 TeV. A larger difference between the LHC and this machine will arise from changes

in instantaneous luminosity and/or bunch spacing. If they are within a factor of a few of

those at the LHC, it is not inconceivable that a Particle Flow based subtraction scheme

could make the performances of substructure techniques (almost) pile-up independent at

a 100 TeV collider.

2Due to the structure of the Snowmass detector card, we are using generator level muons when computing

the muon-in-jet requirement. This procedure was validated against a dedicated sample that was produced

with no lepton isolation requirements imposed, thereby giving detector level muons inside jets.
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3 Search strategy and results

In the previous section we discussed some general aspects of searches with boosted tops

at 100 TeV. Here we propose a detailed analysis strategy that utilizes the muon-in-jet

requirement, and we show the expected discovery reach and 95% C.L. exclusion sensitivity.

In addition, we provide an alternative cut-flow that relies on isolated leptons in order to

increase sensitivity in the compressed region where mt̃ −mχ̃0
1
≈ mt.

3.1 Heavy stops and light neutralinos

We make the following requirements:

1. At least two anti-kT jets [62] with cone parameter ∆R = 0.5 and kinematic cuts:

|η| < 2.5 and pT > 1000 GeV.

2. At least one muon with pTµ > 200 GeV contained within a ∆R = 0.5 cone centered

around one of the leading two jets.

3. Events with at least one isolated lepton with pT > 35 GeV and |η| < 2.5 are rejected.

The isolation criterion demands the total pT of all particles within a ∆R < 0.5 cone

around the lepton to be less than 10% of its pT .

4. ∆φ/ET J > 1.0, where ∆φ/ET J is the smallest |∆φ| between /ET and any jet with

pT > 200 GeV and |η| < 2.5.

5. /ET > 3, 3.5 or 4 TeV. Out of the three choices, the cut is chosen for each mass point

by optimizing the expected exclusion.

After imposing a muon-in-jet requirement on the background, the selected sample is

composed mainly of boosted heavy quarks. The neutrinos and muons resulting from their

decays will be highly collimated and the total /ET will tend to be aligned with the jet

momenta. Therefore it is useful to impose an angular ∆φ cut between the /ET and all the

jets. For q q, the maximum angle between each neutrino and the final q jet will be of order

mq/pT . After a stringent ∆φ cut, the remaining background is then boosted t t+X events.

In particular, t t+W/Z is the dominant background in the signal region.

The /ET and ∆φ/ET J distributions after all other cuts are applied are shown in figure 4.

The low /ET region is mostly dominated by QCD, whereas the high /ET tail is dominated

by t t+ Z (Z → ν ν).

The results of the cut-flow with /ET > 4 TeV for the background and three signal mass

points are shown in table 1 without uncertainties. We note that corrections for electroweak

radiation of W or Z bosons within high-pT jets (e.g. in QCD dijets) could lead to muon-

in-jet signatures, and at a high-energy machine these corrections can be large [63]. We

expect that the ∆φ requirement will highly suppress such contributions as it already does

in events where the W or Z is produced in the matrix element, but this should be verified

in future studies.

As a baseline, we choose the relative background and signal uncertainty to be 20%,

and an integrated luminosity of 3000 fb−1. However, it is useful to explore the reach of this

– 6 –
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Figure 4. The /ET [left] and ∆φ/ET J
[right] distributions after all other cuts described in section 3.1

have been applied, for 3000 fb−1 of integrated luminosity.

Cuts
Signal

(
mt̃, mχ̃0

1

)
(GeV)

tt̄+W/Z tt̄+ j single t W/Z + j QCD

(4000, 1) (6000, 1) (8000, 1)

Njet ≥ 2 4.8× 103 5.3× 102 8.0× 101 1.6× 106 5.1× 107 5.4× 106 6.3× 107 2.8× 109

Nµ ≥ 1 9.1× 102 1.2× 102 2.1× 101 1.6× 105 4.3× 106 3.4× 105 5.3× 105 2.3× 107

isolated l± veto 9.1× 102 1.2× 102 2.1× 101 1.5× 105 4.1× 106 3.2× 105 5.3× 105 2.3× 107

∆φ/ET J
> 1.0 5.0× 102 6.5× 101 1.2× 101 7.6× 103 1.6× 105 1.4× 104 3.3× 104 1.1× 106

/ET > 4.0 TeV 1.5× 101 1.7× 101 7.2 2.9 5.0× 10−1 6.1× 10−1 1.5× 10−1 1.2× 10−3

Table 1. Background and signal yields for the heavy stops cut-flow in section 3.1, assuming

3000 fb−1 of integrated luminosity. Single t includes events with an extra W/Z.

future collider for different choices of systematics and integrated luminosities, especially to

study the impact of potential accelerator and detector designs. In section 3.4 we therefore

show results for a range of integrated luminosities (with appropriate adjustments to the

final /ET cut for optimization). In section 3.5, we present discovery and exclusion reaches

for different choices of systematic uncertainties.

3.2 Compressed spectra

As the neutralino mass approaches the stop mass, both the /ET and the top pT are

reduced. By relaxing some of the cuts in the previous section and trading the muon-in-jet

requirement for an isolated lepton requirement, sensitivity to this region of parameter space

can be improved. Our cut-flow targeting the compressed region is:

1. At least two anti-kT jets with cone parameter ∆R = 0.5. The kinematic require-

ments |η| < 2.5 and pT > 500 GeV are imposed.
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Cuts
Signal

(
mt̃, mχ̃0

1

)
(GeV)

tt̄+W/Z tt̄+ j single t W/Z + j QCD

(2000, 1500) (3000, 2500) (4000, 3500)

Njet ≥ 2 2.0× 105 2.6× 104 5.0× 103 3.9× 107 1.8× 109 2× 108 1.6× 109 9.4× 1010

N` ≥ 2 1.1× 103 1.6× 102 3.6× 101 4.1× 105 1.2× 107 1.1× 106 1.2× 104 7.6× 101

|∆φ/ET J, l
| > 1.0 4.6× 102 7.1× 101 1.7× 101 4.1× 105 1.2× 106 1.1× 106 5× 102 0

/ET > 2 TeV 6.8 5.3 2.9 1.2 3.6× 10−2 4.5× 10−1 0 0

Table 2. Background and signal yields for the compressed spectra cut-flow in section 3.2, assuming

3000 fb−1 of integrated luminosity. Single t includes events with an extra W/Z.

2. Two isolated leptons (either electrons or muons) with pT l > 35 GeV. A lepton satisfies

the isolation cut when the total pT of all particles in a cone of ∆R = 0.5 around the

lepton is less than 10% of its pT .

3. /ET > 2 TeV.

4. ∆φ/ET J, l > 1.0, where ∆φ/ET J, l is the smallest |∆φ| between /ET and any jet with

pT > 200 GeV and |η| < 2.5, and any isolated lepton with pT l > 35 GeV and |η| < 2.5

These requirements yield increased sensitivity for mt̃ . 3 TeV close to the diagonal of

the (mt̃ , mχ̃0
1
) plane. Table 2 gives the results of this cut flow for the background and three

signal mass points. Note that the /ET > 2 TeV requirement implicitly relies on the presence

of extra QCD radiation in association with the signal. This implies some uncertainty on

initial-state radiation that we assume is covered by the systematic uncertainties applied on

the signal samples. Note that this cut-flow is much more sensitive to detector and machine

details than the previous one. We therefore present it only as a a proof of principle that

going to higher energies does not necessarily imply sacrificing sensitivity to compressed,

i.e. soft, physics.

Including pile-up could have an important effect on the results for the compressed

region. An estimate for the energy deposited in a cone of radius 0.5 at
√
s = 100 TeV is

≈ 200 GeV
(

L
1034 cm−2 s−1

)
[60, 61]. Most of this energy can be subtracted using common

pile-up suppression techniques, so it is reasonable to expect small modifications to jet

physics given the pT thresholds relevant for the models considered here. The only possible

exception is the ∆φ requirement, which would be affected by resolution effects. We verified

that raising the jet pT threshold to 500 GeV does not considerably impact our reach,

giving us confidence that the impact of pile-up on the jet requirements will remain small.

However, lepton isolation may suffer more significantly, which would impact the results for

the compressed scenarios. Studies of such effects would require detailed assumptions of the

detector performance, and thus we leave them for future work.
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Figure 5. Projected discovery potential [left] and exclusion limits [right] for 3000 fb−1 of total

integrated luminosity. At each signal point, the significance is obtained by taking the smaller CLs
between the heavy stop and compressed spectra search strategies, and converting CLs to number

of σ’s. The blue and black contours (dotted) are the expected (±1σ) exclusions/discovery contours

using the heavy stop and compressed spectra searches.

3.3 Results

Figure 5 shows the exclusion and discovery potential utilizing the cut-flows discussed in

the previous section. Results are presented in the stop-neutralino mass plane assuming

systematic uncertainties of 20% on the background and signal yields. The discovery

potential and mass reach are shown in section 3.4–3.5 for different choices of integrated

luminosities and systematic uncertainties.

The exclusion is obtained using CLs statistics, where the background and signal are

modeled as Poisson distributions. A signal point is rejected for CLs < 0.05. Alternatively, a

signal is discovered when the CLs for the background only hypothesis is less than∼ 3×10−7,

corresponding to 5σ. The expected exclusion limits and ±1σ contours are computed using

ROOSTATS [64].

Stops with masses up to ≈ 5.5 TeV can be discovered when the neutralino is massless,

assuming 3000 fb−1 of integrated luminosity. The exclusion reach is ≈ 8 TeV, which

corresponds to ∼ 100 signal events before cuts. Note that this agrees with the estimate

obtained by extrapolating the number of excluded signal events at
√
s = 8 TeV [65]. Since

we optimized for exclusion as opposed to discovery, there is a gap between the discovery

contours of the two different search strategies.

The searches proposed here also have good discriminating power away from the mass-

less neutralino limit. A 1.5 TeV stop could be discovered in the compressed region of

parameter space. It is possible to exclude neutralino masses up to 2 TeV in most of the

parameter space.

All of the results presented here have been obtained with very minimal cut-flows that do

not rely on b-tagging or jet substructure techniques. Additional refinements should increase

the search sensitivity, at the price of making assumptions on the future detector design.

– 9 –
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Figure 6. Discovery [left] and exclusion [right] limits with an integrated luminosity of 300 fb−1.

Only the heavy stop search is shown.

3.4 Different luminosities

An open question in the design for the 100 TeV proton-proton collider is the luminosity that

is necessary to take full advantage of the high center of mass energy. As cross sections fall

with increased center of mass energy, one should expect that higher energy colliders require

more integrated luminosity to fulfill their potential. The necessary luminosity typically

scales quadratically with the center of mass energy, meaning that one should expect that

the 100 TeV proton-proton collider would need roughly 50 times the luminosity of the LHC

at 14 TeV.

This section shows the scaling of our search strategy as a function of the number of

collected events. As the luminosity changes, we re-optimize the /ET cut. For integrated

luminosities of 300 fb−1, a /ET cut of 3 TeV is chosen. For 30000 fb−1, a /ET cut of 5 or 6 TeV

is chosen, depending on the mass point. Table 3 lists the number of background events for

the heavy stop search and these two choices of luminosity and /ET cut. Figure 6 (7) shows

the expected CLs discovery and exclusion for 300 (30000) fb−1 of integrated luminosity.

For 300 fb−1, the discovery potential is limited, but we obtain a 3σ evidence in the bulk of

the parameter space. With 30000 fb−1, stops of 8 (10) TeV could be discovered (excluded),

a clear improvement over the 3000 fb−1 result.

Assuming a constant systematics of 20% for both signal and background, if we model

the mass reach as a function of luminosity as

1

n(L)
=
d logmt̃ 2σ(L)

d logL
(3.1)

then we find n ' 7 in the 300 fb−1 to 3000 fb−1 range of luminosities and n ' 10 in the

3000 fb−1 to 30000 fb−1 range. This indicates that the 100 TeV collider is still gaining

significant reach at 3000 fb−1 and running out reach at 30000 fb−1. Reaching a higher

integrated luminosity implies running at higher instantaneous luminosity, with potential

implications for detector performance that we do not consider here. However, we expect
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Figure 7. Discovery [left] and exclusion [right] limits with an integrated luminosity of 30000 fb−1.

Only the heavy stop search is shown.

Luminosity (fb−1),

/ET cut (GeV)

Signal
(
mt̃, mχ̃0

1

)
(GeV)

tt̄+W/Z tt̄+ j single t W/Z + j QCD

(6000, 1) (8000, 1) (10000, 1)

300, 3000 4.5 1.0 2.2× 10−1 1.3 3.1× 10−1 3.5× 10−1 1.5× 10−2 1.9× 10−4

3000, 4000 2.1× 101 7.2 1.8 3.4 5× 10−1 6.1× 10−1 1.5× 10−1 1.2× 10−3

30000, 6000 1.6× 101 2.3× 101 9.3 4.3 1.2× 10−1 3.8× 10−1 0 6.9× 10−3

Table 3. Background and signal yields for three different choices of luminosity and three different

heavy stop search signal regions. Single t includes events with an extra W/Z.

that improvements in detector design and pile-up mitigation strategies will minimize any

loss of sensitivity from harsher running conditions.

3.5 Different systematics

This section explores how the exclusion and discovery potential changes as a function of

systematic uncertainty. For the results in section 3.3 a systematic uncertainty of εsys =

20% for both background and signal was assumed. The signal regions proposed in this

paper yield O(5) events for both background and signal when the masses are chosen at

the edge of the exclusion reach. Figure 8 illustrates how the exclusion changes as the

signal (background) uncertainty in the left (right) panel is increased from 20% to 50%.

The exclusion is robust against changes in background systematics. A change in signal

uncertainty results in a modest shift of the limits, since the signal hypothesis becomes

harder to exclude when marginalized over larger systematics.

Figure 9 shows the same for the discovery potential. The expected discovery changes

modestly as the systematic uncertainty on the signal is increased. However, when the

background systematic uncertainty is increased to 50%, discovery becomes impossible with
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(20%, 50%) [left]. Expected exclusion limit with (εsys,bkg, εsys,sig) = (50%, 20%) [right].
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Figure 9. Discovery potential with background and signal errors fixed to (εsys,bkg, εsys,sig) =

(20%, 50%) [left]. Discovery potential with systematics (εsys,bkg, εsys,sig) = (50%, 20%) [right].

3000 fb−1; only 3σ evidence is possible in the bulk of the parameter space. A larger

background systematic uncertainty implies that it is harder to reject the background

hypothesis, so a precise understanding of the backgrounds will be crucial for discovery.

4 Conclusions

In this paper we propose a robust search strategy targeting stops that decay to a top quark

and a stable neutral particle at a 100 TeV proton-proton collider. A 5.5 (8) TeV stop could

be discovered (excluded) at such a machine with 3000 fb−1 of integrated luminosity.

Such an exclusion would have a deep impact on our understanding of electroweak fine-

tuning. In the Minimal SUSY SM (MSSM), the tuning of the electroweak scale, ∆−1,

receives a large contribution from the SUSY breaking parameters in the stop sector. A
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rough estimate of the minimum contribution to the Higgs mass parameter yields [24]:(
∆−1

2× 10−4

)
≈
(

10 TeV

mt̃

)2

sin2 β

(
log(Λ/TeV)

5

)−1

, (4.1)

where Λ is the SUSY breaking scale and tanβ = vu/vd the ratio of the two Higgs doublets

vacuum expectation values. A 100 TeV proton collider clearly has the potential to impact

our understanding of electroweak naturalness to an unprecedented degree.

However stop masses approaching 10 TeV are above the typical range motivated by

fine-tuning considerations. Nonetheless, this range of masses could be the consequence of

the Higgs mass being so far above mZ . In the MSSM, the Higgs quartic coupling must

receive sizable radiative corrections to raise the Higgs boson mass from mZ to the observed

value. The largest of these contributions arise from the top sector and comes in two forms.

In the effective theory below the stop mass, the first is the contribution from the top quark

and is logarithmically enhanced by the running from the mass of the top squark down to

the top quark. The second contribution is given by the A-terms which at low energies

can be viewed as finite threshold corrections. In order to have top squarks with masses

in the range accessible by the LHC14, there need to be sizable A-terms. However, many

calculable frameworks for coupling a SUSY breaking sector to the visible sector result in

suppressed A-terms, e.g. gauge mediation [66], anomaly mediation [67, 68], and gaugino

mediation [69]. These classes of theories are the ones that have the best solutions for the

SUSY flavor problem and hence are amongst the most favored. In the absence of sizable A-

terms, only the logarithmically enhanced top quark contributions are left to raise the Higgs

mass which results in top squarks with masses in the range 6 TeV . mt̃ . 10 TeV at the

2σ level (for large tanβ and small values of µ) [70]. These masses are outside the reach of

the LHC14, but discoverable at a 100 TeV collider. Frequently the top squarks are amongst

the lighter colored superpartners, meaning that it is possible that supersymmetry will be

above the reach of the LHC14. This observation provides motivation for building another

energy frontier machine, even in the case where no new physics is found at the LHC14.

Beyond the theory motivation, the lessons of this study can be generalized to a wide

class of searches for boosted top quarks signatures. In particular, there are important

implications for future detector design. For example, a granularity of ∆φ×∆η ≈ 0.02×0.02

is needed if hadronic substructure techniques are going to be effective. This requirement

might be relaxed by relying on tracking information incorporated into a more complicated

reconstruction algorithm such as Particle Flow. On the other hand, requiring a muon

within a jet is a simple and robust way to exploit the qualitative differences between new

physics and SM backgrounds that does not require detector improvements beyond what

the LHC can do today.

Furthermore we have shown that it would be desirable to achieve higher integrated

luminosity than presently used in 100 TeV studies. The current benchmark of 3000 fb−1 [4–

11] does not saturate the physics reach of this machine. The ideal integrated luminosity

would be 10000− 30000 fb−1.

Designing searches for heavy stops yields a concrete example of how a 100 TeV collider

is qualitatively different from the LHC. The new energy regime that this machine will
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explore is so far above the electroweak scale as to render traditional search strategies

ineffective. On the other hand, this makes the analyst’s job easier since signals and

backgrounds become more qualitatively different. This is exemplified by the sensitivity

that can be derived using the simple cut-flows presented in this work.
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[63] J.R. Christiansen and T. Sjöstrand, Weak Gauge Boson Radiation in Parton Showers, JHEP

04 (2014) 115 [arXiv:1401.5238] [INSPIRE].

[64] L. Moneta, K. Belasco, K.S. Cranmer, S. Kreiss, A. Lazzaro et al., The RooStats Project,

PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].

[65] G. Salam and A. Weiler, Collider Reach, http://collider-reach.web.cern.ch.

– 17 –

http://arxiv.org/abs/hep-ph/9907280
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9907280
http://dx.doi.org/10.1088/1126-6708/2008/07/092
http://arxiv.org/abs/0806.0023
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0023
http://dx.doi.org/10.1103/PhysRevD.72.032002
http://arxiv.org/abs/hep-ex/0506001
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0506001
http://dx.doi.org/10.1103/PhysRevLett.94.152002
http://arxiv.org/abs/hep-ex/0411084
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0411084
http://dx.doi.org/10.1103/PhysRevD.73.051101
http://dx.doi.org/10.1103/PhysRevD.73.051101
http://arxiv.org/abs/hep-ex/0512065
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0512065
http://dx.doi.org/10.1103/PhysRevLett.100.091803
http://dx.doi.org/10.1103/PhysRevLett.100.091803
http://arxiv.org/abs/0711.2901
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2901
http://dx.doi.org/10.1103/PhysRevD.79.052007
http://arxiv.org/abs/0901.4142
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4142
http://dx.doi.org/10.1103/PhysRevD.81.092002
http://dx.doi.org/10.1103/PhysRevD.81.092002
http://arxiv.org/abs/1002.3783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3783
http://arxiv.org/abs/0901.0512
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0512
http://cds.cern.ch/record/1316469
http://inspirehep.net/search?p=find+ATLAS-CONF-2010-100
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://arxiv.org/abs/1211.4462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4462
http://cds.cern.ch/record/1562880
http://arxiv.org/abs/1310.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0290
http://arxiv.org/abs/1308.2813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2813
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189
http://dx.doi.org/10.1007/JHEP04(2014)115
http://dx.doi.org/10.1007/JHEP04(2014)115
http://arxiv.org/abs/1401.5238
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5238
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT2010)057
http://arxiv.org/abs/1009.1003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1003
http://collider-reach.web.cern.ch


J
H
E
P
1
1
(
2
0
1
4
)
0
2
1

[66] G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys.

Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

[67] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[68] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557

(1999) 79 [hep-th/9810155] [INSPIRE].

[69] Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry

breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].

[70] P. Draper, G. Lee and C.E.M. Wagner, Precise Estimates of the Higgs Mass in Heavy SUSY,

Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].

– 18 –

http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://arxiv.org/abs/hep-ph/9801271
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9801271
http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://arxiv.org/abs/hep-ph/9810442
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810442
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://arxiv.org/abs/hep-th/9810155
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810155
http://dx.doi.org/10.1088/1126-6708/2000/01/003
http://arxiv.org/abs/hep-ph/9911323
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911323
http://dx.doi.org/10.1103/PhysRevD.89.055023
http://arxiv.org/abs/1312.5743
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5743

	Introduction
	Boosted tops at 100 Tev
	Search strategy and results
	Heavy stops and light neutralinos
	Compressed spectra
	Results
	Different luminosities
	Different systematics

	Conclusions

