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THEBIGGERPICTURE The HumanGenome Project unlocked the door to a vast but unannotated collection
of genes. In the following decades, annotations in the form of biochemical reaction graphs were painstak-
ingly curated via experimental studies. Though gene set enrichment analysis considers groups within these
annotation graphs, it disregards group dependencies. Here, we utilize these dependencies by generating a
graph neural network based on the Reactome reaction network and show how integrating the curated re-
lationships from this graphwith gene expression values fromother studies can be used to identify biochem-
ical reactions associated with tissue-specific disease. In the future, similar approaches could enable fruitful
reanalyses of prior work, highlighting influential relationships and pinpointing biochemical reactions. As
more experimental research databases become available, we envision extensions of our work predicting
effects of rare or indistinct genetic variations and guiding precision medicine.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Functional heterogeneity of healthy human tissues complicates interpretation of molecular studies,
impeding precision therapeutic target identification and treatment. Considering this, we generated a
graph neural network with Reactome-based architecture and trained it using 9,115 samples from
Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index
(ARI) = 0.7909, while a Resnet18 control model achieves ARI = 0.7781, on 370 held-out healthy human
tissue samples from The Cancer Genome Atlas (TCGA), despite the Resnet18 using over 600 times the
parameters. Our GNN also succeeds in separating 83 healthy skin samples from 95 lesional psoriasis
samples, revealing that upregulation of 26S- and NUB1-mediated degradation of NEDD8, UBD, and
their conjugates is central to the largest perturbed reaction network component in psoriasis. We show
that our results are not discoverable using traditional differential expression and hypergeometric pathway
enrichment analyses yet are supported by separate human multi-omics and small-molecule mouse
studies, suggesting future molecular disease studies may benefit from similar GNN analytical
approaches.
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Figure 1. Transcript aggregation within a reaction and across reaction network

(A) A first principal component (PC1) drawn within a space representing a reaction to which three proteins are annotated. Axes represent three transcript

abundance levels corresponding to the reaction’s three proteins. Circles represent individual tissue samples. Circle color represents sample tissue type. Circle

size is varied to suggest image depth.

(B) Reactions composed as three information sets: proteins (light green boxes), other reaction components (orange boxes), and reaction mechanics (purple

boxes). Protein sets are shown to be connected to a pathway hierarchy (dark green boxes) by curved connectors. Reaction mechanics are shown to be con-

nected to each other by arrows.
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INTRODUCTION

Variation ofmRNAabundance across tissue results from
complex phenomena
Across human tissues, mRNA abundance varies,1–3 and conse-

quent differential protein expression is likewise observed,4,5

affecting both which and to what degree biochemical reactions

take place.6–8 While it is understood that human tissues

harbor characteristic gene expression patterns,9 gene products

exhibit complex relationships with cellular behaviors as a result

of RNA and protein modification, variation in small-molecule

abundances, differential cell compartmentmorphology, and, pre-

sumably, other phenomena that preclude straightforward extrap-

olation from gene expression values to the states of biochemical

reactions carrying out tissue functions.10–15 Despite considerable

advances of contemporary omics-based biological studies, this

complexity remains largely hidden from us. Achieving high confi-

dence regarding which reactions are likely to occur or assume

different states within particular tissue contexts is paramount in

order to understand the biochemicalmechanisms of tissue devel-

opment and tissue-specific functions and the etiology of tissue-

specific disease.

Protein expression is primarily determined by mRNA
expression
Using RNA sequencing,16 experimentalists are able to approxi-

mate the abundance of mRNA present in a cell or group of cells.

Though many biochemical reactions involve protein-protein in-

teractions and not interactions of mRNA, specific mRNA synthe-

sis is required for specific protein synthesis, and thusmRNA pat-

terns are associated with protein-regulated phenotypes and cell

states. Total mRNA abundance is positively correlated with pro-

tein abundance (R2 = 0.41 on log-log scale, and R2 = 0.44
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following nonlinear transformation17), and, when approximate

steady-state conditions are met, protein abundance has been

shown to be primarily determined by mRNA abundance,18 with

between 56% and 84% of variation in protein abundance shown

to be explained by mRNA abundance alone.19

Biochemical reactionsmay be reasonably characterized
by mRNA expression alone
In order for any particular reaction to occur, its necessary reac-

tants must be present; however, there may not be direct corre-

spondence between a protein’s measured abundance and its

availability to participate in a biochemical reaction due to

competitive occupancy among binding partners or post-transla-

tional modifications.10,11,13–15,20,21 Furthermore, some reaction

components, such as small molecules, small interfering RNA

(siRNA),metal ions, and other organic and inorganic compounds,

are currently unquantified in a tissue-specificmanner and remain

unavailable for consideration in cross-tissue analyses. However,

many biochemical reactions are mediated by enzymes resulting

from translation of mRNA, which influence the reaction rate,

and their expression may act as proxies for specific reaction

states.22–30 Thus, biochemical reaction metrics characteristic to

particular tissues may be inferred by identifying patterns

repeated across multiple samples among the mRNA transcripts

coding for proteins that participate in specific biochemical reac-

tions. Such patterns of mRNA transcript abundance that asso-

ciate with particular tissues imply patterns of protein abun-

dance17–19 and—by syllogism—the biochemical reaction states

characteristic of those tissues.Within a tissue, proteins and other

components participate in interactions and react with each other

to form a network.31–35 Tissues may thus plausibly be character-

ized by the combined states of their biochemical reaction net-

works using mRNA transcript abundance values alone.



Table 1. Tissue sample counts of GTEx training dataset

GTEx tissue label Number of samples

Adipose – subcutaneous 386

Adipose – visceral (omentum) 234

Adrenal gland 159

Artery – aorta 247

Artery – coronary 140

Artery – tibial 363

Bladder 11

Brain – amygdala 81

Brain – Ant. cin. cortex (BA24) 99

Brain – caudate (basal ganglia) 134

Brain – cerebellar hemisphere 118

Brain – cerebellum 145

Brain – cortex 132

Brain – frontal cortex (BA9) 120

Brain – hippocampus 103

Brain – hypothalamus 104

Brain – Nuc. acc. (basal ganglia) 123

Brain – putamen (basal ganglia) 103

Brain – spinal cord (cervical c-1) 76

Brain – substantia nigra 71

Breast – mammary tissue 218

Cervix – ectocervix 6

Cervix – endocervix 5

Colon – sigmoid 173

Colon – transverse 203

Esophagus – gastro. junction 176

Esophagus – mucosa 331

Esophagus – muscularis 283

Fallopian tube 7

Heart – atrial appendage 218

Heart – left ventricle 271

Kidney – cortex 36

Liver 136

Lung 374

Minor salivary gland 70

Muscle – skeletal 475

Nerve – tibial 335

Ovary 108

Pancreas 197

Pituitary 124

Prostate 119

Skin – not sun exposed (suprapubic) 271

Skin – sun exposed (lower leg) 397

Small intestine – terminal ileum 104

Spleen 118

Stomach 204

Testis 203

Thyroid 361

Uterus 90

Table 1. Continued

GTEx tissue label Number of samples

Vagina 97

Whole blood 456

GTEx tissue labels and RNA-seq sample counts were downloaded from

Recount2 and used for the training procedure.
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Reaction characterization and connections are
determined and validated in this study by public
datasources
To characterize biochemical reaction network states across tis-

sue, we leveraged the graph neural network paradigm, which

has been demonstrated to scale to large graphs.36 We combined

gene expression values from Genotype-Tissue Expression

(GTEx),9 the largest source of human tissue-specific RNA

sequencing (RNA-seq) data with the biochemical reaction

network annotations from Reactome,37 the most comprehensive

pathway database. Reactome is the largest biological pathway

database and is unique in its repertoire and representation of

biochemical reactions. Each reaction annotated in Reactome is

approved by human experts and is traceable to its source litera-

ture.Considering a reaction’s state is approximatedby its constit-

uent protein participants’ transcript abundances, we generated

values for each reaction by applying principal-component anal-

ysis (PCA)38 across transcript sets annotated for each reaction

as a conceptually simple, computationally efficient, and

outcome-naive aggregation strategy (Figure 1). We then created

a graph neural network architecture39 using the Reactome reac-

tion network and trained it to classify 51 tissue types using the

transformed GTEx reaction data (Figure 7), embedding tissue-

specific reaction network states as weights in our trained model.

This graph structure is critical to the overall workflow in obtaining

biologically significant results because the graph structure spec-

ifies reaction interdependency. By including this graph, the graph

neural network (GNN) is able to consider information frommultiple

interdependent reactionswecanextract after training. In contrast,

other deep neural network models assume architectures not

representative of biological systems. We validated our trained

model with a transfer learning approach (results) where we show

that our GNN classifies held-out healthy tissue samples from

The Cancer Genome Atlas (TCGA)40 as well as a conventional

deep learningmodel41 trained on the same data, despite the con-

ventional deep learning model using more than 600 times the

parameters. Furthermore, we show that by applying our trained

model to a study comparing healthy skin tissue with lesional pso-

riasis samples,42 our GNN recovers biochemical reactions shown

to promote psoriasis in both a human multi-omics integrative

genomics study43 and a separate study using a mouse model,44

yet these are not discoverable by traditional differential gene

expression or pathway enrichment analyses.

RESULTS

Training data
Our model is trained with data from GTEx, the largest

healthy human dataset available

The GTEx Project and TCGA are two of the largest-scale human

tissue-specific RNA-seq studies conducted over the preceding
Patterns 4, 100758, July 14, 2023 3



Figure 2. Reaction PCA summary statistics

(A) Principal-component distributions of pro-

portions of variance explained across the first ten

principal components.

(B) A log-log plot of reaction and transcript counts.

(C) Tissue sample dendrograms from both reaction

PC1 (left) and transcript counts (right) are signifi-

cantly correlated (Cophenetic correlation permuta-

tion p-value = 0.00009999). Heatmap columns

shown are downsampled from the underlying

matrices for visualization purposes.
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decade; the data generated by each have been made largely

publicly available and are commonly subject to reanalyses.

Each of these studies’ RNA-seq samples as well as many others

hosted by the Sequence Read Archive (SRA) have been reproc-

essed in a uniform way with a single pipeline by the Recount2

project,45 which provides sample phenotype data and gene tran-

script count data through their online portal at https://

jhubiostatistics.shinyapps.io/recount/. We opted to use this

Recount(-ed) GTEx data to train our GNN because it represented

the most samples (9, 115) and reserved Recount(-ed) TCGA and

other data for downstream validation.

Our data-transformation procedure maps mRNA

expression values to reaction-specific values using PCA

We calculated reaction-specific values to train a GNN to classify

reaction graphs. GTEx gene transcript data were downloaded

and grouped in a many-to-many fashion according to the Reac-

tome reactions in which their protein products participated. Tis-

sue sample counts ranged from 5 (endocervix) to 475 (skeletal

muscle), as indicated in Table 1.We considered several methods

to reduce dimensionality from RNA-seq transcript counts to re-

action-specific values including t-distributed stochastic

neighbor embedding (t-SNE),46 uniform manifold approximation

and projection (UMAP),47 and potential of heat diffusion for affin-

ity-based transition embedding (PHATE).48 PCA was selected

due to concerns for both performance and simplicity. Reaction-

wise PCAwas conducted using the prcomp() function from the R
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stats package,49 and resulting principal-

component result objects were stored.

The distribution of the proportion of vari-

ance explained by the first ten principal

components across all reactions is plotted

in Figure 2A, where the median of the first

principal components explains 50% of

the variance, the median of the second

principal components explains 25% of

the variance, and the subsequent principal

components tend to explain less variance,

as would be expected. The first principal

component value from each reaction was

recorded for each sample, forming a sam-

plewise PC1 matrix. This routine trans-

formed a matrix representing 6,323 gene

transcripts representing 6,323 unique

genes across 9,115 tissue samples to a

matrix representing 10,726 reactions

across those same 9,115 samples. Reac-

tion transcript counts ranged from 1 (multi-
ple reactions) to 214 for ‘‘olfactory receptor-G protein olfactory

trimer complex formation’’ (Reactome:R-HSA-381750), with

the log reaction-log transcript count distribution shown in

Figure 2B.

Sample structure maintenance
The sample structure of our training data is maintained

by our data transformation procedure

A common method to assess gene expression information

across samples is to perform hierarchical clustering, which

may reveal the structure among samples by considering overall

samplewise similarity. In order to determine whether calculating

reactionwise principal-component summarization significantly

degraded or otherwise influenced this structure, we calculated

the Euclidean distance between samples and performed

agglomerative hierarchical clustering using Ward’s D50,51 on

both reaction principal-component coordinates and transcript

counts across all samples and compared the resulting dendro-

grams. Cophenetic correlation52,53 is a method used to calculate

the similarity between dendrograms based on sample distance.

The cophenetic correlation coefficient was calculated to be

0.9248 (Figure 2C) and was shown to be significant by permuting

over the reaction dendrogram labels as specified in the docu-

mentation for the cor_cophenetic() function from the R dendex-

tend package54 10,000 times (p <1E�5). This demonstrates

that the reactionwise first principal-component coordinate

https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/


Figure 3. Training results with positive and

negative controls

(A) Reaction PC1 values reshaped into image-like

tensors for Resnet18, used to classify 51 tissues as

a positive control.

(B) Both randomly shuffled reaction PC1 values and

randomly shuffled tissue labels are used as features

and targets, respectively, as negative controls.

(C) Classification accuracy of held-out samples

using K = 10-fold cross-validation and overlaid lo-

ess curves for both our graph neural network and

Resnet and all training samples for 10 ‘‘Rewired

Network,’’ ‘‘Shuffled Features,’’ and ‘‘Shuffled Tar-

gets’’ control models, as well as our ‘‘Summation

model,’’ which we used to determine the contribu-

tion of PCA.
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values group tissue samples similarly to transcript counts, justi-

fying our feature matrix transformation. The advantage of ex-

pressing this information as reactionwise values, rather than

transcript counts, is that reactions form a network distinct from

other networks formed by transcripts alone. The transformation

of transcript count information into reactionwise information of-

fers the opportunity to view gene expression information through

the lens of the human biochemical reaction network.

Training performance
We use Resnet, a conventional deep learning model,

shuffled and summation data as controls

To approximate an upper bound on the degree to which our re-

action PC1 values explain the tissue types in our training data,

we used Resnet18,41 a deep learning model recommended as

a default selection.55 Resnet18 was developed by Microsoft to

classify images with 18 convolutional layers. Because Resnet18

is an image classifier, we reshaped our samplewise reaction PC1

values from a 1-dimensional vector of length 10,726 to two

2-dimensional vectors of height 173 and width 31 using the Py-

Torch56 reshape() function after redefining the first layer as a 2

channel, rather than the default Resnet18 3 channel used for

RGB images. We also modified the final layer to output tissue la-

bels (Figure 3A). After ten executions of 500 epochs, this Re-

snet18 architecture achieved an accuracy of 93.5% using K =

10-fold cross-validation, where the accuracy was calculated as

the mean proportion of samples in the held-out folds correctly

classified (Figure 3C). Convolutional neural networks (CNNs)

use hidden layers, which consider adjacent values together.

Though CNNs perform well on image classification—partly

because adjacent pixel relationships are meaningful for im-

ages—these neural network models contain no inherent repre-
sentation of interdependent reactions, un-

like our GNN. We considered the

possibility that additional information

about biological network structure may

be subtly encoded in this input data by

positioning biologically related reaction

PC1 values near each other in the resulting

2-channel matrix. To test whether this was

the case, we shuffled the reaction PC1

values and retrained our Resnet18 model;
however, these results were indistinguishable from one another,

suggesting that such additional information does not contribute

to our Resnet18model performance. Our GNNwas trained using

the same routine and achieved a mean accuracy of 79.52%. The

observed 13.98% accuracy difference of the Resnet18 architec-

ture vanishes when tested against held-out validation data

(model validation), suggesting that the apparent performance

advantage is merely due to the Resnet18 overfitting on the

GTEx training data. To establish lower bounds on our training

performance, we used our GNN with four control datasets: a de-

gree-preserving randomly rewired57 reaction graph, ‘‘Rewired

Network’’; randomly shuffled reaction PC1 values within sam-

ples, ‘‘Shuffled Features’’; randomly shuffled tissue labels across

samples, ‘‘Shuffled Targets’’; and summed expression values,

rather than PC1 values, ‘‘Summation’’ (Figure 3). We trained

each of our controls using the full GTEx dataset and reported

training accuracy after 500 epochs (Figure 3C). Notably, we

observed that our ‘‘Rewired Network’’ control model achieves

amean accuracy of 77.26% across 10 randomly rewired graphs.

Despite this representing training—rather than held-out fold—er-

ror, we recognize this as relatively high accuracy and hypothe-

size it is an artifact of the redundant structure in the human reac-

tion network itself.58 We hypothesize that the unexpectedly high

‘‘Shuffled Features’’ control model accuracy of 53.94% is the

result of cases where the sum of reaction PC1 values for one

or more samples for some tissues is high and the sum of reaction

PC1 values for other tissues is low. Considering the variation

observed across tissue sample size (Table 1), one would not

expect a random classifier to perform quite as poorly as 1/51

(<2%).We hypothesize that the 5.99% accuracy of our ‘‘Shuffled

Targets’’ control model is a reflection of this sample size imbal-

ance. To determine the contribution of PCA to our analysis, we
Patterns 4, 100758, July 14, 2023 5



Figure 4. TCGA test set area under the curve

(AUC) across tissue labels

MultiROC plot showing TCGA tissue label one-

vs.-rest AUC comparing performance of the

graph neural network (GNN; solid lines) and Re-

snet18 (dashed lines). Both models exhibit

excellent AUC, defined as AUC >0.8, for adrenal

gland, brain, and all TCGA tissue labels with 5 or

more samples in the tuning set, except for

bladder. The GNN showed a higher AUC than the

Resnet18 model for 10 tissues, while the Re-

snet18 model showed a higher AUC for 6

(Table 2). Though the models’ differences in

AUC for most tissue labels are small, these re-

sults demonstrate that the apparent disadvantage

of the GNN relative to the Resnet18 model

observed during training does not extend to

test data.
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also trained a ‘‘Summation’’ control model using reaction-spe-

cific values calculated by taking the sum of expression values

corresponding to each reaction (Figure 3C). Using the full

GTEx training data, this model achieves an accuracy of

69.83%, showing it fits better than either model trained using

shuffled data but worse than models using unshuffled PC1

values. Following this cross-validation assessment, Resnet and

GNN models were trained using the full GTEx dataset for down-

stream validation.

Model validation
Fitting GTEx-trained GNN for comparison to GTEx-

trained Resnet18, ‘‘Rewired Network,’’ and

‘‘Summation’’ model performance via transfer learning

Our GNNoutperforms the control models at classifying TCGA tis-

sue samples. Neural networks have been shown to represent

generalizable features in their early layers and dataset-specific

features in later ones.59 Considering this, to validate our GNN,

we used an approach that held all except the final classification

layer weights fixed. We demonstrated performance via transfer

learning on a separate dataset, showing that our GNN outper-

forms the GTEx-trained Resnet18 conventional deep learning

architecture despite it using over 600 times the parameters

(18,004 for our GNN compared with 11,183,636 for Resnet18).

We use 740 healthy tissue samples from TCGA, representing

20 tissue types. We divide these samples with a 50:50 split

into tissue type-balanced tuning and test datasets, each

composed of 370 unique samples (Table 2). Because both our

GTEx-trained Resnet18 and GNN models were constructed

with final layers mapping to the 51 tissue types GTEx data repre-

sented, these layers were replaced with linear layers mapping to

the 20 tissues represented in our TCGA validation dataset. The

tuning dataset was used to adjust the new final layers of both

our GNN (where the new final layer represents 1,300 parameters)

and the Resnet18 (where the new final layer represents 10,260

parameters), with prior layer weights frozen in place, as they

were following the tuning procedure using the full GTEx dataset.

Using this approach, both our GTEx-trained GNN and the GTEx-
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trained Resnet18 converge and achieve 100% accuracy on the

tuning set in 487 and 214 epochs, respectively; however, our

tuned GNN outperforms the tuned Resnet18 on TCGA test data-

set, where our GNN achieves an adjusted Rand index60 (ARI) =

0.7909 and the Resnet18 achieves an ARI = 0.7781. This demon-

strates that the apparent advantage of the Resnet18 observed

through 10-fold cross-validation accuracy during the GTEx-

training routine relied upon overfitting to GTEx-specific

features—not features generalizable to unseen data. The 10

‘‘Rewired Network’’ models and the ‘‘Summation’’ model used

as controls in our training procedure achieve mean ARIs =

0.6568 and 0.4541, respectively, on TCGA test dataset after

the same layer replacement and tuning. This shows that both

the real Reactome network structure and PCA contribute to

our model, outperforming respective control models by

16.96% and 42.58%. Notably, misclassified test samples from

real Reactome and Resnet models were highly disjointed

(Figures S1 and S2; Table S1); though only 282/370 (76.22%)

of the test samples were correctly classified by both models,

348/370 (94.05%) of the test samples were correctly classified

by at least one of the models, suggesting the possibility of fruitful

results from future ensembles of GNN-based learning and con-

ventional deep learning approaches. See Data S1, S8, S9, S10,

S11, and S12 for the full list of real Reactome and Resnet model

classification results and full TCGA execution records and data,

respectively.

Fitting GTEx-trained GNN for comparison to traditional

expression and enrichment analyses

Our GNN separates healthy skin from psoriatic lesional skin

samples. Recently, GNNs have been reported to perform well

at anomaly detection tasks due to their ability to exploit underly-

ing relationship structures.61–63 To test our model’s ability to

identify subnetworks of the reactome dysregulated by disease

and compare our results with those of traditional differential

gene expression analyses, we applied our GNN to a study of

healthy and psoriatic skin. Briefly, psoriasis is a complex,

currently uncured chronic relapsing inflammatory skin disorder

characterized by painful rashes of scaly skin64 that is estimated



Table 2. Tissue sample counts of TCGA datasets and test

set AUC

TCGA tissue label Tuning set Test set Resnet AUC GNN AUC

Adrenal gland 2 1 1* 0.994

Bile duct 4 5 0.304 0.472*

Bladder 10 9 0.635 0.951*

Brain 2 3 0.869 1*

Breast 56 56 0.885 0.901*

Cervix 2 1 0.067 0.07*

Colorectal 25 26 0.958 0.986*

Esophagus 7 6 0.989 0.995*

Head and neck 22 22 0.985 0.988*

Kidney 64 65 0.984 0.988*

Liver 25 25 0.955* 0.944

Lung 55 55 0.968* 0.959

Pancreas 2 2 0.47 0.47

Prostate 26 26 0.966* 0.95

Skin 1 0 – –

Soft tissue 1 1 0.384 0.384

Stomach 18 19 0.826* 0.819

Thymus 1 1 0.325 0.325

Thyroid 30 29 0.997* 0.966

Uterus 17 18 0.816 0.82*

TCGA tissue label counts for tuning and held-out test sets with their cor-

responding AUC for both the Resnet and GNN models are shown.1

1*Higher Tissue-specific AUC
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to affect 3.2% of US adults.65 Several clinical variants

are described; however, pathogenesis generally consists of dys-

regulated keratinocyte proliferation and differentiation concomi-

tant with neovascularization.66 In moderate to severe cases,

long-term therapy options include fewer than 20 small molecules

and biologics, many of which target the same tumor necrosis

factor a (TNF-a) signaling and interleukin pathways.66 To poten-

tiate enumeration of additional targets, we selected the largest

psoriasis dataset whose RNA-seq data were processed using

the same Recount2 pipeline as the GTEx (and TCGA) samples

that our GNN was trained (and validated) with: SRA:

SRP035988,42 containing 178 samples (83 healthy skin and 95

lesional psoriatic skin). To investigate this dataset, we replaced

the final layer of our GNN with a linear layer mapping to two con-

ditions, representing healthy and diseased skin tissue, and held

all other layer weights in place, as with TCGA tuning procedure,

while we fit the final layer of themodel using all the available data.

Fitting our GNN in this way, our GNN converges in 300 epochs.

Our GNN reveals that a large reaction network component is per-

turbed in psoriatic tissue and that a drug target in the central

reaction has been previously identified in a separate mouse

study. Following this fitting procedure, we calculated the reac-

tion connection weight using the 83 healthy skin samples to

arrive at 40,032 edge weights for the reaction network, repre-

senting the reaction connection importance to the GNN for

classifying healthy skin samples from the SRA:SRP035988 data-

set (Figure 5). Briefly, edge weights were arrived upon by aver-

aging gradients from the output labels backward through the
GNN to input features using the integrated gradients technique

described by Sundararajan et al.67 and implemented in the Cap-

tum68 PyTorch library. To analyze components of the resulting

weighted reaction network, we first used three thresholds: the

top 1% of edges, representing the 400 most important reaction

pairs; the top 25% of cumulative reaction network edge weights,

representing the 225 most important reaction pairs; and the top

100 edges, representing the 100 most important reaction pairs.

However, using each of these thresholds, the largest network

component extracted from our GNN was centered about the

same network hub reaction Reactome:R-HSA-8956184: 26S-

and NUB1-mediated degradation of NEDD8, UBD, and their

conjugates (https://reactome.org/content/detail/R-HSA-

8956184), which is a central component of the neddylation

pathway linked to psoriasis in the literature. This reaction is pre-

ceded only by its requisite binding reaction Reactome:R-HSA-

8956140: NEDD8 and UBD bind NUB1 and the 26S proteasome

(https://reactome.org/content/detail/R-HSA-8956140), to which

all the same gene products are annotated. A small-molecule

drug, MLN4924, targets NEDD8 via inhibition of its activating

enzyme NAE. Initially developed as a cancer therapy to arrest

the cell cycle,69 it has been demonstrated in vivo in a separate

study that MLN4924 administration promotes psoriasis in

mice.44 Reactome:R-HSA-8956184 is represented by 21 tran-

scripts detected in the SRA:SRP035988 study representing 21

unique genes (Table 3).

The central reaction of the perturbed network component re-

mains hidden using traditional gene expression analysis tech-

niques. In an attempt to reproduce this finding with traditional

differential gene expression and pathway enrichment analysis,

we used the same SRA:SRP035988 gene transcript count data

we used to fit our GNN along with the R EnhancedVolcano pack-

age,70 a software package that applies the lfcShrink() function71

and calculates s-values72 for differential expression analysis. To

ensure that this package yielded appropriate results for the

SRA:SRP035988 dataset, we first used its default parameters

to find significantly differentially expressed genes reported in

prior literature as associated with psoriasis (Table S2; Figure S3).

We then considered differential gene expression at three signif-

icance thresholds: strict, defined by a log2 fold change (log2FC)

>2 and an s-value <10e�32; default, defined by a log2(FC) >2

and a p <10e�6 (the EnhancedVolcano default); and relaxed,

defined by a log2(FC) >0.5 and an s-value <0.05. Using the strict,

default, and relaxed thresholds, 117, 135, and 904 gene tran-

scripts are considered differentially expressed in

SRA:SRP035988, respectively. See Data S2 for the complete

differentially expressed (DE) transcript list and corresponding

FC and significance values. Despite the central nature of this re-

action in our weighted reaction network, none of its constituent

transcripts are found to be DE between healthy skin and lesional

psoriatic tissue using either the strict or default thresholds in the

EnhancedVolcano package. Using relaxed thresholds, 8 of the

21 transcripts are calculated to be DE (Table 3; Figure 6A), and

following multiple hypothesis correction using a Benjimini-

Hochberg procedure, Reactome:R-HSA-8956184 is enriched

with a nonsignificant adjusted p value of 0.58727. See Data S3

for the full list of reaction enrichment results.

Original differential gene expression and pathway enrichment re-

sults. Li et al.42 conducted differential expression and pathway
Patterns 4, 100758, July 14, 2023 7
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Figure 5. Neddylation is central in largest dif-

ferential network component of psoriatic

skin

The largest network component among the top 25%

of total edge weight in our GNN applied to

SRA:SRP035988 samples is centered about Re-

actome:R-HSA-8956184: 26S- and NUB1-medi-

ated degradation of NEDD8, UBD, and their conju-

gates. Nodes (light purple) are labeled with

Reactome’s stable identifiers, and edges are

colored by weight (yellow = low and dark purple =

high). In this diagram, edge weight represents

importance for separation of normal skin from

psoriatic lesional skin samples; edge direction rep-

resents the preceding/following reaction network

relationship, where preceding reactions’ products

are reactants, catalysts, or regulators of following

reactions. We identify reaction Reactome:R-HSA-

8956184 (light blue) as a hub in this network

component and note that 37 of its 52 total con-

nections in the original reaction network—1 pre-

ceding reaction and 36 following reactions—are

included within the top 25% of total edge weight.
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enrichment analyses, finding significant enrichment of genes

overexpressed in psoriatic lesions involved in inflammatory

responses, cytokine-receptor interactions, cell division, and

keratinization.42 These pathways are represented in the authors’

dataset by 268, 275, 305, and 41 genes, respectively.42 These

pathways are largely recapitulated in our traditional enrichment

reanalyses at each of the three thresholds performed using Re-

actome pathways; however, pathways referring specifically to

neddylation or NEDD8 itself are absent. See Data S5, S6, and

S7for the enrichment reports. Together, these findings demon-

strate the contribution of our GNN as a combination of both

capable of discovering genotype-phenotype relationships that

are nonsignificant by traditional statistical methods as well as re-

action connection-aware learning, capable of localizing those

discoveries to specific biochemical reactions deep within the

pathway hierarchy.

Hypergeometric enrichment analysis fails to detect edges. If

the relaxed thresholds described above (The central reaction of

the perturbed network component remains hidden using tradi-

tional gene expression analysis techniques) were used for differ-

ential gene expression to conduct Reactome edge (reaction-

pair) enrichment analysis, 41%, 29%, and 16% of the edges in

the top 1%, top 25% of cumulative edge weights, and top 100

edges, respectively, would be undiscoverable using hypergeo-

metric enrichment analysis, even in the b = 0 setting, where all

of their transcripts are considered DE, as those edges are repre-

sented in SRA:SRP035988 by fewer than 8 transcripts (experi-

mental procedures). This demonstrates the bias of hypergeo-
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metric enrichment analysis toward large

pathways and its inability to detect posi-

tively associated smaller ones.

The connections of the central reaction in

the perturbed network component remain

hidden using traditional gene expression

analysis techniques. The 52 edges repre-

senting reactions preceding and following

Reactome:R-HSA-8956184 were also
considered using the union of each reaction pair’s transcripts,

and none of the edges were found to be significantly enriched

using strict, default, or relaxed thresholds. The most significantly

enriched edge connected to Reactome:R-HSA-8956184 using

the relaxed threshold, 26S- and NUB1-mediated degradation

of NEDD8, UBD, and their conjugates precedes proteasomal

degradation of K48polyUb-TRAF3 (https://reactome.org/

content/detail/R-HSA-5668481), was found within the top 1%

of edges in our analysis and calculated to be enriched with a

nonsignificant Benjimini-Hochberg adjusted p value of

0.05986. See Data S4 for the full list of edge enrichment results.

The central reaction of the perturbed network component reveals

two distinct expression clusters. Genes in one of these clusters

have been characterized as key drivers of psoriasis in a separate

human multi-omics study. Notably, Pearson correlation of

expression values for these eight genes found to be significantly

DE using the relaxed threshold results in the formation of two

distinct clusters (Figure S4). Cluster 1 consists of PSMD11,

PSMA3, PSMD1, and PSMD6, and cluster 2 consists of

PSMA5, PSME1, PSMB2, and PSMB6. Twomembers of the first

cluster, PSMD1 and PSMD6, have previously been reported as

key drivers of psoriasis in a human multi-omics study.43 These

clusters do not appear to be associated by shared loci,

promoters/enhancers (Table S3), or 20S complex assembly

interdependency.73 The two least-correlated genes are PSMA3

and PSMB6 (Pearson r = 0.365). Despite their shared overex-

pression in psoriasis (Figures 6B and 6D), these genes exhibit

both natural and psoriatic variation, with diverging expression

https://reactome.org/content/detail/R-HSA-5668481
https://reactome.org/content/detail/R-HSA-5668481


Table 3. Differential gene expression of a central reaction in psoriasis

Gene name Ensembl ID log2(FC) s-value Threshold

PSMD11 Ensembl:ENSG00000108671 0.612 2.95E�87 relaxed

PSMA5 Ensembl:ENSG00000143106 0.677 1.08E�66 relaxed

PSME1 Ensembl:ENSG00000092010 0.549 4.35E�57 relaxed

PSMB2 Ensembl:ENSG00000126067 0.633 1.09E�55 relaxed

PSMA3 Ensembl:ENSG00000100567 0.711 2.51E�50 relaxed

PSMD1 Ensembl:ENSG00000173692 0.515 3.94E�49 relaxed

PSMD6 Ensembl:ENSG00000163636 0.501 1.58E�43 relaxed

PSMB6 Ensembl:ENSG00000142507 0.538 6.69E�22 relaxed

PSMD14 Ensembl:ENSG00000115233 0.455 1.13E�25 (none)

PSMB3 Ensembl:ENSG00000277791 0.485 2.91E�20 (none)

PSMD7 Ensembl:ENSG00000103035 0.233 1.47E�12 (none)

PSMC6 Ensembl:ENSG00000100519 0.308 1.25E�10 (none)

PSMB1 Ensembl:ENSG00000008018 0.22 2.11E�09 (none)

SEM1 Ensembl:ENSG00000127922 0.265 3.30E�08 (none)

PSMD9 Ensembl:ENSG00000110801 0.25 4.27E�06 (none)

PSMB4 Ensembl:ENSG00000159377 0.11 0.005 (none)

PSMD5 Ensembl:ENSG00000095261 0.099 0.035 (none)

PSMD4 Ensembl:ENSG00000159352 0.081 0.098 (none)

PSMF1 Ensembl:ENSG00000125818 0.042 0.207 (none)

NEDD8 Ensembl:ENSG00000129559 �0.043 0.323 (none)

PSMD10 Ensembl:ENSG00000101843 0.023 0.47 (none)

Transcripts representing Reactome:R-HSA-8956184 in the SRA:SRP035988 study. None of these transcripts are significantly differentially expressed

using the strict or default thresholds. Using relaxed thresholds, 8 of these transcripts are differentially expressed. However, Reactome:R-HSA-

8956184 itself is not considered significantly enriched at any of the thresholds.
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gradients observed across each condition (Figures 6C and 6E).

These genes form the a3 and b6 subunits of the human constitu-

tive 20S proteasome,74 respectively. The constitutive 20S

proteasome is a core component of the 26S proteasome,75,76

suggesting that 26S proteasome overexpression resulting in up-

regulated NEDD8 degradation occurs through Reacto-

me:R-HSA-8956184 by two separate expression avenues, cor-

responding to each of the two clusters.

DISCUSSION

Our GNN models healthy human tissues and enables
tissue-specific disease analysis
This study sought to characterize the differential biochemical re-

actionsof healthy human tissueusingmRNAexpressiondata and

use resulting information to analyze disease. To accomplish this,

we transformed healthy human tissue-specific RNA-seq data

from GTEx, mapping gene transcript counts to annotated

biochemical reactions using Reactome reaction annotations,

and performed dimensionality reduction with PCA. Using the re-

actionwise PCA-transformed data and constraining potential

relationships to those found within the Reactome reaction

network, we generated a GNN, aggregating layers using the

GraphConv() function39 with nodes representing reactions and

edges representing preceding (product)-following (reactant) rela-

tionships. We assessed our method by including positive and

negative performance controls in our training procedure as well

as showing a quantitative performance advantage relative to
randomly rewired controls as well as a conventional deep

learning model on held-out validation data. We demonstrated a

qualitative advantage by extracting reaction network edge

weights and revealing an expression-phenotype association

not discoverable by conventional expression analysis techniques

yet supportedby results of bothahumanmulti-omics study43 and

a separate small-molecule study using amousemodel.44 Individ-

ually, each element of this workflow has been previously

described; however, we contend that the unique composition

of our biology-inspired design choices demonstrates the advan-

tage and potential of this and similar interdisciplinary work.

Similar models have recently been shown to reflect
biological systems
Inherent in our modeling technique is the implication that

biochemical networks process information, a theory proposed

in the literature more than a century ago.77 However, only more

recently has it been shown that chemical networks exhibit

features capable of explaining subtle life sciences phenomena78

and that, in addition to traditional ordinary differential equation

(ODE) and state-based modeling techniques,79–81 neural

network models with appropriate architecture reflect the

behavior of biological systems.82–85

Our GNN differs from and extends existing models
Considering prior neural network models,82–84 our work differs

in three important ways. First, we used data from human bulk

RNA-seq rather than gene knockout or binary gene mutation
Patterns 4, 100758, July 14, 2023 9



Figure 6. Nonuniform overexpression of 20S subunit genes PSMA3 and PSMB6 in psoriasis

(A) A t-SNE plot46 of healthy (beige) and lesional psoriatic skin (crimson) samples calculated using the normalized expression values of all genes.

(B and D) The expression distributions of the two least correlated of the significantly differentially expressed genes (PSMA3 and PSMB6) representing the hub

reaction Reactome:R-HSA-8956184.

(C and E) The expression values of PSMA3 and PSMB6 in the t-SNE context (yellow = low and dark purple = high).

Interestingly, despite these genes’ similar differential expression distributions when considered across conditions (B and D), the t-SNE context reveals diverging

gradients within each condition (C and E).
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data from S. cerevisiae, E. coli, or transformed cell lines in order

to interrogate differentiated ex vivo human tissue in place of

single cells or model organisms. This choice was a compro-

mise in that it reduces the number of samples available for

training and validation but enables direct investigation of reac-

tion subnetworks underlying medical conditions using widely

available bulk RNA-seq sample data. Second, the Reactome

network from which we derived our architecture represents

biochemical reactions specific to H. sapiens and is manually

curated by experts rather than a representation of ontological

relations with varying degrees of granularity and evidence co-

des86,87 or automatically generated using databases of experi-

mental results.88 This difference constrains our GNN to set

weights for edges representing individually reviewed reaction

connections, rather than inferred or ontological relations, which

is important because highly parameterized neural networks

have been shown to offer myopic solutions,89 potentiating

overfitting and misinterpretation. Finally, prior work was as-

sessed quantitatively by showing comparable performance

relative to a similarly sized, fully connected neural network pos-

itive control.82 We opted not to restrict the parameter space or

architecture of our positive control in these ways, showing that

our model performs comparably to a conventional Resnet18

deep learning architecture rather than one designed following

the evaluation of our GNN.

Our GNN method complements existing analytical
techniques
The modest isoform coverage and consequent incompleteness

of Reactome37 limit possible insights into mechanism; thus,
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differential expression analysis remains advantageous for

discovery of novel associations at transcript and gene scales.

Moreover, pathway enrichment analysis is sufficient to find

associations at broad scales; however, we demonstrate our

method as complementary to both differential expression and

enrichment approaches due to its ability to reveal associations

using expression data at the mesoscale of biochemical

reactions.

Our study was limited by data-inherent characteristics
and methodological compromises
This project was limited by several factors and compromises

that should be taken in concert with our results. Firstly, the

data we perform our analysis with exhibit several issues. Our

training set size of 9,115 represents an infinitesimal fraction of

the human population and is smaller than prior demonstrations

of biology-inspired neural networks,82–84 which were trained on

circa 500,000 samples. We chose to use this sample size after

careful review of available data, finding no additional data suit-

able for our purposes at the time of writing, aside from healthy

TCGA samples, which we opted to hold out and use as a vali-

dation dataset. These data themselves have several limitations.

Consider, we use training samples collected from cadaver tis-

sue, indicating that all donors experienced death due to

some cause. The tissues from which the samples were

collected may have appeared healthy; however, a donor may

have suffered an unidentified illness, such as metastatic can-

cer, or experienced some temperature fluctuation or other envi-

ronmental exposure perhaps leading to misrepresented healthy

tissue gene expression patterns. Furthermore, these samples



Figure 7. Reaction network decomposition

and model input

(A) The reactome pathway hierarchy and reaction

network.

(B) The reaction network.

(C) The reaction network decomposition for the re-

action network deep learning architecture.

(D) The reaction network architecture with the

1-GNN GraphConv() aggregator function, passed

through three layers of size 64 and trained to classify

51 tissue types.
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were collected using bulk RNA-seq, which provides only an

average value of gene expression for each tissue. We under-

stand that tissues are host to many cell types of varying line-

age, and it may be the case that only the primary cell types

in these tissue samples are represented in our input data. As

large-scale single-cell databases come online, network analyt-

ical techniques such as ours may prove to better characterize

reaction networks in situ. We use RNA-seq data themselves

to approximate states of biochemical reactions, though we

know that transcript abundance has been shown only to corre-

late with protein abundance and has not been shown to corre-

late directly with the reaction state itself. In the future, large-

scale, tissue-specific phosphoproteomic datasets may be

able to address this shortcoming. Next, the biochemical net-

works described by Reactome are understood to be incom-

plete. We trained our model using only 6,323 transcripts for

each sample that experts have annotated as participating in re-

actions, but the human genome now contains 19,901 to 21,306

genes annotated as protein coding.90 Reactome is increasing

coverage over time but does not yet completely cover the hu-

man transcriptome. Finally, our methods lose some informa-

tion. We chose PCA as a method for transcript-to-reaction

dimensionality reduction because it was a simple and perform-

ant method, making no assumptions about tissue label and al-

lowing us to maintain maximum naivete. Increasingly sophisti-

cated methods are developed for studying RNA transcript

values, utilization of which may explain more than a median

of 50% of the variance our first principal components did.

And parameters for our GNN architectures were left unaltered

from the literature in which they were described. This choice

likely translated into underperformance but allowed us to

compare our results conservatively with positive and negative

controls in an unbiased way. Tuning our GNN parameters

based on our training data could have introduced undue bias

in our first demonstration of this approach and brought results
from our controls into question. However,

extensions of this work could focus more

specifically on generating GNN

models optimized for both performance

and information retention.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and

reagents should be directed to andwill be fulfilled by
the lead contact, Joshua G. Burkhart (jgburk@hawaii.edu).

Materials availability

This study did not generate new unique reagents.

Data and Code availability

d Data from GTEx, TCGA, and SRA:SRP035988 used to train and validate

our GNN are available from the Recount2 data download portal at

https://jhubiostatistics.shinyapps.io/recount/.

d The Reactome MySQL database is freely available for download

from the Reactome webpage at https://reactome.org/download-data.

d Intermediate data files generated by our work are available as supple-

mental information.

d The source code accompanying this work is publicly available at https://

github.com/joshuaburkhart/reticula. The source code has been

released as v.1.0.2 to reflect the repository version at publication time.

This version is available at https://zenodo.org/record/7811429, and

the corresponding DOI is 10.5281/zenodo.7811429.
Model generation

GNN architecture

In order to infer tissue-specific biochemical networks, we used manually

curated reaction network annotations fromReactome to generate aGNNarchi-

tecture with corresponding features (Figure 7A). The architecture relies upon

the 1-GNN described by Morris et al.39 and implemented in the Pytorch Geo-

metric91 GraphConv() function, using a summing aggregator and three fully

connected layers of size 64 as described in the original article. This architecture

was benchmarked using an independent dataset, the TU-molecular dataset,92

showing 64 as the most performant batch size, which we considered a default

value and used for our GNN as well. We use a cross-entropy loss function and

report training accuracy as a proportion of correct tissue classifications.

Graph data loading

The Reactome reaction network contains directed edges connecting pairs of

reactions, and the network is presented to our GNN in a reaction-node manner

whereby the network is decomposed into 10,726 subnetworks where each

component is represented by a following reaction and all of its preceding re-

actions (Figures 7B and 7C). The preceding reactions are considered the

following reaction’s neighborhood, and their values are combined with the

neighborhood aggregation function described in the original manuscript39:

xðl+1Þv = W
ðl+1Þ
1 xðlÞv +W

ðl+1Þ
2

X
w˛NðvÞ

xðlÞw ;
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where l is the time-step, x is the value of the vertex, v is the current vertex, N(v)

is the neighborhood—preceding reactions—of v, and W1 and W2 are weights

learned during the training procedure for the current vertex and neighborhood,

respectively.

Graph visualization

To visualize the graph resulting from our analysis (Figure 5), we used Cyto-

scape,93 v.3.9.1.
RNA-seq data processing

GTEx RNA-seq data files were downloaded from the Recount2 project website

at https://jhubiostatistics.shinyapps.io/recount/, and records annotated with

healthy tissue labels were retained. Samples removed included those anno-

tated as ‘‘cells - transformed fibroblasts’’ (306), ‘‘cells - leukemia cell line

(CML)’’ (102), and ‘‘cells - EBV-transformed lymphocytes’’ (139) and those

with no tissue label (5). Transcripts whose identifiers were not annotated as

participating in Reactome reactions were removed. Values were scaled up

to the machine maximum integer value �1 and added to 1, producing tran-

script pseudocounts,71,94 and processed using the variance stabilizing trans-

form95 provided by DESeq2.96
Traditional differential gene expression and pathway enrichment

analysis

Reactome.org pathway enrichment analysis of SRA:SRP035988

Enrichment was performed using three differential expression thresholds

described in the main text: strict, default, and relaxed. DE transcripts were up-

loaded to the Reactome.org analysis web tool (=https://reactome.org/

PathwayBrowser/#TOOL=AT). Pathway enrichment reports were generated

and downloaded from Reactome.org and are available. See Data S5, S6,

and S7 for the enrichment reports.
Hypergeometric enrichment analysis edge rejection

Transcripts found to be DE = 904.

Transcripts in SRA:SRP035988 annotated in Reactome reaction

network = 5,401.

Edges in reaction network = 40,032.

We set discoverable edge significance considering a Bonferroni-adjusted

maximum p value of 0.05:

0:05

40032
z 1:249310� 6:

Using Fisher’s formula for hypergeometric enrichment,

p =

�
a+b

a

��
c+d

c

�
� n

a+c

� =

�
a+b

b

��
c+d

d

�
� n

b+d

�

=
ða+bÞ!ðc+dÞ!ða+cÞ!ðb+dÞ!

a!b!c!d!n!
;

where a is the number of DE transcripts representing the edge, b is the number

of transcripts representing the edge that are not DE, c is the number of DE tran-

scripts that are not representing that the edge d is the number of DE tran-

scripts, and n is the number of transcripts. We set b = 0 and see that edges

represented by fewer than 8 transcripts cannot be discovered as significant:

p =
a!ðc+dÞ!ða+cÞ!d!

a!c!d!n!
=
ðc+dÞ!ða+cÞ!

c!n!

=
ðð904 � 7Þ+ð5401 � 904Þ Þ!ð7+ð904 � 7Þ Þ!

ð904 � 7Þ!5401!
z3:6093 10� 6 > 1:2493 10� 6:

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100758.
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