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Abstract
In a series of papers published in the sixties and seventies, Jaakko Hintikka, drawing
upon Kant’s conception, defines an argument to be analytic whenever it does not
introduce new individuals into the discussion and argues that there exists a class of
arguments in polyadic first-order logic that are to be synthetic according to this sense.
His work has been utterly overlooked in the literature. In this paper, I claim that the
value of Hintikka’s contribution has been obscured by his formalisation of the original
definition. Therefore, I provide (i) a brief reconstruction of the historical framework of
the problem and the revolutionary import of Hintikka’s contribution, (ii) a clarification
of the most complicated steps of Hintikka’s elaboration of his insight, (iii) a criticism
of several features that play a fundamental role in Hintikka’s formalisation and (iv) a
selection from Hintikka’s own material of some valuable suggestions towards a clear
and workable formalisation. As for the pars construens, I isolate in the approach of
depth-bounded first-order logics (D’Agostino et al. 2021) an alternative formalisation
of the notion of syntheticity as the introduction of new individuals in the reasoning,
and I show that it is not affected by the same difficulties as Hintikka’s proposal. In
so doing, I hope to have contributed to the realisation of the project of rehabilitating
Kant’s analytic–synthetic distinction in the context of modern first-order logic with
the purpose of showing, against the logical empiricist movement, that logic is not
analytic.
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1 Introduction

In his paper An Analysis of Analyticity,1 Hintikka discusses four central notions of
analyticity:

i. Analytic truths as conceptual truths
ii. Analytic arguments as arguments satisfying some formof the subformula property
iii. Analytic arguments as arguments that do not introduce new individuals into the

discussion
iv. Analytic truths as tautological truths

Hintikka’s work has some indisputable merits. It debates traditional senses of the
term analyticity, such as in notions (i) and (iv), and points out definitions that deserve
more attention from the philosophical side, such as in notion (ii). Nevertheless, the
kernel of Hintikka’s contribution is contained in his third sense of analyticity. Hintikka
elaborates on this notion by providing further specifications of it, which he understands
as variations (marked by an increasing level of logical formality) of the same basic
idea. The elaboration of this sense is as follows:

iii. A (valid) argument step is analytic if it does not introduce new individuals into
the discussion.

iii.a. An analytic argument cannot lead from the existence of an individual to the
existence of a different individual.

iii.b. A (valid) argument step is analytic if it does not increase the number of indi-
viduals one is considering in relation to each other.

iii.c. A (valid) argument step is analytic if the degree of the conclusion is no greater
than the degree of at least one of the premises.

iii.d. An argument is analytic if all its steps are analytic in sense (iii.c).
iii.e. A (valid) proof of the sentence F1 from F0 is analytic if none of the sentences

occurring as intermediate stages of this proof has a higher degree than F0 and
F1. (Hintikka, 1973, pp. 148–149)

Explicit form of sense (iii): A sentence F1 follows from F0 analytically if and only if
the distributive normal form of F0 will become a part of the normal form of F1 as soon
as trivially inconsistent constituents are eliminated from it. (Hintikka, 1973, p. 185).

Sense (iii.a) does not seem to distance itself significantly from (iii). It simply rests on
the plausible assumption that introducing an individual into an argument is tantamount
to affirming its existence. On the contrary, sense (iii.b) introduces the notion of related
individuals into the reasoning and specifies, which is against sense (iii), that argument
steps in which either unrelated individuals are introduced or the number of new related
individuals that are introduced is the same as the number of old related individuals
that are removed still count as analytic.

However, it is only in sense (iii.c) that Hintikka defines the maximal number of
individuals that are in relation to each other in a certain sentence F , which he calls
the degree of F , as the sum of two numbers; namely, the number of the free singular
terms of F and the maximum length of nested sequences of quantifiers in F , called

1 Hintikka (1966, 1973, pp. 123–149). References will always be made to the latter version of the text.

123



Synthese (2023) 201 :207 Page 3 of 33 207

the depth of F (Hintikka, 1973, pp. 141–142). The depth of a sentence F , which is the
number of different layers of quantifiers in F at its deepest level, is just the number of
bound individual symbols that are needed to understand F , provided that quantifiers
with overlapping scopes always have different variables bound to them.

Sense (iii.d) extends sense (iii.c) from argument steps to longer arguments. Unlike
sense (iii.d), sense (iii.e) does not regard the direction of the argument but takes
into account the individuals that occur in the conclusion. As a result, any inference in
which the degree of the conclusion is higher than the degree of the premise is synthetic
according to sense (iii.d) butmay be analytic according to sense (iii.e). Last, the explicit
form of sense (iii) is based on Hintikka’s theory of distributive normal forms for first-
order logic. This is an extension of the corresponding theory for propositional and
monadic logic and provides a description of possible worlds, where the complexity of
the configurations of individuals that can be considered is limited.

The importance and ambitions of Hintikka’s contribution to the analytic–synthetic
distinction can hardly be overrated. As I shall point out below, not only does his def-
inition qualify as an extension of Kant’s notion beyond the boundaries of categorical
judgments, but it also provides good reasons to reject the logical empiricists’ tenet
of the analyticity of logic and vindicate Kant’s position on the syntheticity of mathe-
matics. However, despite the relevance of these results, the significance of Hintikka’s
theory has been utterly overlooked in the literature. Moreover, scholars who took into
consideration Hintikka’s work usually focused on a specific aspect of the theory while
usually leaving the overall picture aside.

For example, Rantala (1987) and Rantala and Tselishchev (1987) concentrate on
the theory of distributive normal forms and the related notion of information, and
Sequoiah-Grayson (2008) criticises Hintikka’s measure of the information yielded by
deductive inference. Van Benthem (1974) focuses on some formal aspects of sense
(iii), while de Jong (1997) and Russell (1990) target Hintikka’s reading of the Kantian
materials. An attempt to provide a comprehensive assessment of Hintikka’s work,
taking into account both the philosophical and formal parts of his theory, is given in
Larese (2019, 2020a), where a series of objections are also pointed out but not fully
developed.

In this paper, I argue that the reason for this critical misfortune is that the value of
sense (iii) has been obscured by Hintikka’s further elaboration and formalisation of
the original idea. As I will point out in detail, these are marred by numerous problems:
several unclear conceptual passages, inaccurate definitions and complex formalism.
However, I claim that Hintikka’s work does not need to stand or fall as a whole. On
the contrary, his original idea, namely sense (iii), may be so relevant to the debate on
analyticity and logic that it deserves to be rid of the difficulties connected to Hintikka’s
elaboration, expressed according to alternative formal tools, and used again.

Themain contributions of this paper are the following. First, I provide a brief recon-
struction of the historical framework of the problem and highlight the revolutionary
import of Hintikka’s contribution. Second, I offer clarification of the most obscure
steps of Hintikka’s elaboration of sense (iii), which I believe are responsible for its
lack of critical fortune. Third, I criticise several features of Hintikka’s construction
and show that the difficulties that arise are substantial to the fact that the formal results
are in need of a complete revision. Fourth, I isolate some suggestions in Hintikka’s
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material that I believe are useful for an alternative formalisation of sense (iii). Last,
I show why the work presented by D’Agostino et al. (2021) appears to be a good
candidate to provide an alternative formalisation of sense (iii).

This paper is organised as follows. Section 2 offers a brief reconstruction of the
historical background of the relation between analyticity and logic. Section 3 points
out the importance of Hintikka’s contribution. Sections 4 to 8 then each focus on a
particular aspect of Hintikka’s elaboration of sense (iii) and find the difficulties that
affect each aspect. In particular, Sect. 4 criticises Hintikka’s treatment of propositional
and monadic arguments. Section 5 focuses on the representation Hintikka proposes
for the number of individuals considered together in the premise, and Sect. 6 discusses
his three definitions of the degree of a formula. Section 7 is devoted to analysing the
problems that affect sense (iii.e), and Sect. 8 uncovers the ambiguities in his work
about the role of existential instantiation.

Section 9 proposes an overall evaluation of Hintikka’s development of sense (iii)
that organises the criticisms of the previous sections into a coherent whole. Sections 10
to 12 offer a sketch of the alternative approach provided by D’Agostino et al. (2021)
that aims to show that their approach does not seem to be marred by the problems that
affect Hintikka’s theory. Finally, Sect. 13 concludes the paper.

2 Analyticity and categorical judgments

The concept of analyticity is central to the historical development of the analytic
tradition in philosophy. Its origin is indissolubly connected to the work of Kant. This
is not because he was the first to introduce it, for there are several precursors in this
sense (Kant, 1997, p. 22), but because of the use he made of this concept and the key
role played by the analytic–synthetic distinction in his theoretical construction, the
main purpose of which was to show the possibility of synthetic a priori knowledge.
Although theCritique of Pure Reason apparently provides no less than four definitions
of analyticity,2 for Kant, the fundamental criterion to distinguish between analytic and
synthetic judgments is based on the notion of containment, which is:

In all judgments in which the relation of a subject to the predicate is thought
(if I consider only affirmative judgments, since the application to negative ones
is easy), this relation is possible in two different ways. Either the predicate B
belongs to the subject A as something that is (covertly) contained in this concept
AorB lies entirely outside the conceptA, though to be sure it stands in connection
with it. In the first case, I call the judgment analytic, in the second synthetic.
(Kant, 1998, pp. A6–7/B10)

This definition soon became a touchstone for all philosophers who wished to use the
analytic–synthetic distinction in their work, which gave rise to an intense debate on the
details of Kant’s conception. There are three criticisms against the notion of analyticity
construed in terms of the containment criterion that are most recurrent. First, Kant’s
definition has been accused of psychologism, i.e. that the analyticity or syntheticity of

2 Containment, clarification, identity and contradiction. See Kant (1998, A6–7/B10–11 and
A151–2/B190–1).
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a certain judgment would be dependent on the subject that considers that judgment.
In particular, it would rely on the features that the individual involved associates both
with the subject and with the predicate.

The second criticism, which has been put forward by Kant’s contemporaries and
frequently evoked even in recent times, argues that the containment criterion is noth-
ing more than an obscure and metaphorical way of speaking. For example, Bolzano
(1973, Sect. 148, p. 196), in hisWissenschaftslehre, states that ‘the explication of this
distinction... still fall[s] somewhat short of logical precision’ and adds that ‘these are
in part merely figurative forms of expression that do not analyse the concept to be
defined, in part expressions that admit of too wide an interpretation’. The same charge
became stereotypical after Quine’s (1951, p. 21) influential attack in his Two Dogmas
of Empiricism: ‘This [Kant’s] formulation... appeals to a notion of containment which
is left at a metaphorical level’.

Third, the analytic–synthetic distinction formulated via the containment criterion
can only be applied to categorical judgments, i.e. judgments of the subject–predicate
form. While both the first and second criticisms can be easily dismissed,3 the third is
probably the most serious issue of Kant’s theory of analyticity; that is, its formulation
soon appeared too narrow. For example, in hisFoundations of Arithmetic, Frege (1960,
Sect. 88, pp. 99–100) argues that this characteristic feature of the containment criterion
stems from Kant’s misunderstanding of the nature of arithmetical judgments: ‘Kant
obviously—as a result, no doubt, of defining them too narrowly—underestimated
the value of analytic judgments’. Many scholars found this restriction to categorical
judgments so unpalatable that they tried to deny it in toto, either by claiming that
the containment criterion is nothing but a part of Kant’s theory of analyticity, which
is subsumed by more comprehensive definitions (e.g. Hanna, 2001, p. 145), or by
providing more or less convincing readings of other passages of Kant’s Critique (e.g.
Anderson, 2015, p. 20).

However, recent scholars, such as De Jong (1995) and Proops (2005), have shown
that these attempts are bound to fail; therefore, we must accept that Kant’s distinction
via containment is not exhaustive, and, as a consequence, there are some judgements
that are neither analytic nor synthetic. This controversial feature of the notion of
analyticity that emerges in the Critique can be explained by examining the contexts
for which Kant devised his distinction. First, as Proops (2005, p. 610) underlines,
Kant’s ‘chief concern is to argue for the syntheticity of certain judgments’, such as the
claims of mathematics, natural sciences and metaphysics, ‘that in his days would have
been assumed to have subject–predicate form’. Second, asAnderson (2015) points out,
Kant’s distinction hides a substantial thesis against German rationalist metaphysics,
especially against Leibniz and the Wolffian tradition: truth is not exhausted by the
containment relation; on the contrary, important cognition cannot be explained in
terms of analytic (in the Kantian sense) judgments and thus falls on the synthetic side.

A strong contribution to the idea that Kant’s definition, although foundational,
should be improved through an extension beyond categorical judgments is given by
Frege. There are two turning points in his work that interest us most here. First, while

3 For the former, see Hanna (2001, p. 155 and ff.); for the latter, see Anderson (2015, Part I) and De Jong
(1995).
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for Kant, pure general logic was a restricted version of Aristotelian syllogistic with
the addition of a simple theory of disjunctive and hypothetical propositions, Frege’s
Begriffsschrift proposed essentially what is known today as classical second-order
logic, with the identity embracing both the logic of propositions and the logic of
quantification.

An indispensable premise of this revolutionary achievement is Frege’s replacement
of the traditional analysis of judgments into subject and predicate concepts with the
innovative notion of analysis in terms of function and argument. According to this
new conception of analysis, propositions are decomposed into a variable part and a
constant part, and this analysis can be carried out in different ways. As an example,
Frege considers the proposition ‘Cato killed Cato’ and reasons:

If we here think of ‘Cato’ as replaceable at its first occurrence, ‘to kill Cato’ is
the function; if we think of ‘Cato’ as replaceable at its second occurrence, ‘to
be killed by Cato’ is the function; if, finally, we think of ‘Cato’ as replaceable
at both occurrences ‘to kill oneself’ is the function. (Frege, 1972, Sect. 9, p. 21)

A result of Frege’s innovative approach is that categorical judgments lose their
traditional centrality in favour of more complex expressions involving relations and
nested quantifiers, which could not be properly treated by the logic available to Kant.
The logic of the Begriffsschrift is not only capable of dealing with propositions with a
greater expressive power but is also endowed with the crucial role in Frege’s logicist
programme of reducing arithmetic to logic. A natural consequence of the new con-
tent and new function of modern logic is that Frege cannot be satisfied with Kant’s
analytic–synthetic distinction based on the containment criterion that applies only to
categorical judgment. In the Foundations of Arithmetic, we find the following concep-
tion:

The problem becomes, in fact, that of finding the proof of the proposition and
of following it up right back to the primitive truths. If, in carrying out this
process, we come only on general logical laws and on definitions, then the truth
is an analytic one, bearing in mind that we must take account also of all the
propositions upon which the admissibility of any of the definitions depends. If,
however, it is impossible to give the proof without making use of truths which
are not of a general logical nature, but belong to the sphere of the special science,
then the proposition is a synthetic one. (Frege, 1960, Sect. 3, p. 4)

Although Frege (1960, Sect. 3, p. 3, footnote) did not fully realise the distance
between his and Kant’s definitions, the two disagree in essential respects, such as the
treatment of non-categorical propositions, but fit the theoretical scenarios that differ
for several characteristics, such as the role assigned to logic. As far as the latter is
concerned, it is worth underlining that logic is, in Frege’s theory, analytic. To be
more precise, the laws of logic that are chosen as axioms of the system are analytic
because of their self-evidence—logical theorems are instead analytic in that they can
be proved through logical laws only. Frege is never explicit on this point because, as
Proust (1989, p. 112) observes, the ‘analyticity of logical propositions is not itself in
question, but it is rather presupposed by the problem Frege has to solve’. It is with
Frege’s work that modern logic starts becoming the paradigmatic example of analytic
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discipline and the yardstick to measure the status of other disciplines with respect to
the analytic–synthetic distinction. At the same time, Kant’s conception of analyticity
based on the containment criterion loses its appeal.

The outcome of this process is evident in the conception of analyticity held by
the logical empiricist movement. A fairly accurate account of this conception might
be found in a work that famously criticises it, namely Quine’s Two Dogmas, which
asserts:

Statements which are analytic by general philosophical acclaim […] fall into two
classes. Those of the first class, which may be called logically true, are typified
by: (1) No unmarriedman ismarried. [B]ut there is also a second class of analytic
statements, typified by: (2) No bachelor is married. The characteristic of such
a statement is that it can be turned into a logical truth by putting synonyms for
synonyms; thus, (2) can be turned into (1) by putting ‘unmarried man’ for its
synonym ‘bachelor’. (Quine, 1951, p. 23)

In other words, a statement is said to be analytic if it is either a logical truth or
‘can be turned into a logical truth by putting synonyms for synonyms’. Although this
definition is clearly different from Frege’s, it shares both the applicability to non-
categorical statements and the privileged role of logic, which is taken to be the case of
analyticity par excellence. For Quine, the problem arises with the so-called material
analyticities, but his attack utterly spares the first class of analyticities, namely, logical
truths. By considering logical truths as simply non-questionable cases of analyticities,
Quine agrees with his critical target, the logical empiricist movement and Carnap’s
perspective in particular:

The scientific world-conception knows only empirical statements about things
of all kinds and analytical statements of logic and mathematics. (Carnap et al.,
1973, p. 308)
By means of the concept ‘analytic’, an exact understanding of what is usually
designated as ‘logically valid’ or ‘true on logical grounds’ is achieved. (Carnap,
1959, p. 41)

3 Hintikka’s vindication of Kant’s distinction

As we saw in the introduction, Hintikka (1973) defines analytic arguments as argu-
ments that do not introduce new individuals into the discussion. In his work, he further
argues that sense (iii) ‘approximates rather closely Kant’s notion of analyticity’4 and
suggests that it represents a fair reconstruction in modern terms of Kant’s conception.
Although the philological accuracy of Hintikka’s proposal is not my concern here,5 it
is worth mentioning that this claim may be objected to on several grounds. For exam-
ple, it rests upon certain interpretational premises that have proved to be controversial,
such as that intuitions, for Kant, are nothing more than representations of singular

4 Hintikka (1973, p. 137).
5 See Larese (2020a).
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objects6 or that Kant is ‘an heir to the constructional sense of analysis’.7 Nevertheless,
for the purposes of this paper, I am happy with the much less ambitious claim that
Hintikka’s sense (iii) is strongly Kantian in spirit.

To see that this is the case, recall that, according to the definition of the Critique of
Pure Reason, the concept of the predicate of synthetic judgments is not contained in
the concept of the subject. The connection between the two concepts involved, which is
necessary for grounding the truth of the judgment, can only be indirect in the sense that
it must link the two concepts to one another by connecting them to a third element. The
third element that is always necessary for the truth of synthetic judgments is, for Kant,
an object, and the relation between concepts and objects must always be mediated by
intuitions, which are representations of individual objects (Kant, 1998, A155/B194
and ff.). Now, the familiarity between Kant’s and Hintikka’s definitions should be
clear: the individuals introduced in synthetic arguments according to Hintikka’s sense
(iii) mirror the intuitions that characterise Kant’s synthetic judgments.

What is crucial for our reasoning here is to underline that Hintikka’s sense (iii) is, at
the same time, both inspired by Kant in a strong (yet to be measured precisely) sense
and applicable, unlikeKant’s original definition, to not only categorical judgements but
also non-categorical judgements. To be more precise, as we will see later, Hintikka’s
sense (iii) applies to every judgement that can be expressed through the means of
modern first-order logic. I argue that this is probably the most fundamental reason
for the importance of Hintikka’s contribution to the debate on the analytic–synthetic
distinction. In taking Kant’s original definition, (more or less faithfully) translating
it into modern terms and extending it to non-categorical judgments, Hintikka drops
one of the hardest charges against the Kantian idea and restores it to its pride of
place not only in the history of the concept but also in the contemporary debate.
Through Hintikka’s insight, a Kantian-inspired definition is also a viable option after
the invention of modern first-order logic.

Bringing Kant’s definition to its former glory does not merely have an archaeo-
logical interest. It offers new solutions to long-standing questions, such as the status
of logic and mathematics in relation to the analytic–synthetic distinction. To begin
with, consider the status of logic. It is a commonplace view in the history of the disci-
pline that logic is exceptional in the sense that it is somehow special when compared
to other sciences.8 Among the properties that make it unique, we find analyticity.
However, the idea that logic is analytic, despite it seeming to be an ahistorical tenet,
is relatively young. As we have seen in the previous section, it is Frege’s work that
laid the basis for this principle, which acquired its importance only later on with the
logical empiricists’ movement. The movement used the property of analyticity as a
justification for its necessity once the logical empiricists rejected metaphysics as the
source of unconditionally valid knowledge.

However, it is worth mentioning that before Frege, the analyticity of logic was not
taken for granted. For example, Kant was not interested in applying his analytic–syn-
thetic distinction to logic at all because he conceived of the discipline as a canon and

6 See Parsons (1969), Parsons (1980), Parsons (1983) and Friedman (2000).
7 Hintikka (1973, p. 205). See De Jong (1997).
8 For a recent discussion on the anti-exceptionalism about logic, see Hjortland and Martin (2022).
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not as a body of truths. As a result, in the Critique of Pure Reason, logical judgments
are neither analytic nor synthetic (De Jong, 2010; Larese, 2020b). The case of Bernard
Bolzano is different. Assuming that logic is a deductive science and that deductive
sciences are mainly synthetic a priori, theWissenschaftslehre argues that logic is syn-
thetic a priori, at least as far as the ordo essendi, as opposed to the ordo cognoscendi,
is concerned (Bolzano, 1973, Sect. 12). Another perspective is offered by John Stuart
Mill’s radical empiricism in epistemology, which led him to believe that logic, like
the other sciences, is grounded inductively on experience and is thus synthetic (Mill,
2002).

Now, Hintikka’s restoration of Kant’s definition leads him to reject the logical
empiricists’ principle of the analyticity of logic together with one of its supposed
consequences; namely, the idea that logic is tautological and informationally trivial.
More details on this position can be found in the next section, but I anticipate the
main point here. Hintikka applies his Kantian analytic–synthetic distinction to modern
first-order logic and concludes that there exists a class of polyadic truths of first-order
logic that are synthetic a priori according to his sense (iii). Moreover, Hintikka offers
a good reason, which is independent of his formalism, that supports his claim: the
undecidability of first-order logic.

Consider now the status of mathematics. As it is well-known, the Critique of Pure
Reason defended the revolutionary thesis that mathematics, including arithmetic, is
synthetic a priori and searches the conditions of its possibility. Frege famously dis-
agrees with Kant on this point and argues for the analyticity of arithmetic while
believing that geometry is synthetic a priori. This position was an inescapable result
of Frege’s project of reducing arithmetic to logic together with his thesis on the analyt-
icity of logic. After Frege, the synthetic a priori, already impoverished by the logicist
programme, was rejected in toto by the logical empiricists’ movement.

Hintikka’s work vindicates not only the fruitfulness of Kant’s analytic–synthetic
distinction but also Kant’s thesis that mathematical arguments are synthetic a priori.
Hintikka explains:

We can now vindicate Kant. What he meant when he held that mathematical
arguments are normally synthetic was quite right. By mathematical arguments,
he primarily meant modes of reasoning which are now treated in quantification
theory. But it was just seen that many quantificational modes of reasoning are
inevitably synthetic in a natural sense of the word. This sense is, moreover,
closely related toKant’s intentions, for itwas pointed out inChapterVI above that
the groupof senses III of analyticitymaybe taken tobe averygood reconstruction
of Kant’s notion of analyticity as he used it in his philosophy of mathematics.
(Hintikka, 1973, p. 182)

The point is that the contemporary boundaries between mathematics and logic are not
the Kantian ones. Kant distinguished between pure general logic, which consisted of
the Aristotelian syllogistic and some propositional pattern of reasoning, and mathe-
matics, the inferences of which are paradigmatic examples of the synthetic reasoning.
Similarly, according to Hintikka, the inferences of modern first-order logic can be
divided into two classes: the analytic inferences of monadic logic and the synthetic
inferences that translate a typical mathematical way of reasoning.
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4 The status of logic: on propositional andmonadic arguments

In Sect. 2, we have seen that the idea that logic is analytic finds itsmost fertile ground in
the philosophical movement of logical empiricism. In this cultural milieu, logic is not
only said to be analytic but also tautological, i.e. devoid of any informational content.
This seems to be a somewhat inescapable consequence of the so-called paradox of
analysis (Langford, 1992, p. 323), which states that analysis cannot be sound and
informative at the same time, for if it is sound, the analysed and the analysandum
are equivalent and analysis cannot be augmentative, but if it is informative, then the
analysed and the analysandum are not equivalent, and the analysis is incorrect. Logical
empiricists give up the informativeness of logical analysis in favour of its soundness
and admit that ‘[l]ogical investigation... leads to the result that all thought and inference
consists of nothing but a transition from statements to other statements that contain
nothing that was already in the former (tautological transformation)’ (Carnap et al.,
1973, p. 308).

The principle of analyticity and tautologicity of logic caught on and became part
of logical folklore. Nevertheless, this principle is highly counterintuitive; that is, the
conclusion obtained through a long deductive chain might appear as an actual novelty
with respect to its premises, and the recognition that a particularly complex sentence is
a valid truthmight appear as an unexpected discovery. Hintikka describes this situation
as a true ‘scandal of deduction’, that is:

C.D. Broad has called the unsolved problems concerning induction a scandal of
philosophy. It seems to me that in addition to this scandal of induction, there is
an equally disquieting scandal of deduction. Its urgency can be brought home to
each of us by any clever freshman who asks, upon being told that deductive rea-
soning is ‘tautological’ or ‘analytical’ and that logical truths have no ‘empirical
content’ and cannot be used to make ‘factual assertions’: in what other sense,
then, does deductive reasoning give us new information? Is it not perfectly obvi-
ous there is some such sense, for what point would there otherwise be to logic
and mathematics? (Hintikka, 1973, p. 222)

Hintikka argues against the scandal of deduction that there exists a class of logical
arguments (or truths) in first-order logic that are not only synthetic but also informative.
As he explains, the ultimate reason that supports his thesis is the undecidability of first-
order logic (Church, 1936; Turing, 1937). Hintikka states:

In propositional logic and in monadic first-order logic, distributive normal forms
yield a decision method: if a formula has a non-empty normal form, it is satis-
fiable, and vice versa; it is logically true if and only if its normal form contains
all the constituents with the same parameters as it. In view of Church’s unde-
cidability result, they cannot do this in the full first-order logic (with or without
identity). It is easily seen that this failure is possible only if some of our con-
stituents are in this case inconsistent. In fact, the decision problem of first-order
logic is seen to be equivalent to the problem of deciding which constituents are
inconsistent. More explicitly, the decision problem for formulae with certain
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fixed parameters is equivalent to the problem of deciding which constituents
with these parameters are inconsistent. (Hintikka, 1973, p. 255)

Hintikka thus distinguishes between inconsistent constituents that are trivially incon-
sistent and inconsistent constituents that are not trivially inconsistent.While the former
is blatantly self-contradictory, the inconsistency of the latter can be detected only by
increasing their depth. This means that for every inconsistent constituent of depth d,
there is some natural number e such that all the subordinate constituents of depth
d + e are trivially inconsistent. The point is that we do not know which depth we
should reach in order to acknowledge that a certain constituent is inconsistent because
first-order logic is undecidable.

As the quotation above clarifies and which has already been noticed in the literature
(Sequoiah-Grayson, 2008, p. 88 and ff.; D’Agostino & Floridi, 2009, p. 278), the class
of analytic arguments (or truths) is broader than itmight first appear. It includes, beyond
many polyadic deductions, the entire set of not only propositional but also monadic
arguments. Because propositional and monadic calculi contain only consistent con-
stituents, the inferences included in this set fail to be synthetic and thus increase
deductive information. However, is the principle of analyticity and tautologicity of
propositional and monadic logic not an ‘equally disquieting scandal of deduction’? Is
Hintikka’s thesis not liable to the same accusations that the Finnish logician directed
against the Vienna Circle? Is his proposal not only a partial solution?

Holding that propositional and monadic calculi are analytic and tautological is no
less counterintuitive than arguing that full first-order logic is not informative. More-
over, these doubts seem to find confirmation in the theory of computational complexity,
a branch of the theory of computation in theoretical computer science that at the time
ofHintikka’s proposal was at the beginning of its flourishing (Garey& Johnson, 1979).
In this context, decision problems can be classified according to their resource-based
complexity. Class P includes all the decision problems that can be solved in polynomial
time by a non-deterministic Turing machine. The most important unsolved problem
in theoretical computer science concerns the relationship between these two classes
and asks whether P is identical to NP or not. It is widely assumed that the two classes
are not identical (P �= NP) and that no deterministic Turing machine can be found to
solve problems in NP.

As far as Boolean logic is concerned, it is possible to identify three decision prob-
lems that are strictly connected. First, the Boolean satisfiability problem, which is the
problem of determining whether there exists an interpretation that satisfies a given
propositional formula, was proven to be NP-complete (Cook, 1971), that is to say,
one of the most difficult problems in NP. Second, the problem of determining whether
a given Boolean formula is a tautology is NP-hard; that is to say, it is not known
whether it belongs to NP, but it is known that every problem in NP can be reduced to it
in polynomial time. Third, the problem of determining whether a Boolean inference is
correct or not can be reduced to the tautology problem from both a deterministic and
non-deterministic point of view. This means that, if the widely accepted conjecture P
�= NP is true, then the satisfiability problem, the tautology problem and the inference
problem are intractable, viz. not decidable in practice. As D’Agostino (2010) under-
lines, this amounts to saying that any real agent, even if equipped with an up-to-date
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computer running a decision procedure for Boolean logic, may never be able to feasi-
bly recognise that certain Boolean sentences logically follow from sentences that one
regards as true.

Hintikka considered the undecidability of first-order logic as a strong reason to
hold that polyadic logical truths are not analytic. Similarly, the P �= NP conjecture
is a reasonable justification to reject the logical positivists and Hintikka’s thesis on
propositional logic; i.e. if the decision problem for Boolean logic is (most probably)
intractable, how is it possible to maintain that it is uninformative and analytic?

5 On the number of individuals considered together in the premise

Unfortunately, concerns about Hintikka’s work are not confined to the monadic frag-
ment of first-order logic but also regard the treatment of the logic of quantification as
a whole. This is because, as I shall argue in what follows, Hintikka’s detailing of his
sense (iii) is problematic in several respects.

To begin with, Hintikka (1973, p. 123 and ff.) explains that an argument (or an
argument step) is usually said to be analytic if, and only if, the conclusion is obtained
by merely analysing what the premise gives us. However, what does the premise of an
argument give us?While the traditional answer is a number of concepts put together in
a definite way, Hintikka’s key insight is that the premise allows us to analyse a number
of individuals. I claim that, in elaborating on this intuition further, Hintikka seems to
oscillate between the following two notions:

Nprem = the number of individuals thatmust be considered together in a givenpremise.
Nrel = the maximal number of individuals considered in their relation to each other
in the given premise.

The first notion amounts to the number of individuals that are necessary in order to
grasp the premise or, equivalently, to the number of individuals that have to be thought
of in considering a given premise. Hintikka seems to privilege Nprem when speaking
in informal terms and when philosophical explanations are required.

However, the kernel of Hintikka’s work is the second notion, which crucially rests
on the conception of the relation between individuals. Nrel is at the core of Hintikka’s
expression in formal terms of his theory of the analytic–synthetic distinction and
is called upon whenever he wishes to give technical explanations or needs to make
explicit the details of his sense (iii) of analyticity. To this end, Hintikka identifies Nrel

with the degree of the given premise F , defined as the sum of two numbers9:

1. The number of the free singular terms of F and
2. The maximum length of nested sequences of quantifiers in F , called the depth of

F , d(F), recursively defined as follows:

• d(F) = 0 for F atomic
• d(¬F) = d(F)

• d(F1 ∧ F2) = d(F1 ∨ F2) = d(F1 → F2) = max(d(F1), d(F2))
• d(∀xF) = d(∃xF) = d(F) + 1

9 Hintikka (1973, pp. 141–2), with minor modifications.
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This definition will be discussed in detail in the next section.
In his writings, Hintikka shifts the focus away from Nprem and Nrel with a certain

ease and naturalness. A telling example of this modus operandi is provided by a key
passage of his paper An Analysis of Analyticity, where Nrel is introduced for the first
time (Hintikka, 1973, p. 138 and ff.). Here, he starts suggesting that Nprem is the
fundamental basis for his sense (iii) of analyticity:

What is it that a premiss gives us to be analysed? Perhaps the most concrete
answer to this question is to say that it gives us a number of individuals to be
considered. If this answer is accepted, then a step of argument is analytic if and
only if it does not introduce any new individuals. (Hintikka, 1973, p. 136)

In order to define Nprem , Hintikka holds that not only do free singular terms but also
quantifiers (and the variables they bind) invite us to consider individuals (Hintikka,
1973, pp. 138–139). After that, he dwells on the relation between free singular terms
and variables bound by quantifiers (Hintikka, 1973, p. 140), which I will discuss in
the next section. Finally, Hintikka feels ready to leap from Nprem to Nrel , saying that
the restriction of bound variables by the scope of the quantifier has the effect that

Parallel quantifiers (i.e., quantifiers whose scopes do not overlap) cannot be said to add
to the number of individuals we have to consider in their relation to one another. They
may introduce new cases to be considered, but they do not complicate the complexes
of individuals we have to take into account. (Hintikka, 1973, p. 140)

This completes Hintikka’s reasoning, and the text goes on with the proposal of the
degree of a formula as a formal definition of Nrel . As this reconstruction makes clear,
Nprem and Nrel are treated as interchangeable notions with no apparent justifying
reason to support this.

The excerpt quoted above allows me to make a preliminary distinction that will be
useful when clarifying Nprem and Nrel . Hintikka is aware that, in general, Nrel (and
also Nprem , as a consequence of the observation above) is different from a third notion
that we might call Nment and make explicit as follows:

Nment = the number of individuals that arementioned in a given premise.

Recall that, according to Hintikka, the individuals represented by variables bound by
parallel quantifiers do not add to the number of individuals considered in relation to
each other. As a result, Nrel < Nment whenever parallel quantifiers are involved. This
is because Nrel does not take into account the quantifiers whose scopes do not overlap
but only the maximum length of the nested sequences of quantifiers.

To see this point, consider the formula ϕ1 = ∀xFx ∧ ∀yGy. The names of the
distinct individuals mentioned in ϕ1 are x and y, thus, Nment (ϕ1) = 2. However, the
degree of ϕ1 is equal to 1, given that the two universal quantifiers are not nested.
Similarly, the number of distinct individuals that must be considered together to grasp
ϕ1 is also equal to 1. This is because, to grasp that every individual has property F
and every individual has property G, we only need to consider that one single generic
individual has both properties (in formal terms, ϕ1 ≡ ∀x(Fx ∧ Gx)). Thus, we have
that Nprem(ϕ1) = Nrel(ϕ1) = 1 while Nment (ϕ1) = 2.
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Despite Hintikka’s treatment of the two notions, I claim that Nprem and Nrel are
different in a substantial way and that this is because the identification between ‘vari-
ables bound by parallel quantifiers’ and ‘individuals that are superfluous to grasp the
premise’ is not true in general. First, it may be the case that Nprem > Nrel , which will
happen in the given premise whenever some parallel quantifiers are not superfluous
to grasping the premise. Consider, as an example, the formula ϕ2 = ∃xFx ∧ ∃yGy.
While Nrel(ϕ2) = 1, I argue that Nprem(ϕ2) = 2. The reason why we are forced
to take into account two distinct individuals is that ϕ2 does not specify whether the
individual with property F is the same individual with property G (in formal terms, it
is not the case that ∃x(Fx ∧ Gy) follows from ϕ2). Therefore, formulae like ϕ2 (as
well as, for example, ∀xFx ∨ ∀yGy) make clear that, in general, parallel quantifiers
are not superfluous; in some cases, there are some individuals that necessarily have
to be considered together in order to grasp the premise even if they are not related in
Hintikka’s sense.

Second, it may also be the case that Nprem < Nrel , which will happen when-
ever some nested quantifiers are superfluous to grasping the premise. Consider, as an
example, the formula ϕ3 = ∀x∀y∀z(Rxy ∧ Syz). At first sight, it might seem that
Nprem(ϕ3) = Nrel(ϕ3) = 3. Nevertheless, a closer inspection reveals that either the
former or the latter universal quantifier that occurs in ϕ3 is superfluous for grasping
the meaning of the formula; in order to understand that every couple of individuals is
in the relation R and the relation S, two, not three, individuals are needed (in formal
terms, ∀x∀y∀z(Rxy ∧ Syz) ≡ ∀x∀y(Rxy ∧ Syx)). Formulae like ϕ3 point out that,
in some cases, there are some related individuals that are superfluous to grasping the
premise, and, in general, the set of individuals related in a certain premise is not a
subset of individuals that have to be considered in that premise.

Up to this point, I have argued that, in elaborating his conception of the analytic–syn-
thetic distinction, Hintikka mainly thinks of Nrel , the maximal number of individuals
considered in their relation to each other in the given premise. However, he easily
goes back to Nprem , the number of individuals that must be considered together in the
given premise, when speaking in informal terms. Moreover, I have shown that the two
notions differ from each other and that both of them differ from a third notion, Nment ,
which is the number of individuals that are mentioned in a given premise.

Nrel is an interesting notion. Nevertheless, Hintikka explains neither the necessity
of its introduction in his picture nor his preference for it over Nprem . It could be
guessed that he has been driven to it due to technical reasons, such as his distributive
normal forms and his aim of providing a description of possible worlds alternative
to Carnap’s state-descriptions (Hintikka, 1973, pp. 154–63), or due to philosophical
motivations, such as his reading of the ancient method of analysis as described by
Pappus, which is based on the idea of the configuration of individuals (Hintikka &
Remes, 1976, p. 266). In any case, I argue that Nprem is a much more natural notion
than Nrel (and this probably explains why Hintikka employs the latter in informal
contexts) and that an immediate and formal translation of Nprem , capable of making
all of its features explicit, is possible (see Sects. 10 to 12).
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6 On the degree of a formula

In the previous section, we have seen that Hintikka oscillates between two different
notions, namely Nprem and Nrel . In what follows, I shall argue against Hintikka (1973,
p. 141) that neither the former nor the latter is identical to the notion of the degree of a
formula. I start by considering Nrel , i.e. themaximal number of individuals considered
in their relation to each other in a certain premise.

As it has already been noticed in the literature (see Van Benthem, 1974, p. 422;
Rantala, 1987, pp. 72–73), the notion of the degree of a formula adds to the sum of
related individuals also unconnected individuals represented through bound variables.
To see the point, consider the formula ϕ4 = ∀x∀y(Fx ∧ Gy). Following the definition
(see Sect. 5), the degree of ϕ4 is 2, because the quantifiers binding x and y are nested.
Nevertheless, x and y do not seem to be related in ϕ4 in any reasonable sense of the
word. I think that the real problemdoes not lie in the struggle between the formal notion
of degree and our intuitive grasp of the term relation (for philosophical analysis is also
devised to correct our intuitions, if necessary) but rather in the fact that Hintikka’s
notion of degree dismisses parallel quantifiers as superfluous, while admitting nested
and unconnected quantifiers: as a result, the degree of ϕ1 = ∀xFx ∧∀yGy is one, and
the degree of ϕ4 = ∀x∀y(Fx ∧ Gy) is two, while the two formulae are equivalent.

Hintikka himself, in a footnote of his An Analysis of Analyticity, discusses the issue
of unconnected quantifiers and proposes a sharper definition of degree that takes into
account.

Only such bound variables x1, xk as inviting us to consider individuals that
are related to each other in the sentence in the sense that there is a sequence
of bound variables x1, x2, . . . , xk−1, xk with the following properties: for each
i = 1, 2, . . . , k − 1, xi and xi+1 occur in the same atomic subsentence or
identity of F; each variable xi is bound to a quantifier occurring within the scope
of the wider of the two quantifiers to which x1 and xk are bound. Let us call
such variables and the quantifiers to which they are bound connected. […] The
maximal number of nested and connected quantifiers inF is now called the depth
of F. (Hintikka, 1973, p. 142, n. 33).

Following Hintikka’s suggestion, let the degree+ of a formula F be the sum of
the number of the free singular terms of F and the maximal number of nested and
connected quantifiers in F. As it is clear, the degree+ of ϕ4 is 1, because the two
quantifiers are not connected in that formula. Thus, at first glance, the new definition
seems to work well.

Unfortunately, this is not the case. I argue that the notion of degree+ is affected
by a similar problem, this time concerning free variables instead of bound variables.
As I anticipated above, according to Hintikka (1973, pp. 138–139), two different
expressions invite us to consider individuals: (1) free singular terms and (2) quantifiers
with the variables bound to them.Moreover, he explicitly recognises that the difference
between these two kinds of expressions is minimal:

The intimate relation of quantifiers and of the variables bound to them to free
singular terms is shown by the fact that for many purposes quantifiers may be
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omitted and the variables bound to them replaced by suitable free singular terms.
Of course, this is just what one tries to do in applying natural deduction methods.
Roughly speaking, there usually is little to choose between a free singular term
and a variable which is bound to a quantifier whose scope comprises the whole
formula (with the possible exception of a string of initial quantifiers), in the
sense that the logical operations one is allowed to perform are to most intents
and purposes exactly the same in the two cases. Hence we must conclude that if
individuals are introduced into one’s logical arguments by free singular terms,
they are likewise introduced by quantifiers, too. What really distinguishes a
bound variable from a free singular term, one might almost say, is not so much
its being bound to a quantifier as its being restricted by the scope of the quantifier.
(Hintikka, 1973, p. 140)

After all, an open formula is satisfiable if and only if its existential closure is true,
and valid if and only if its universal closure is true. Thus, according to Hintikka, there
is ‘little to choose’ between an open formula such as ϕ5 = Fx ∧ Gy and its closure
ϕ′
5 = Q1xQ2y(Fx ∧ Gy), where Q1 and Q2 are two quantifiers.
However, we find that, while the degree+ of ϕ′

5 is one, because x and y are not
connected in the closed formula, the degree+ of ϕ5 is two. This example points at a
more general problem regarding the notion of degree+, namely, that while individuals
that are expressed through bound variables are required to be connected in order to
be considered, individuals that are expressed through free variables count no matter
what, even if they are not related in any reasonable sense of the word. This clashes
withHintikka’s insight that individuals represented through bound variables are almost
identical to individuals represented through free variables.

Notice that the fact that individuals expressed through free variables add to the
number of related individuals independently of the actual relations between them
affects not only the notion of degree+, but also that of degree. Moreover, the same
difficulty persists even in a third definition of degree, which is sharper than degree+

and originates from the suggestion that follows:

Let us consider two quantifiers occurring in F such that the latter occurs within
the scope of the former and that the bound variables occurring in them are x and
y, respectively […] we have related to each other the individuals introduced by
these two quantifiers if x and y occur (bound to the quantifiers in question) in
one and the same atomic part in F. In this case we shall say that the quantifiers
(and the variables bound to them) are immediately related to each other in F
(Hintikka, 1973, pp. 18–19).

According to this hint, let the degree* of a formula F be the sum of the number of the
free singular terms of F and the maximal number of nested and immediately related
quantifiers in F. This notion is never discussed in detail by Hintikka (1973). Probably
it is too strict for representing an intuitive notion of relation (for example, the degree*

of ϕ6 = ∃x∃y∃z(Rxy ∧ Syz) is two and not three).
Thus, I can conclude that neither the notion of degree of a formula F nor the notions

of degree+ and degree* of a formula F are adequate translations of Nrel , namely, the
maximal number of individuals considered in their relation to each other in F. At
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this point, we might ask ourselves: isn’t it the case that one of Hintikka’s notions of
degree is an adequate translation of Nprem (instead of Nrel)? This question is relevant
because, as I argued in Sect. 5, Hintikka seems to consider the difference between
Nprem and Nrel to be minimal. But unfortunately, I think that the answer is negative
also in this case.

First of all, the notion of degree is not an adequate translation of Nprem because
there might be some parallel individuals in F that have to be considered together in F
and some nested individuals in F that do not have to be considered together in F. For
the former case, the example is ϕ2 = ∃xFx ∧ ∃yGy. Here, the degree of ϕ2 is 1, but
it is necessary to consider two individuals to grasp the meaning of ϕ2. For the latter
case, the example is ϕ3 = ∀x∀y∀z(Rxy ∧ Syz). Here, the degree of ϕ3 is 3, but it is
sufficient to consider only two individuals to grasp the meaning of ϕ3.

Second, the notion of degree+ is not an adequate translation of Nprem . This is
because there might be some unconnected individuals in F that have to be considered
together in F, and some connected individuals in F that do not have to be consid-
ered together in F. The example for the latter case is ϕ3, as above. For the former,
while it is true that unconnected individuals are never related, it is not always the
case that unconnected individuals do not add to the number of individuals that must
be considered together in a given formula. Consider, as an example, the formula
ϕ7 = ∃x∃y(Fx ∧ Gy). Here, the degree+ of ϕ7 is 1, while both individuals, although
unconnected, are needed to grasp the meaning of ϕ7 (for, again, we cannot assume
that the same individual has both the property F and the property G).

Last, the notion of degree* is not an adequate translation of Nprem . Although it
manages to exclude from the computation all those related individuals that are super-
fluous to grasp the premise, such in the example of ϕ3 examined above, it might also
exclude related individuals that are not superfluous, as in ϕ6 = ∃x∃y∃z(Rxy ∧ Syz).

Thus, the previous conclusion can be strengthened by the following claim: Hin-
tikka’s notions of the degree of a formula are adequate translations neither of Nprem

nor of Nrel .

7 On sense (iii.e)

As I explained in the introduction, Hintikka (1973, p. 145) regards senses (iii.a) to
(iii.e) as ‘variations of one and the same basic idea’ expressed by sense (iii). Among
them, sense (iii.e) has a prominent place. It is said to be ‘the more interesting and
important’ (Hintikka, 1973, p. 193) of the two senses (iii.d) and (iii.e) because it is
defined for arguments and not for argument steps, while its competitor, sense (iii.d),
‘appears rather unsatisfactory’ (Hintikka, 1973, p. 194). Moreover, sense (iii.e) is at
the core of several Hintikkian papers.10 Nevertheless, I think that three key features
of sense (iii.e) are problematic, either because they depart in a substantial way from
sense (iii) (beyond the fact that sense [iii.e] applies to arguments as a whole and sense
[iii.d] to single argument steps) or because they are not general enough.

10 For example, Kant Vindicated in Hintikka (1973, pp. 174–98).
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First, sense (iii) says that a valid argument step is synthetic whenever new individu-
als are introduced into the discussion, and sense (iii.e) provides a method to determine
whether new individuals are introduced into an argument. This recipe says: compute
the degree of the premise, the conclusion and each of the intermediate stages of the
argument. If the degree of one of the intermediate stages is higher than the degree of
the premise or the degree of the conclusion, one can deduce that the resulting argument
is synthetic.

My worry is that the way of counting new individuals indicated by sense (iii.e) is
not correct. It may be the case that in a certain derivation, it is necessary to introduce
a number of distinct individuals n such that n is higher than the degree of the premise
and the conclusion, yet no intermediate stage has degree n. How is this possible? It
may happen11 that the n individuals are never mentioned together in the same step
or, as Hintikka (1973, p. 193) himself recognises, that some intermediate stage ‘is a
compressed form of a longer chain of arguments, some intermediate stages of which
are of a very high degree indeed’. Thus, the recipe given by sense (iii.e) may not be
adequate to count the number of new individuals introduced into the argument. The
same conclusion can quickly be drawn for sense (iii.d) in a similar manner.

Second, sense (iii.e) differs from sense (iii.d) in that only the former prescribes
to take into account not only the premise but also the conclusion of an argument in
determining whether it is analytic or synthetic. Hintikka then explains:

That this sense is more natural than sense III (d) is suggested by the fact that by
contrapositing all the steps of a proof of F2 from F1, we obtain a proof of ∼ F1
from ∼ F2. In sense III (e), the old and the new proofs are synthetic or analytic
simultaneously, as one seems to be entitled to expect on the basis of the fact
that the difference between the two proofs seems inessential for our purposes.
In sense III (d), however, one of them may be synthetic and the other analytic,
which seems rather odd. (Hintikka, 1973, p. 144).

It is not clear why this consequence should be especially welcome. First of all,
because, as van Benthem (1974, pp. 424–425) has rightly noticed, every imme-
diate inference (i.e. one-step argument) becomes analytic. Moreover, there are
even some conceptual difficulties for longer arguments. Consider the example in
which the premise P is given by ∀x∃yRxy and the conclusion C is given by
∀x∃y∃z(Rxy ∧ Ryz). Here, the degrees of P and C are two and three, respectively.
Now, in cases like this one, why should a derivation and its contrapositive be either
both analytic or both synthetic? Concluding C from P requires introducing a new
individual; in contrast, the proof from ¬C to ¬P needs only to analyse the three
individuals occurring in ¬C . This is the difference between these two proofs, and it
cannot be regarded as inessential from the perspective of sense (iii).

Third, sense (iii.e) is determined only for one-premise arguments. Although Hin-
tikka does not explicitly indicate how to extend this definition, it seems reasonable
to follow what he says about the method of model set construction: ‘the degree of a
finite set of sentences may be defined simply as the degree of the conjunction of all

11 An example is given in D’Agostino, Larese and Modgil (2021, p. 447).
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its members’ (Hintikka, 1973, p. 184). However, this suggestion is misleading, since
it inherits the difficulties regarding parallel quantifiers highlighted in Sects. 5 and 6.

For example, let � = {∃xFx, ∃xGx} be a set premise. Following Hintikka’s pre-
scription, the degree of � is the degree of the conjunction ∃xFx ∧ ∃xGx , which is
equal to one. However, for the reasons analysed earlier, the number of individuals we
have to think of to understand that conjunction is two, not one because we cannot
assume that it is the same individual that has both the property F and the property G.

I claim that these three problems that affect sense (iii.e) all stem from the same
source. Although Hintikka is not very explicit on this point, he seems to regard his
sense (iii) and all of its variations as general, in the sense that they are independent of
the proof system in which derivations are carried out12 and that they are not entirely
defined until a certain proof system has been fully specified. Hintikka states:

In many of the senses we have defined, the analyticity of a logical truth or
the possibility of deriving a sentence from another analytically depends on the
underlying selection of axioms and of rules of proof. In order to specify these
senses of analyticity more closely, we shall therefore have to say more about the
selection of axioms and of rules of inference. Only when the principles of this
selection are described more carefully can we say that we have fully defined the
relevant senses of analyticity. (Hintikka, 1973, p. 144)

Yet, I argue that the three difficulties described above show that the opposite is true:
sense (iii.e) is not general at all but is shaped rather on the proof procedure based on
Hintikka’s distributive normal forms. This hypothesis would explain, first of all, the
role of the degree of the intermediate stages of an argument in establishing whether a
certain proof is analytic or synthetic. From the way it has been defined, there is always
an intermediate stage in which all the individuals needed in the proof occur together.
Second, it would clarify Hintikka’s choice of taking into account not only the premise
but also the conclusion of a given argument—the proof procedure based on distributive
normal forms essentially consists of the combination of the parameters of the premise
and the conclusion and the comparison of the non-trivially inconsistent constituents
of their expanded versions. Third, this hypothesis also illustrates the restriction to
one-premise arguments.

This should be enough to conclude that Hintikka’s sense (iii.e) is essentially the
same as the explicit form of sense (iii), except that the former is described with fewer
technical details. Now, the existing literature has correctly underlined several unsat-
isfactory features of Hintikka’s analytic–synthetic distinction based on the theory of
distributive normal forms. The major problem is the complexity of the proof proce-
dure. Rantala and Tselishchev (1987, p. 89) admit that ‘as an actual method, the use of
normal forms is not very practical’, while Lampert, using the results obtained by Nelte
(1997, Sect. 4.1), provides a fairly clear picture of the extent of this unpracticality. He
says:

Even if one considers only formulas of pure FOL without names and functions,
only one binary predicate, and formulas of depth 2, this leads to FOLDNFs with

12 This is confirmed, for example, by Hintikka’s argument of the inevitability of synthetic elements in
first-order logic independently of the proof system. See Hintikka (1973, pp. 178–185).
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2512 disjuncts, where each disjunct contains 512 conjuncts. Thus, the length
of Hintikka’s distributive normal form for even the simple formula ∃x∃yFxy
is 2512. Merely increasing the depth by one already results in 221+235 possible
disjuncts. (Lampert, 2017, p. 326).

Sure enough, Hintikka’s aim in formulating his proof procedure based on distribu-
tive normal forms is different from that of Gentzen in his seminal paper on natural
deduction: Gentzen is neither interested in setting up a formal system that comes as
close as possible to actual reasoning (Gentzen, 1935, p. 176) nor concerned with the
complexity of this proof system. On the contrary, the goals of his theory are of a more
theoretical nature, for example, to provide a description of possible worlds as exhaus-
tive as our limited resources allow us to give or to define a measure of information that
might increase through deductive practice. Yet, the extreme difficulty of distributive
normal forms for first-order logic is an insurmountable obstacle to using sense (iii.e)
as a workable definition of the analytic–synthetic distinction.

8 On the rule of existential instantiation

According to Proclus, the proof of a theorem and the solution to a problem in Euclid’s
Elements comprise six main parts.13 The second main part is called ecthesis and
immediately follows the general enunciation of the proposition in question. It consists
of the exhibition of a particular figure that sets out the geometrical entities with which
the general enunciation deals. This step (together with further determinations and
constructions) allows the geometer to carry out the proof proper or apodeixis on that
particular figure and to conclude by extending the result to the general case, given that
the particular determinations of the specific figure are utterly indifferent to the proof
of the proposition.

The notion of ecthesis is the starting point of Hintikka’s reconstruction of Kant’s
analytic–synthetic distinction. Here, we are not interested in the details of this complex
reconstruction but rather in two of its major turning points. First, Hintikka holds that,
according to Kant, it is mainly the use of ecthesis, which amounts to the exhibition of
a certain figure, that makes the geometrical method synthetic. The figure introduced
through ecthesis goes ‘beyond thegiven concept in order to consider something entirely
different from what is thought in it as in a relation to it’ (Kant, 1998, A154/B193), and
yet it is necessary to carry out the demonstration. Second, Hintikka generalises the
reasoning over the geometrical field and maintains that, for Kant, the use of construc-
tions, in general, makes any kind of argument synthetic. For Hintikka’s interpretation
of Kant, constructions are the a priori exhibition of intuitions, which are nothing more
than singular representations. This is the meaning of Hintikka’s (1973, p. 205) claim
that Kant is ‘an heir to the constructional sense of analysis’.

Against the backdrop of his historical reconstruction of Kant’s thought, Hintikka
pushes this reasoning further. First, he claims that for all practical purposes, ecthesis
is identical to existential instantiation (from now on, ExistInst) in first-order logic
(Hintikka, 1967, pp. 368–369; 1973, p. 111). This pattern of reasoning allows us to

13 For an extended discussion and critical analysis of this issue, see Acerbi (2019).
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infer from an existentially quantified sentence ∃xFx , a sentence instantiating it, e.g.
F(x/a), where a is a free individual symbol that does not occur earlier in the argument,
and F(x/a) is the result of replacing x with a in F. Second, Hintikka argues that the
rule of ExistInst is the paradigmatic example of synthetic argument steps, in which
new individuals are introduced into quantified arguments. In fact, he even holds that
‘in suitable formulations’, synthetic arguments ‘can be boiled down to existential
instantiation’ (Hintikka, 1973, p. 211).

However, which formulations are ‘suitable’? Hintikka takes into account the issue
of ExistInst in the context of three different proof systems, two of which have been
formulated by the Finnish logician himself: the method of model set constructions
(Hintikka, 1973, pp. 7–18; Smullyan, 1995, pp. 27, 57) and the method based on
distributive normal forms (Hintikka, 1973, pp. 242–286). For the former, Hintikka
claims that the rule of ExistInst, which enables the addition of F(x/a) to a set μ

provided that ∃xFx ∈ μ and that a is new, always introduces a new individual into
the argument. Moreover, ExistInst is the only synthetic rule, since the rule of universal
generalisation, which enables the addition of F(x/a) to a set μ provided that ∀xFx ∈
μ, requires that a already occurs in the sentences of μ.

For the latter, namely, the method based on distributive normal forms, Hintikka
argues that ‘there appears to be a close connection between the applications of this
rule and the increase of depth in the expansion process’ (Hintikka, 1973, p. 184).With-
out getting into technicalities, the expansion process is what is necessary to recognise
that a certain formula is synthetically derivable fromagiven premise or,which amounts
to the same thing, that all the non-trivially inconsistent constituents of the expanded
premises are among the non-trivially inconsistent constituents of the expanded conclu-
sion. Nevertheless, Hintikka (1973, p. 184) admits that ‘the details of this connection
are in need of closer study’, and, might I add, the very existence of this connection is
in need of any sort of proof whatsoever.

When it comes to the discussion of ExistInst in the third proof system, namely,
natural deduction, Hintikka is, I think, even more ambiguous. An immediate objection
against the identification of ExistInst with the synthetic argument step par excellence
is that the premise and the conclusion of the application of this rule always have the
same degree. This is because, once the rule has been applied, the individual referred to
by the existential quantifier is represented by the fresh individual symbol that replaces
the free variable in the open formula. Therefore, according to this reasoning, ExistInst
cannot be a synthetic argument step and cannot introduce any new individual. Hintikka
seems to have this objection in mind when he argues:

When in a system of natural deduction one goes from ∃xFx to an expression
of the form F(x/a) (i.e., F with ‘x’ replaced by ‘a’), the legitimacy of this step
depends on the choice of the free singular term ‘a’. The usual requirement is
that ‘a’ must not coincide with any of the free singular terms occurring earlier
in the proof, that it must be a new term. Hence this step depends, not just on the
sentence (formula) ∃xFx , but also on all the free singular terms which do not
occur in it but which occur at earlier stages of the proof. If their number is added
to the degree of ∃xFx , we have a parameter which is a more realistic measure
of the number of individuals we are considering in the step of proof in question.
(Hintikka, 1973, p. 183).
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Hintikka’s point is that ExistInst does not satisfy the requirement of being invariant
with respect to the permutation of free singular terms. As a result, a more accurate
measure of the number of individuals that have to be considered in a step of ExistInst
is given by the sum of d(∃xFx), which is the degree of the premise, and s(∃xFx),
which is the number of free singular terms that do not occur in ∃xFx but occur at
earlier stages of the proof.

It seems fair to say that Hintikka’s hint, which unfortunately is never developed
any further, has the effect of establishing a distinction between analytic and synthetic
applications of ExistInst. In the analytic ones, s(∃xFx) = 0, and the number of
individuals that have to be considered in the premise of ExistInst is the same as the
number of individuals of the conclusion—it simply amounts to the degree of the
formulae involved. In the synthetic ones, the number of individuals that have to be
considered in the premise of ExistInst is greater than the number of individuals in the
conclusion because there are some individuals that occur in the proof above but do not
occur in the premise of that step, i.e. s(∃xFx) �= 0.Mycontention is that although there
is a distinction between analytic and synthetic applications of ExistInst, Hintikka’s hint
goes in the wrong direction. The point is that s(∃xFx) is too broad; there may be free
singular terms that occur at earlier stages of the proof but not in ∃xFx . These free
singular terms are not relevant to the issue of establishing whether an application of
ExistInst is analytic or not.

To sumup, the rule ofExistInst is crucial inHintikka’s systemand is said to be almost
identical to ecthesis and to the use of constructions, and represents the paradigmatic
example of a synthetic argument step. Yet, Hintikka is not clear enough on the role
played by this rule either in the context of his explicit form of sense (iii) based on
distributive normal forms or in the systems of natural deduction; i.e. his explanation
of when an application of ExistInst introduces a new individual into the argument (and
is thus synthetic) and when it does not is not satisfying.

9 An overall evaluation

We have seen that one of Hintikka’s most fruitful intuitions concerning the analytic-
synthetic distinction is to investigate the theoretical consequences of using individuals,
instead of concepts, as the object of analysis provided by a set of premises. As I showed
above, this shift leads to formulating his sense (iii), according to which an argument
is analytic if it does not introduce new individuals into the discussion and synthetic
otherwise. Section 3 pointed out the reasons why Hintikka’s contribution deserves
to be taken into serious account in the debate on the analytic-synthetic distinction,
namely, the rehabilitation it offers of Kant’s definition in the context of modern first-
order logic and the positions it defends concerning the status of logic andmathematics.
Sections 4 to 8 identified the conceptual problems that arise when Hintikka tries to
formalise his sense (iii).

To be more precise, I now point out the questions and the road map that Hintikka
subtly individuates to achieve his aim. Moreover, I highlight the precious suggestions
that he puts forward towards his purpose. Then, I recapitulate the difficulties that affect
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his answers to these questions, which I think are substantial to the effect that Hintikka’s
results are in need of a complete revision.

The first question towards a formalisation of Hintikka’s sense (iii) is: how should
the number of individuals considered together in the premises be represented?Despite
important observations, such as that not all the individuals mentioned together in a
given premise are necessary to grasp it, I have argued that Hintikka’s answer is marred
by the following problems, which concern the adequacy of both Nrel and the notions
of the degree of a formula:

• Problem P1 (see Sect. 5): Hintikka oscillates between Nprem (used in informal and
philosophical explanations) and Nrel (the kernel of his theory). These two notions
are not equivalent.

P1.1 In some cases, there are some individuals that necessarily have to be considered
together in order to grasp the premise even if they are not related (example: ϕ2 =
∃xFx ∧ ∃yGy).
P1.2 In some cases, there are some related individuals that are superfluous in order
to grasp the premise (example: ϕ3 = ∀x∀y∀z(Rxy ∧ Syz)).

• Problem P2 (see Sect. 6): Neither the notion of degree of a formulaF nor the notions
of degree+ and degree* of a formula F are adequate translations in formal terms of
Nrel .

P2.1 The notion of the degree of a formula adds to the sum of related individuals
also unconnected individuals represented through bound variables (example: ϕ4 =
∀x∀y(Fx ∧ Gy)).
P2.2 The notions of degree, degree+ and degree* of a formula add to the sum of
related individuals also unconnected individuals represented through free variables
(example: ϕ5 = Fx ∧ Gy).

• Problem P3 (see Sect. 6): Neither the notion of degree of a formulaF nor the notions
of degree+ and degree* of a formula F are adequate translations in formal terms of
Nprem .

P3.1 The notion of degree is not an adequate translation of Nprem , because there
might be some parallel individuals in F that have to be considered together in F
and some nested individuals in F that do not have to be considered together in F
(examples: ϕ2 = ∃xFx ∧ ∃yGy and ϕ3 = ∀x∀y∀z(Rxy ∧ Syz)).
P3.2 The notion of degree+ is not an adequate translation of Nprem, because there
might be some unconnected individuals inF that have to be considered together inF,
and theremight be some connected individuals inF that do not have to be considered
together inF (examples: ϕ7 = ∃x∃y(Fx ∧ Gy) and ϕ3 = ∀x∀y∀z(Rxy ∧ Syz)).
P3.3 The notion of degree* is not an adequate translation of Nprem, because there
might be some not immediately related individuals in F that have to be considered
together in F (example: ϕ6 = ∃x∃y∃z(Rxy ∧ Syz)).

The second question towards formalising sense (iii) is: when are new individuals
introduced into the arguments? Although Hintikka realises that to establish whether
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an argument is analytic or not, a comparison with the number of individuals occur-
ring in the premise is needed, I have claimed that Hintikka’s proposal is affected by
several problems, which mainly have to do with his sense (iii.e) and its unwelcome
consequences:

• Problem P4 (see Sect. 7): Sense (iii.e), Hintikka’s most favourite variation of sense
(iii), is not proof-system independent, but is shaped instead on the proof procedure
based on the theory of distributive normal forms.

P4.1 Sense (iii.e) cannot recognise as synthetic all the arguments in which new
individuals are introduced.
P4.2 In determining whether an argument is analytic or synthetic, sense (iii.e) takes
into account the degree not only of the premise but also of the conclusion of that
argument.
P4.3 Sense (iii.e) is determined only for one-premise arguments, and its immediate
extension inherits problems P1.1 and P1.2.

• Problem P5 (see Sect. 4): Hintikka classifies propositional and monadic arguments
as analytic. This is highly counterintuitive and does not consider the probable
intractability of Boolean logic.

The third and last question towards a formalisation of sense (iii) is: how can we
distinguish between analytic and synthetic rules? Again, despite Hintikka’s insight
that there are both analytic and synthetic applications of ExistsInst, I have shown
some problems in his reasoning, which concern the role of existential instantiation
and the complexity of distributive normal forms:

• Problem P6 (see Sect. 8): The rule of existential instantiation is crucial in Hintikka’s
system. Yet, his explanation of when an application of the rule of existential instan-
tiation introduces a new individual into the argument (and is thus synthetic) and
when it does not is not satisfying.

• Problem P7 (see Sect. 7): The explicit form of sense (iii), which at the end almost
coincides with sense (iii.e), is too complex, and fails to distinguish between analytic
and synthetic arguments.

As for the pars construens of this paper, I now follow the road map hinted at by
Hintikka’s work, together with his profitable suggestions. In Sects. 10 to 12, I select
from the approach put forward by D’Agostino et al. (2021) alternative answers to
the three questions raised above. I claim that the solution proposed according to this
plan avoids the difficulties that make sense (iii.e) flawed and offers a workable and
Kantian-inspired notion of syntheticity in the context of first-order logic. In so doing, I
hope that Hintikka’s key insight, once released from the problems affecting his further
elaboration, could seize the place it deserves in the debate on the analytic-synthetic
distinction (see Sect. 3).

D’Agostino et al. (2021) provide a natural deduction proof-system for a hierarchy
of decidable depth-bounded approximations of classical first-order logic that expands
the hierarchy of tractable approximations of Boolean logic known as Depth-Bounded
Boolean Logics investigated in D’Agostino and Floridi (2009), D’Agostino et al.
(2013), D’Agostino (2015). The basic element of the hierarchy, logic �0, admit only
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analytic proofs, while the other elements in the hierarchy, logics �k for k > 0, also
admits synthetic proofs to an increasing depth.

10 Towards an alternative representation of the number
of individuals considered together in the premises

I have shown in Sect. 5 that Hintikka oscillates between Nprem and Nrel , and that
the latter notion cannot be taken as a formal translation of the former, because the
two differ in a substantial way. In this section, I propose an alternative representation
in formal terms of Nprem , which I think is a much more natural and intuitive notion
than Nrel . Recall that Nprem is the minimal number of individuals that have to be
considered together in a given premise or, equivalently, the number of necessary and
sufficient distinct individuals that have to be taken into account to grasp or represent
that premise.

D’Agostino et al. (2021) provide a good candidate for a formal definition of Nprem .
First of all, recall that a formula is in prenex normal form (PNF) if it has the form.

Q1x1 . . . QnxnG[x1, . . . , xn],

where each Qi is either an occurrence of ∀ or an occurrence of ∃, G is quantifier-free
and all variables in G are bound by some quantifier in the prefix. Then, a formula is
said to be inminimal prenex normal form (min-PNF) if there is no logically equivalent
formula with the same matrix and a lower number of occurrences of quantifiers in the
prefix. Given these notions, Nprem might be defined in the following way:

Definition 1: The minimal number of individuals that have to be considered together
in a given closed formula F is the number of occurrences of quantifiers in the prefix
in one of the min-PNFs of F (see D’Agostino et al., 2021, p. 433).

Consider the following four examples:

1. Let ϕ1 be, as in Sect. 5, the closed formula ∀xFx ∧ ∀yGy, which is not in PNF.
One of the min-PNFs of ϕ1 is ∀x(Fx ∧ Gx), and the number of occurrences of
quantifiers in its prefix is one.

2. Let ϕ2 be, as in Sect. 5, the closed formula ∃xFx ∧ ∃yGy, which is not in PNF.
One of the min-PNFs of ϕ2 is ∃x∃y(Fx ∧Gy), and the number of occurrences of
quantifiers in its prefix is two.

3. Let ϕ3 be, as in Sect. 5, the closed formula ∀x∀y∀z(Rxy ∧ Syz). ϕ3 is in PNF but
not in min-PNF because one of the quantifiers is redundant. One of the min-PNF
of ϕ3 is ∀x∀y(Rxy ∧ Syx), and the number of occurrences of quantifiers in its
prefix is two.

I argue that Def. 1 avoids all the difficulties that, I have claimed, affect Hintikka’s
representation of Nprem . On the one hand, as shown in Sect. 5, Hintikka excludes
from the computation individuals represented through parallel quantifiers. However,
I pointed out that not all parallel quantifiers are bad, i.e. superfluous for grasping the

123



207 Page 26 of 33 Synthese (2023) 201 :207

meaning of the formula involved (see P1.1), and not all nested quantifiers are good,
i.e. essential for grasping the meaning of the formula involved (see P1.2).

On the other hand, according toDefinition 1, every quantifier in one of themin-PNFs
of F is nested, i.e. there are no parallel quantifiers to exclude from the computation.
Yet all and only superfluous quantifiers, whether parallel or not in F, are removed in
the min-PNFs of F. Thus, Def. 1 solves problem P1. Example 1 shows a case in which
a superfluous parallel quantifier is removed; example 2 illustrates a case in which a
parallel but essential quantifier is included in the computation; example 3 exhibits a
case in which nested but superfluous quantifiers are removed.

Moreover, as we have seen in Sect. 6, Hintikka refines his definition through
the notion of degree+ and excludes from the computation individuals represented
by unconnected quantifiers. However, I argued that some but not all unconnected
quantifiers are bad (see P3.1 and P3.2). Def. 1 overcomes this obstacle because,
again, it removes from the min-PNF of F all and only unconnected quantifiers in
F that are superfluous. For example, one of the min-PNF of ϕ4 = ∀x∀y(Fx ∧ Gy)
is ∀x(Fx ∧ Gx), while one of the min-PNFs of ϕ7 = ∃x∃y(Fx ∧ Gy) is ϕ7 itself.
Something similar happens for individuals represented through connected but not
immediately related quantifiers (against P3.3).

Last, Def. 1 applies only to closed formulae: as a result, it is more restricted than
Hintikka’s notions of degree, but, at the same time, it succeeds in avoiding problems,
such as P2.2, that might arise considering free individual variables.

This definition also outperforms Hintikka’s proposal because, against P4.3, it might
be extended naturally from one-premise arguments to multiple-premise arguments.
D’Agostino et al. (2021) define a set of formulae � to be in perfect prenex normal
form (PPNF) if and only if:

• every formula in � is in min-PNF; and
• all occurrences of existential quantifiers in � bind variables that are different from
each other and from all the universally quantified variables; and

• the number of distinct universally quantified variables occurring in � is minimal.

Every set � of formulae in min-PNF can be easily transformed into a set �′ in
PPNF, by renaming of variables. Then, the definition of N1 might be extended in the
following way:

Definition 2: The minimal number of individuals that have to be considered together
in a given set � of closed formulae is the number of distinct variables that occur in �,
called the Q-complexity of � (D’Agostino et al., 2021, pp. 433–435).

This extension to the multiple-premise case is natural because the Q-complexity of
a set � of formulae in PPNF is nothing but the number of occurrences of quantifiers in
the prefix in one of the min-PNFs of a conjunction of the formulae in � (D’Agostino
et al., 2021, p. 434).

To make an example, consider the set � = {∃xFx, ∃xGx} discussed in Sect. 7. �
is not in PPNF, because there are two occurrences of existential quantifiers binding
the same variable. � might be transformed into a set �′ = {∃xFx, ∃yGy}, the Q-
complexity of which is two. On the other hand, a set like � = {∀xGx,∀xFx} is in
PPNF, and its Q-complexity is equal to one.
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11 Towards an alternative way of specifying when new individuals
are introduced into the arguments

In the previous section, I argued that the notion of Q-complexity of a set of closed
formulae should replace Hintikka’s notions of the degree of a formula for representing
the number of individuals considered together in a given set of premises. Now, I turn to
the next step of Hintikka’s road map: is it possible to formulate a distinction between
analytic and synthetic arguments in first-order logic, which avoids the difficulties
affecting Hintikka’s approach? In other words, is it possible to specify in a clear
way when it is really necessary to introduce new individuals into the arguments?
D’Agostino et al. (2021) offer the following definition:

Definition 3: A proof is said to be analytic if and only if: 1. it does not introduce new
individuals into the argument, and 2. it does not use any piece of virtual information.
A proof is said to be synthetic otherwise.

I start focusing on the first necessary condition of Def. 3, which is more closely
related to Hintikka’s work. In order to facilitate the individuation of cases in which
new individuals are introduced into proofs, two assumptions are made by D’Agostino
et al. (2021). First, the set of premises of an argument is required to be in PPNF.14

Second, the language is assumed to contain no constants and to be equipped with a
set of parameters a, b, c, . . . that may occur in the proof, but neither in the premises
nor in the conclusion. Then, D’Agostino et al. (2021) assume that:

Definition 4: New individuals are introduced into a proof if and only if the number of
distinct parameters in it exceeds the initial premises’ Q-complexity.

I now prove that this definition overcomes the problems affecting Hintikka’s sense
(iii.e) highlighted in Sect. 7. First, in order to find whether new individuals are intro-
duced into an argument, Hintikka’s senses (iii.d) and (iii.e) on the one hand and Def.
4 on the other follow two different strategies: the former compares the degrees of cer-
tain formulae occurring in the proof, while the latter compares the number of distinct
parameters with the Q-complexity of the set of premises. In this way, problem P4.1,
which affects Hintikka’s proposal, is entirely overcome by Def. 4. This is because, to
be sure that every synthetic argument is isolated as such, the former strategy requires
that all the new individuals necessary for the argument occur in the same argument
step, while the latter does not.

Second, Def. 4, unlike Hintikka’s sense (iii.e), does not take the individuals men-
tioned in the conclusion as given (see P4.2). As a result, the analytic-synthetic
distinction proposed is sensible to the difference between the argument from P to
C and the argument from ¬C to ¬P whenever the two formulae have a different
Q-complexity. Third, against problem P4.3, the definition above is determined not
only for one-premise arguments but also for multiple-premise arguments, thanks to
the natural step that leads from min-PNFs to sets in PPNF (see Sect. 10).

14 This involves no loss of generality, and allows an easier formulation of the rules for the quantifiers (see
Sect. 12).
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The second necessary condition of Def. 3 for a proof to be analytic is taken from the
approach of Depth-Bounded Boolean Logics. Virtual information, which is forbidden
in analytic proofs, is information that is by nomeans contained in the premises butmust
nevertheless be considered in order to obtain the conclusion. Consider the following
examples (D’Agostino et al., 2021, p. 429):

1 P ∨ Q (Premise) 1 P ∨ Q (Premise)

2 Q → R (Premise) 2 P → Q (Premise)

3 ¬P (Premise) 3.1 Suppose that P 3.2 Suppose that ¬P

4 Q (from 1 and 3) 4.1 Q (from 2 and 3.1) 4.2 ¬Q (from 1 and
3.2)

5 R (from 2 and 4) 5 Q

The former proof is analytic because each step uses information that is actually
possessed. In contrast, the latter proof is synthetic because it makes essential use of
information that is not actually possessed, but yet it is introduced and subsequently
discharged for the sake of the argument. In this case, we simulate information states
that are richer than the actual one and consider the two possible outcomes of acquiring
such information. As D’Agostino (2013, p. 55) explains:

This use of virtual information, which is not contained in the data and so may
not be actually held by any agent who holds the information carried by the data,
appears to qualify this kind of argument as “synthetic” in a sense close to Kant’s
sense, in that it forces the agent to consider potential information that is not
included in the information “given” to him.

D’Agostino (2014, p. 410) shows that the greater the number of pieces of virtual infor-
mation needed in an inference, the greater the ‘cognitive effort’ required by the agent
to recognize its validity and the computational resources that need to be consumed for
this task, to the effect that an unbound use of virtual information, such as in Boolean
logic, leads to the intractability of the corresponding decision problem.

An extremelywelcome consequence of this second condition imposed on the notion
of analyticity is the solution of problem P5 that affected Hintikka’s theory, i.e. accord-
ing to this approach, it is not the case that propositional and monadic arguments are,
in general, analytic. As the second example shows, arguments that make essential
use of virtual information are synthetic according to this definition independently of
whether relations occur in them or not. Thus, the approach put forward in D’Agostino
et al. (2021) provides a complete criticism of the neo-empiricist tenet that logic is
analytic and tautological, which includes both propositional and monadic logic.
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12 Towards an alternative way of distinguishing between analytic
and synthetic logical rules

The previous sections have specified a definition of the analytic-synthetic distinction
that endorses Hintikka’s most fundamental idea—namely that synthetic arguments,
unlike analytic ones, introduce new individuals into the discussion—and at the same
time avoids the main difficulties that affect Hintikka’s sense (iii.e.). The next problem
of Hintikka’s road map is then: can we formulate a set of analytic logical rules in the
sense specified in Sect. 11?

D’Agostino et al. (2021) provide a natural-deduction system for logic �0 defined
by a set of introduction and elimination rules for the connectives and the quantifiers,
which treat a formula and its negation symmetrically. The proof-system for logic �0
allows to prove all and only arguments that are analytic in the sense of Def. 3: neither
the introduction of new individuals nor the use of virtual information is allowed. This
means that, for every proof in logic �0, the number of distinct parameters that occur
in it never exceeds the Q-complexity of its initial premises.

We are not interested here in giving the formal definitions of this system and dis-
cussing its rules, but rather in these crucial questions: 1. how can distinct parameters
be introduced into a proof? 2. And how can this be accomplished in such a way that
their number does not exceed the Q-complexity of the premise? The answer to the first
question should not be surprising15: parameters might be introduced into the proof
through the elimination rules for the quantifiers only. While Hintikka considers the
rule of existential instantiation to be the sole paradigmatic example of ecthesis and
is interested in proof-systems in which synthetic arguments can be boiled down to
applications of that rule (see Sect. 8), the present approach takes into account also the
rule of universal instantiation as a good candidate to introduce new individuals into
the reasoning.

The answer to our second question is astonishingly simple. Recall that this approach
assumes that the premises are in PPNF. Then, the variable bound by a universal or an
existential quantifier can be instantiated at most once by a new parameter; moreover,
every universal quantifier can also be instantiated by all the parameters that already
occur in the proof. Without entering the formal details, consider the following two
examples (D’Agostino et al., 2021, pp. 443, 440):

1 ∀x∃yRxy Premise 1 ∀x∃yRxy Premise

2 ∀x∀z(Rxz →
Rzx)

Premise 2 ∃yRay ∀E, 1

3 ∃yRay ∀E, 1 3 Rab ∃E, 2

4 ∀z(Raz → Rza) ∀E, 2 4 ∃yRby ∀E, 1

5 Rab ∃E, 3 5 Rbc ∃E, 4

15 Recall that this approach assumes that the language contains no constants but is equipped with a set of
parameters that may occur in the proof, but neither in the premises nor in the conclusion.
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6 Rab → Rba ∀E, 4 6 Rab ∧ Rbc ∧I , 3, 5

7 Rba → E, 5, 6 7 ∃z(Rab ∧ Rbz) ∃I , 6
8 Rab ∧ Rba ∧I , 5, 7 8 ∃y∃z(Ray ∧ Ryz) ∃I , 7
9 ∃y(Ray ∧ Rya) ∃I , 8 9 ∀x∃y∃z(Rxy∧Ryz) ∀I , 8
10 ∀x∃y(Rxy ∧ Ryx) ∀I , 9

The former example shows an analytic argument. At step 3, the variable x occurring
in the first premise is instantiated by a new parameter, a, and at step 4 the variable x,
this time occurring in the second premise, is instantiated again by a (which is not new
anymore at this point of the proof). At step 5, y is instantiated by a new parameter, b,
which is used to instantiate z at step 6. The latter example shows a wrong application
of the rule of existential instantiation: at step 3, y has been instantiated by the new
parameter b and, for this reason, it cannot be instantiated again at step 5. Thus, the
proof from ∀x∃yRxy to ∀x∃y∃z(Rxy ∧ Ryz) is synthetic because a new individual
must be introduced to reach the conclusion from the premise.

The problem of gradually retrieving the full deductive power of classical first-
order logic is addressed by means of a bound recursive use of a structural rule called
RB after ‘rule of bivalence’. This rule governs the use of virtual information and
allows to introduce new individuals into the arguments. RB is the only discharge rule
of the system and takes the following form: if � ∪ {A}�k B and � ∪ {¬A}�k B,
then � ∪ � �k+1 B. The second of the examples above might be proved in logic
�1. This is because logic �0 proves that ∀x∃y∃z(Rxy ∧ Ryz) is the case from both
premise ∀x∃yRxy together with the piece of virtual information that Rbc and premise
∀x∃yRxy together with the piece of virtual information that ¬Rbc (in the latter case,
the conclusion follows from a contradiction).

I claim this approach outperforms Hintikka’s proposal in at least two respects. First,
against problem P6, it specifies in a clear way the distinction between applications of
the rule of existential instantiation that do introduce new individuals into the arguments
from theones that donot. Thefirst kindof application is simulated through theuseof the
structural rule RB, while the second through the rule of existential instantiation, where
the restriction shown above is respected. The idea behind this solution is remarkably
intuitive once the notion of sets in PPNF has been devised: an application of the rule of
existential instantiation is analytic if and only if the variable bound by that existential
quantifier has never been instantiated by a new parameter before.

Second, the approach put forward by D’Agostino et al. (2021) is simple: against P7
and Hintikka’s explicit form of sense (iii), it can be easily used to distinguish between
analytic and synthetic arguments.

13 Conclusions

The relevance of Hintikka’s work on the analytic-synthetic distinction is, I think, the
effort to build a bridge between Kant’s conception of the synthetic a priori and the
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post-Fregean debate on the status of logic. But this is also the source of the diffi-
culties that affect his picture. In trying to keep these two banks together, Hintikka
stretches the Kantian materials to make Kant speak the same modern language of the
logical empiricist movement. But, at the same time, Hintikka offers an excessively
complex formalism that demands to incorporate somehow Kant’s original insights.16

The result is a theory that, high hopes notwithstanding, did not manage to impact on
the subsequent debate.

In this paper, I have shown that Hintikka’s work does not need to stand or fall as a
whole. In my analysis, I have distinguished the merits of his approach, in particular
of his fundamental idea expressed by sense (iii), from the difficulties of his further
elaboration and formalism. Moreover, I have individuated an alternative formalisation
of syntheticity as the introduction of new individuals that, I have claimed, is not
marred by the same problems affecting Hintikka’s proposal. In so doing, I hope to
have contributed to the realisation of the project of rehabilitating Kant’s analytic-
synthetic distinction in the context of modern first-order logic with the purpose of
showing, against the logical empiricist movement, that logic is not analytic.
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