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Abstract
We study the problem of the intraday short-term volume forecasting in cryptocur-
rency multi-markets. The predictions are built by using transaction and order book
data from different markets where the exchange takes place. Methodologically, we
propose a temporal mixture ensemble, capable of adaptively exploiting, for the fore-
casting, different sources of data and providing a volume point estimate, as well as
its uncertainty. We provide evidence of the clear outperformance of our model with
respect to econometric models.Moreover our model performs slightly better than Gra-
dient Boosting Machine while having a much clearer interpretability of the results.
Finally, we show that the above results are robust also when restricting the prediction
analysis to each volume quartile.

Keywords Econometrics · Machine learning · Cryptocurrency markets · Temporal
mixture ensemble

JEL Classifications C53 · C58 · G12

1 Introduction

Cryptocurrencies recently attractedmassive attention from public and researcher com-
munity in several disciplines such as finance and economics (Urquhart 2016; Bolt
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906 N. Antulov-Fantulin et al.

2016; Cheah and Fry 2015; Chu et al. 2015; Donier and Bouchaud 2015; Ciaian et al.
2016), computer science (Ron and Shamir 2013; Jang and Lee 2018; Amjad and Shah
2016; Alessandretti et al 2018; Guo et al 2018; Beck et al 2019) or complex systems
(Garcia and Schweitzer 2015; Wheatley et al. 2019; Gerlach et al. 2019; Antulov-
Fantulin et al. 2018; Kondor et al. 2014; ElBahrawy et al. 2017). It originated from
a decentralized peer-to-peer payment network (Nakamoto 2008), relying on crypto-
graphic methods (Bos et al. 2014; Mayer 2016) like elliptical curve cryptography and
the SHA-256 hash function. When new transactions are announced on this network,
they have to be verified by network nodes and recorded in a public distributed ledger
called the blockchain (Nakamoto 2008). Cryptocurrencies are created as a reward in
the verification competition (see Proof of work Jakobsson and Juels 1999), in which
users offer their computing power to verify and record transactions into the blockchain.
Bitcoin is one of the most prominent decentralized digital cryptocurrencies and it is
the focus of this paper, although the model developed below can be adapted to other
cryptocurrencies with ease, as well as to other “ordinary” assets (equities, futures, FX
rates, etc.).

The exchangeofBitcoinswith other fiat or cryptocurrencies takes place on exchange
markets, which share some similarities with the foreign exchange markets (Baumöhl
2019). These markets typically work through a continuous double auction, which
is implemented with a limit order book mechanism, where no designated dealer or
marketmaker is present and limit andmarket orders to buy and sell arrive continuously.
Moreover, as observed for traditional assets, the market is fragmented, i.e. there are
several exchanges where the trading of the same asset, in our case the exchange of a
cryptocurrency with a fiat currency, can simultaneously take place.

The automation of the (cryptocurrency) exchanges lead to the increase of the use of
automated trading (Chaboud et al. 2014; Hendershott et al. 2011) via different trading
algorithms. An important input for these algorithms is the prediction of future trading
volume. This is important for several reasons. First, trading volume is a proxy for
liquidity which in turn is important to quantify transaction costs. Trading algorithms
aim atminimizing these costs by splitting orders in order to find a better execution price
(Frei and Westray 2015; Barzykin and Lillo 2019) and the crucial part is the decision
of when to execute the orders in such a way to minimize market impact or to achieve
certain trading benchmarks (e.g. VWAP) (Brownlees et al. 2010; Satish et al. 2014;
Chen et al. 2016;Bialkowski et al. 2008;Calvori et al. 2013;Kawakatsu 2018). Second,
whendifferentmarket venues are available, the algorithmmust decidewhere to post the
order and the choice is likely themarketwheremore volume is predicted to be available.
Third, volume is also used to model the time-varying price volatility process, whose
relation is also known as “Mixture of Distribution Hypothesis” (Andersen 1996).

In this paper, we study the problem of intraday short-term volume prediction on
multi-market of cryptocurrency, as is shown in Fig. 1, intending to obtain not only point
estimate but also the uncertainty on the point prediction (Chu et al. 2015; Urquhart
2016; Katsiampa 2017; Balcilar et al. 2017). Moreover, conventional volume predic-
tions focuses on using data or features from the same market. Since cryptocurrency
markets are traded on several markets simultaneously, it is reasonable to use cross-
market data not only to enhance the predictive power, but also to help understanding the
interaction between markets. In particular, we investigate the exchange rate of Bitcoin
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Fig. 1 Illustration of the probabilistic volume predicting in the multi-source data setting of Bitfinex and
Bitstamp markets. The left and right panel respectively depict the order book and transaction data of each
market. The arrows represent the data used to model the volume of each market. Note that the volume
information is implicitly contained in the transaction data of one market and thus there is no arrow linking
the volumes from the two markets

(BTC) with a fiat currency (USD) on two liquid markets: Bitfinex and Bitstamp. The
first market is more liquid than the second, since its traded volume in the investigated
period from June 2018 to November 2018 is 2.5 times larger.1 Thus one expects an
asymmetric role of the past volume (or other market variables) of one market on the
prediction of volume in the other market.

Specifically, the contribution of this paper can be summarized as follows:

– We formulate the cross-market volume prediction as a supervised multi-source
learning problem.We use multi-source data, i.e. transactions and limit order books
from different markets, to predict the volume of the target market.

– We propose the Temporal Mixture Ensemble (TME), which models individual
source’s relation to the target and adaptively adjusts the contribution of the indi-
vidual source to the target prediction.

– By equipping with modern ensemble techniques, the proposed model can further
quantify the predictive uncertainty since the conditional distribution is a mixture
of log-normal distributions and confidence intervals can be computed (see below).

– As main benchmarks for volume dynamics, we use different time-series and
machine learning models (clearly with the same regressors/features used in our
model). We observe that our dynamic mixture ensemble is often having superior
out-of-sample performance on conventional prediction errormetrics e.g. rootmean
square error (RMSE) andmeanabsolute error (MAE).More importantly, it presents
much better calibrated results, evaluated by metrics taking into account predictive
uncertainty, i.e. normalized negative log-likelihood (NNLL), uncertainty interval
width (IW).

– We discuss the prediction performance conditional to volume. Since our choice of
modeling log-volume is tantamount to considering a multiplicative noise model
for volumes, when using relative RMSE and MAE machine learning methods
outperforms econometric models in providing more accurate forecasts.

1 Recently, there have been few reports that are showing fake reported volume for certain Bitcoin exchange
markets. In this paper, we investigate Bitcoin exchange markets that have regulatory status (Hougan et al.
2019) either with the Money Services Business (MSB) license or BitLicense from the New York State
Department of Financial Services, and have been independently verified to report true values.
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The paper is organized as follows: in Sect. 2 we present the investigated markets,
the data, and the variables used in the modeling. In Sect. 3 we present our bench-
mark models. In Sect. 4 we present our empirical investigations on the cryptocurrency
markets for the prediction of intraday market volume. Finally, Sect. 5 presents some
conclusions and outlook for future work. Most of the technical description of mod-
els and algorithms, as well as some additional empirical results, are presented in an
appendix.

2 Multiple market cryptocurrency data

Our empirical analyses are performed on a sample of data over the period from May
31, 2018 9:55pm (UTC) until September 30 2018 9:59pm (UTC) from two exchange
markets, Bitfinex2 and Bitstamp,3 where Bitcoins can be exchanged with US dollars.
These markets work through a limit order book, as many conventional exchanges. For
each of the twomarkets we consider two types of data: transaction data and limit order
book data.

From transaction data we extract the following features on each 1-min interval:

– Buy volume–number of BTCs traded in buyer initiated transactions
– Sell volume–number of BTCs traded in seller initiated transactions
– Volume imbalance–absolute difference between buy and sell volume
– Buy transactions–number of executed transactions on buy side
– Sell transactions–number of executed transactions on sell side
– Transaction imbalance–absolute difference between buy and sell number of trans-
actions

We remind that a buyer (seller) initiated transaction in a limit order book market is a
trade where the initiator is a buy (sell) market order or a buy (sell) limit order crossing
the spread.

From limit order book data we extract the following features each minute (Gould
et al. 2013; Rambaldi et al. 2016):

– Spread is the difference between the highest price that a buyer is willing to pay
for a BTC (bid) and the lowest price that a seller is willing to accept (ask).

– Ask volume is the number of BTCs on the ask side of order book.
– Bid volume is the number of BTCs on the bid side of order book.
– Imbalance is the absolute difference between ask and bid volume.
– Ask/bid Slope is estimated as the volume until δ price offset from the best ask/bid
price. δ is estimated by the bid price at the order that has at least 1%, 5% and 10
% of orders with the highest bid price.

– Slope imbalance is the absolute difference between ask and bid slope at different
values of price associated to δ. δ is estimated by the bid price at the order that has
at least 1%, 5% and 10 % of orders with the highest bid price.

The target variable that we aim at forecasting is the trading volume of a given target
market including both buy and sell volume. In the proposed modeling approaches

2 https://www.bitfinex.com.
3 https://www.bitstamp.net.
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(described in Sect. 3) we consider different data sources at each time can affect the
probability distribution of trading volume in the next time interval in a given market.
As is illustrated in Fig. 1, given the setting presented above, there are four sources,
namely one for transaction data and one for limit order book data for the two markets.

Before going into the details of models, in order to choose the appropriated variable
to investigate, we visualize some characteristics of the data in Fig. 2. In the 1st and 3rd
panel, we show the quantiles of intraday 1-min trading volume of BTC/USD rates,
for the two different markets. We also show as vertical lines the opening times of
four major stock exchanges. Although we do not observe abrupt changes in volume
distribution (possibly because cryptocurrency exchanges areweakly relatedwith stock
exchanges), some small but significant intraday pattern (Andersen and Bollerslev
1997) is observed.

For this reason, we pre-process the raw volume data to remove intraday patterns as
follows. Let us denote vt the volume traded at the time t , in units of Bitcoins. I (t) is a
mapping function of the time t , which returns the intraday time interval index of t . We
use aI (t) to represent the average of volumes at the same intraday index I (t) across
days. Next, to remove intraday patterns, we process the raw volume by the following
operation:

yt � vt

aI (t)
(1)

In practice, in order to avoid leaking future information to the training phase, aI (t) is
calculated only based on the training data, and shared to both validating and testing
data.

The histogram of ln yt for the two markets4 is shown in the 2nd and 4th panel of
Fig. 2 along with first four cumulants of empirical distribution of log-volumes. We
observe that the distribution is approximately normal, even if a small negative skew
is present. For this reason, our modeling choice is to consider yt as log-normally
distributed.

3 Models

Econometric modeling of intra-daily trading volume relies on a set of empirical reg-
ularities (Brownlees et al. 2010; Satish et al. 2014; Chen et al. 2016) of volume
dynamics. These include fat tails, strong persistence and an intra-daily clustering
around the “U”-shaped periodic component. Brownlees et al. (2010) proposed Com-
ponent Multiplicative Error Model (CMEM), which is the extension of Multiplicative
Error Model (MEM) (Engle 2002). The CMEM volume model has a connection to the
component-GARCH (Engle and Sokalska 2012) and the periodic P-GARCH (Boller-
slev andGhysels 1996). Satish et al. (2014), proposed four-component volume forecast
model composed of: (i) rolling historical volume average, (ii) daily ARMA for serial
correlation across daily volumes, (iii) deseasonalized intra-day ARMA volume model
and (iv) a dynamic weighted combination of previous models. Chen et al. (2016),

4 The frequency of time intervals with zero volume and how we handle them is detailed in Sect. 2.
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910 N. Antulov-Fantulin et al.

Fig. 2 1st and 3rd panel:
interquartile range Q1 − Q2 and
Q2 − Q3 of intraday 1-min
transaction volume of BTC/USD
rate on Bitfinex (1st panel) and
Bitstamp (3rd panel) market,
along with openings of major
exchanges (TSE, HKSE, LSE,
NYSE) that are denoted with
vertical lines. 2nd and 4th
panel: histogram of
deseasonalized log volume at
1-min resolution. The statistics
of these variable are: Bitfinex:
mean = -1.3627, variance =
3.7658, skewness = -0.6336, and
kurtosis = 0.6886; Bitstamp:
mean = -2.4224, variance =
3.9894, skewness = -0.5307,
kurtosis = 0.4114
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simplify the multiplicative volume model (Brownlees et al. 2010) into an additive one
by modeling the logarithm of intraday volume with the Kalman filter.

3.1 Problem setting

In this paper, we focus on the probabilistic forecasting of the intraday volume in
the multi-source data setting. We propose the use of TME, presented below, and
we benchmark its performance against two econometric baseline models (ARMA-
GARCHandARMAX-GARCH) and oneMachineLearning baselinemodel (Gradient
Boosting Machine).

As mentioned above, we assume yt follows the log-normal distribution and thus
all the models used in the experiments will be developed to learn the log-normal
distribution of yt . However, our proposed TME is flexible to be equippedwith different
distributions for the target, and the study in this direction will be the future work.

When evaluating the performance of the forecasting procedure with real data exper-
iments, we choose to use evaluation metrics defined on the original volume vt , since
in real world application the interest is in forecasting volume rather than log-volume.
Finally, for understanding the performance of TME andMachine Learning and econo-
metric baselines in different setups, we will evaluate them using three different time
intervals of volumes, namely 1min, 5min and 10min.

Regarding the multi-source data setting, on one hand, it includes the features from
the target market. This data is believed to be directly correlatedwith the target variable.
On the other hand, there is an alternative market, which could interact with the target
market. Together with the target market, the features from this alternative market
constitute the multi-source data.

In this paper, we mainly focus on Bitfinex and Bitstamp markets. For each market,
we have the features from both transaction and order book data, thereby leading to
S = 4 data sources. In particular, we indicate with xs,t ∈ R

ds the features from source
s at time step t , and ds the dimensionality of source data s. Given the list of features
presented in Sect. 2, we have ds = 6 when the source is transaction data in any market,
while ds = 13 for order book data. Then, these multi-source data will be used tomodel
the volume of each market, as is shown in Fig. 1.

3.2 Overview of TME

In this paper, we construct a Temporal Mixture Ensemble (TME), belonging to the
class of of mixture models (Waterhouse et al. 1996; Yuksel et al. 2012; Wei et al.
2007; Bazzani et al. 2016; Guo et al. 2019), which takes previous transactions and
limit order book data (Gould et al. 2013; Rambaldi et al. 2016) from multiple mar-
kets simultaneously into account. Though mixture models have been widely used in
machine learning and deep learning (Guo et al 2018; Schwab et al. 2019; Kurle et al.
2019), they have been hardly explored for prediction tasks in cryptocurrency mar-
kets. Moreover, our proposed ensemble of temporal mixtures can provide predictive
uncertainty of the target volume by the use of the Stochastic Gradient Descent (SGD)
based ensemble technique (Lakshminarayanan et al. 2017; Maddox et al. 2019; Snoek
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et al. 2019). Predictive uncertainty reflects the confidence of the model over the pre-
diction. It is valuable extra information for model interpretability and reliability. The
model developed below is flexible to consume multi-source data of arbitrary number
of sources and dimensionalities of individual source data.

In principle, TME exploits latent variables to capture the contributions of different
sources of data to the future evolution of the target variable. The source contributing
at a certain time depends on the history of all the sources.

For simplicity, we will use one data sample of the target yt to present the proposed
model. In reality, the training, validation, and testing data contain the samples collected
in a time period. More quantitatively, the generative process of the target variable
yt conditional on multi-source data {x1,t , . . . , xS,t } is formulated as the following
probabilistic mixture process:

p(yt |{x1,<t , . . . , xS,<t },Θ)

=
S∑

s=1

pθs (yt |zt = s, xs,<t ) · Pω(zt = s |x1,<t , . . . , xS,<t ).
(2)

The latent variable zt is a discrete random variable defined on the set of values
{1, . . . , S}, each of which represents the corresponding data source. The quan-
tity pθs (yt |zt = s, xs,<t ) models the predictive probabilistic density of the target
based on the historical data xs,<t from a certain source s. The quantity5 Pω(zt =
s |x1,<t , . . . , xS,<t ) characterizes a time-varying categorical distribution dependent
on multi-source data. It adaptively adjusts the contribution of the data source spe-
cific density pθs (yt |zt = s, xs,<t ) at each time step. Clearly, it holds

∑S
s=1 Pω(zt =

s |x1,<t , . . . , xS,<t ) = 1. Finally, Θ � {θ1, . . . , θS, ω} represents the parameters in
data source specific components and the latent variable’s probability function, and it
will be learned in the training phase discussed below.

3.3 Model specification

We now specify in detail the mathematical formulation of each component in the
temporal mixtures. Without loss of generality, we present the following model speci-
fication for the volume in cryptocurrency exchange of this paper’s interest.

To specify themodel, we need to define the predictive density function of individual
sources, i.e. pθs (yt |zt = s, xs,<t ) and the probability function of latent variable, i.e.
Pω(zt = s |x1,<t , . . . , xS,<t ). We make a general assumption for both these functions
that data from different sources are taken within the same time windoww.r.t. the target
time step. We denote by h the window length, i.e. the number of past time steps which
enter in the conditional probabilities. We assume that this value is the same for each
source. Equation 2 is thus simplified as:

S∑

s=1

pθs (yt |zt = s, xs,(−h,t)) · Pω(zt = s|x1,(−h,t), . . . , xS,(−h,t)), (3)

5 We indicate with pθ probability densities and Pω probability mass functions.
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where xs,(−h,t) represents the data from source s within the time window from t − h
to t − 1 and xs,(−h,t) ∈ R

ds×h .
As for pθs (yt |zt = s, xs,(−h,t)), due to the non-negative nature of the volume in

cryptocurrency exchange and its statistical properties (Bauwens et al. 2008),we choose
the log-normal distribution to model yt as:

ln yt |zt = s, xs,(−h,t) ∼ N (
μt,s, σ

2
t,s) (4)

As a result, the probability density function is expressed as:

pθs (yt |zt = s, xs,(−h,t)) = 1√
2π · ytσt,s

exp

(
− (ln yt − μt,s)

2

2σ 2
t,s

)
(5)

Given xs,(−h,t) ∈ R
ds×h , we choose bi-linear regression to parameterize the mean

and variance of the log transformed volume as follows:

μt,s � L�
μ,s · xs,(−h,t) · Rμ,s + bμ,s (6)

σ 2
t,s � exp(L�

σ,s · xs,(−h,t) · Rσ,s + bσ,s), (7)

where Lμ,s , Lσ,s ∈ R
ds and Rμ,s , Rσ,s ∈ R

h . bμ,s , while bσ,s ∈ R are bias terms. Note
that above parameters are data source specific and then the trainable set of parameters
is denoted by θs � {Lμ,s, Lσ,s, Rμ,s, Rσ,s, bμ,s, bσ,s}.

Based on the properties of log-normal distribution (MacKay and Mac Kay 2003;
Cohen and Whitten 1980), the mean and variance of the intraday-pattern-free volume
modeled by individual data sources can be derived from the mean and variance of log
transformed volume as:

E[yt | zt = s, xs,(−h,t), θs] = exp

{
μt,s + 1

2
σ 2
t,s

}
(8)

and

V[yt | zt = s, xs,(−h,t), θs] = exp{σ 2
t,s − 1} · exp{2μt,s + σ 2

t,s} (9)

Then, we define the probability distribution of the latent variable zt using a softmax
function as follows:

Pω(zt = s | {xk,(−h,t)}Sk=1) � exp( fs(xs,(−h,t)) )
∑S

k=1 exp( fk(xk,(−h,t)) )
, (10)

where

fs(xs,(−h,t)) � L�
z,s · xs,(−h,t) · Rz,s + bz,s (11)
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ω � {Lz,s, Rz,s, bz,s}Ss=1 denotes the set of trainable parameters regarding the latent
variable zt , i.e. Lz,s, Rz,s ∈ R

ds and bz,s ∈ R is a bias term.
In the following, we will present how the distributions modeled by individual data

sources and the latent variable will be used to learn the parameters in the training phase
and to perform probabilistic forecasting of the target volume in the predicting phase.

3.4 Learning

The learning process of TME is based on SGD optimization (Ruder 2016; Kingma
and Ba 2015). It is able to give rise to a set of parameter realizations for building
the ensemble which has been proven to be an effective technique for enhancing the
prediction accuracy as well as enabling uncertainty estimation in previous works (Lak-
shminarayanan et al. 2017; Maddox et al. 2019).

We first briefly describe the training process of SGD optimization. Denote the set
of the parameters by Θ � {θ1, . . . , θS, ω}. The whole training dataset denoted by D
is consisted of data instances, each of which is a pair of yt and {xs,(−h,t)}S1 . t is a time
instant in the period {1, . . . , T }.

Starting from a random initialized value of Θ , in each iteration SGD samples a
batch of training instances to update the model parameters as follows:

Θ(i) = Θ(i − 1) − η∇L(Θ(i − 1);Di ), (12)

where i is the iteration step, Θ(i) represents the values of Θ at step i , i.e. a snap-
shot of Θ . η is the learning rate, a tunable hyperparameter to control the magnitude
of gradient update. ∇L(Θ(i − 1);Di ) is the gradient of the loss function w.r.t. the
model parameters given data batch Di at iteration i . The iteration stops when the loss
converges with negligible variation. The model parameter snapshot at the last step or
with the best validation performance will be taken as one realization of the model
parameters.

The learning process of TME is tominimize the loss function defined by the negative
log likelihood of the target volume as:

L(Θ;D) � −
T∑

t=1

ln l(Θ ; yt , {xs,(−h,t)}Ss=1) + λ ‖Θ‖22 , (13)

where ‖Θ‖22 is the L2 regularisation with the hyper-parameter λ. The likelihood
function is denoted by l(Θ ; yt , {xs,(−h,t)}Ss=1). Based on the model specification in
Sect. 3.3, it is expressed as:

l(Θ ; yt , {xs,(−h,t)}Ss=1)

=
S∑

s=1

1√
2π · ytσt,s

exp
(

− (ln yt − μt,s)
2

2σ 2
t,s

)
· exp( fs(xs,(−h,t)) )
∑S

k=1 exp( fk(xk,(−h,t)) )
,

(14)
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In the SGD optimization process, different initialization of Θ leads to distinct
parameter iterate trajectories. Recent studies show that the ensemble of independently
initialized and trained model parameters empirically often provide comparable per-
formance on uncertainty quantification w.r.t. sampling and variational inference based
methods (Lakshminarayanan et al. 2017; Snoek et al. 2019; Maddox et al. 2019). Our
ensemble construction follows this idea by taking a set of model parameter realiza-
tions from different training trajectories, and each parameter realization is denoted by
Θm = {θm,1, . . . , θm,S, ωm}. For more algorithmic details about the collecting pro-
cedure of these parameter realizations, please refer to the appendix. The code for the
TME model is available at our Git repository.6

3.5 Prediction

In this part, we present the probabilistic predicting process given model parameter
realizations {Θm}M1 . Specifically, the predictive mean of intraday-pattern-free volume
yt is expressed as:

E[yt |{xs,(−h,t)}Ss=1,D] ≈ 1

M

M∑

m=1

E[yt | {xs,(−h,t)}Ss=1,Θm], (15)

where E[yt |{xs,(−h,t)}Ss=1 ,Θm] is the conditional mean given one realization Θm . In
TME, it is a weighted sum of the predictions by individual data sources as:

E[yt |{xs,(−h,t)}Ss=1,Θm] =
S∑

s=1

Pωm (zt = s|{xs,(−h,t)}Ss=1)

·E[yt |zt = s, xs,(−h,t), θm,s] (16)

Note that yt is the volume deseasonalized from the intraday patterns. Since our
interest is to obtain the volume prediction in the original scale, the predicted volume
is derived as:

v̂t = aI (t) · E[yt |{xs,(−h,t)}Ss=1,D] (17)

Besides the point prediction v̂t , TME enables to characterize the distributional
information of the prediction. In particular, the predictive probability density of the
volume in the original scale is:

p(vt |{xs,(−h,t)}Ss=1, {Θm}M1 ) = 1

M · aI (t)
M∑

m=1

p
( vt

aI (t)

∣∣∣ {xs,(−h,t)}Ss=1,Θm

)
, (18)

where p
(

vt
aI (t)

∣∣∣ {xs,(−h,t)}Ss=1,Θm

)
corresponds to the density function of yt in Eq. 2.

6 https://github.com/weilai0980/Probabilistic_Mixture_Ensemble.
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Furthermore, the cumulative distribution function of vt is:

P(vt |{xs,(−h,t)}Ss=1, {Θm}Mm=1)

= 1

M

M∑

m=1

S∑

s=1

Pθm,s (yt |zt = s, xs,(−h,t)) · Pωm (zt = s|{xk,(−h,t)}Sk=1), (19)

where yt = vt
aI (t)

and Pθm,s (·) represents the cumulative distribution function gener-
ated by the component model parameterized by θm,s . In particular, for log-normal
distribution, it is expressed as:

Pθm,s (yt |zt = s, xs,(−h,t)) = 


(
ln yt − μt,s

σt,s

)
, (20)

where
(·) is the cumulative distribution function of the standard normal distribution.
With Eqs. 17–20, we are able to assess the real volume predictions via both conven-
tional error metrics and probabilistic performance metrics, which will be shown in the
experiment section. Specifically, by using the distribution functionwefind numerically
the quantiles needed to compute at each time the confidence intervals.

4 Experiments

In this section, we report the overall experimental evaluation. More detailed results
are in the appendix section.

4.1 Data andmetrics

Data: We collected the limit order book and transaction data respectively from two
exchanges, Bitfinex and Bitstamp and extracted features defined in Sect. 2 from the
order book and transactions of each exchange for the period from May 31, 2018
9:55pm (UTC) until September 30, 2018 9:59pm (UTC). Then, for each exchange,
we build three datasets of different prediction horizons, i.e. 1min, 5min, 10min, for
training and evaluating models. Depending on the prediction horizon, each instance
in the dataset contains a target volume and the time-lagged features from order book
and transactions of two exchanges. In particular, for Bitfinex, the sizes of datasets for
1min, 5min, 10min are respectively 171727, 34346 and 17171. For Bitstamp, the
sizes of datasets are respectively 168743, 33749 and 16873. In all the experiments,
data instances are time ordered and we use the first 70% of points for training, the next
10% for validation, and the last 20% of points for out-of-sample testing. Note that all
the metrics are evaluated on the out of sample testing data.

For modeling the log-normal distribution, the baseline models and TME need to
perform the log-transformation on yt and thus in the data pre-processing step, we have
filtered out the data instances with zero trading volume. Empirically, we found out
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that these zero-volume data instances account for less than 2.25% and 3.98% of the
entire dataset for Bitfinex and Bitstamp markets respectively.7

For the baseline methods not differentiating the data source of features, each target
volume has a feature vector built by concatenating all features from order book and
transactions of two markets into one vector. For our TME, each target volume has four
groups of features respectively corresponding to the order book and transaction data
of two markets.

Metrics: Note that baseline models and TME are trained to learn the log-normal dis-
tribution of the deseasonalized volume, however, the following metrics are evaluated
on the original scale of the volume, because our aim is to quantify the performance
on the real volume scale, that is of more interest for practical purposes.

In the following definitions, v̂t corresponds to the prediction of the raw volume. v̂t is
derived from the predictive mean of yt multiplied by aI (t), according to the definition
of yt in Sect. 3. For baseline models, the predictive mean of yt is derived from the
mean of logarithmic transformed yt via Eq. 8 used by individual sources in TME. T
is the number of data instances in the testing dataset.

The considered performance metrics are:

RMSE: is the root mean square error as RMSE =
√

1
T

∑T
t=1(vt − v̂t )2.

MAE: is the mean absolute error as MAE = 1
T

∑T
t=1 |vt − v̂t |.

NNLL: is the predictive Negative Log-Likelihood of testing instances normalized
by the total number of testing points. For TME, the likelihood is calculated based on
Eq. 14. For baseline models, the likelihood of the real vt is that of the corresponding
intraday-pattern free yt scaled by 1

aI (t)
, according to the definition in Sect. 3. The

likelihood of yt can be straightforwardly derived from the predictivemean and variance
of ln yt (MacKay and Mac Kay 2003; Cohen and Whitten 1980).

IW: is the averaged width of the prediction intervals of testing instances corre-
sponding to a certain probability. It is meant to evaluate the uncertainty in probabilistic
forecasting. The ideal model is expected to provide tight intervals, which imply the
model is confident in the prediction even if this metric must always be used jointly
with NNLL. Notice that the IW is the width of the confidence interval.

Specifically, in this paper the prediction interval is derived by the quantiles of the
two boundary points defining the probability. We will report the prediction interval
corresponding to 68% probability of the predictive distribution, i.e. the quantiles of
16% and 84%. For TME producing multi-modal distributions, the cumulative distri-
bution function in Eq. 19 enables to numerically obtain the interval. As the baselines
mainly generate unimodal predictive distributions, we can use the quantile function
of the log-normal distribution to obtain the quantiles of intraday pattern-free volume
and consequentially the prediction interval of the real volume.

7 The choice of removing zero volume observations is clearly non optimal and more sophisticated methods
might be adopted. In our case, the fraction of zero volume observations is small enough that the impact of
the removal should be negligible.
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Table 1 Statistics ofGARCH(1,1) parameters (ω,α,β) on log-volume residuals, trainedwithARMA(p, q)-
GARCH(1,1) model for different markets and prediction horizons

BITFINEX ω Std.Err(ω) α Std.Err(α) β Std.Err(β)

1min 0.0177* 0.0011 0.0259* 0.0008 0.9677* 0.0000

5min 0.0119* 0.0015 0.0218* 0.0017 0.9663* 0.0000

10min 0.0062* 0.0011 0.0152* 0.0018 0.9762* 0.0000

BITSTAMP ω Std.Err(ω) α Std.Err(α) β Std.Err(β)

1min 0.0112* 0.0007 0.0203* 0.0006 0.9759* 0.0000

5min 0.0175* 0.0023 0.0277* 0.0022 0.9561* 0.0000

10min 0.0262* 0.0056 0.0291* 0.0042 0.9387* 0.0000

(*) indicate p-values < 10−5 for estimated parameters. Parameters p, q, were selected by minimizing AIC
and are reported in Tables 2, 3 and 4

4.2 Baselinemodels and TME setup

Asmentioned above, we benchmark the performance of TME against two econometric
and one Machine Learning models. We present them below.
ARMA-GARCH is the autoregressive moving average model (ARMA) plus general-
ized autoregressive conditional heteroskedasticity (GARCH) model (Brownlees et al.
2010; Satish et al. 2014; Chen et al. 2016). It is aimed to respectively capture the
conditional mean and conditional variance of the logarithmic volume. Then, the pre-
dictive mean and variance of the logarithmic volume are transformed to the original
scale of the volume for evaluation.

The number of autoregressive and moving average lags in ARMA are selected in
the range from 1 to 10, by minimization of Akaike Information Criterion, while the
orders of lag variances and lag residual errors in GARCH are found to affect the
performance negligibly and thus are both fixed to one. The residual diagnostics for
ARMA-GARCH models is given in the Appendix Figs. 5 and 6.

In Table 1 we report the estimated GARCH parameters in the ARMA-GARCH
model on the log-volume, togetherwith the standard errors and the p-value. All param-
eters are statistically different from zero at all time scales, indicating the significant
existence of heteroskedasticity.
ARMAX-GARCH is the variant ofARMA-GARCHbyadding external feature terms.
In our scenario, external features are obtained by concatenating all features from
order book and transaction data of two exchanges into one feature vector. The hyper-
parameters in ARMAX-GARCH are selected in the sameway as for ARMA-GARCH.
GBM is the gradient boosting machine (Friedman 2001). It has been empirically
proven to be highly effective in predictive tasks across different machine learning
challenges (Gulin et al. 2011; Taieb and Hyndman 2014) and more recently in finance
(Zhou et al. 2015; Sun et al. 2018). The feature vector fed into GBM is also the
concatenation of features from order book and transaction data of two markets.

The hyper-parameters (Pedregosa et al. 2011) of GBM are selected by random
search in the ranges: number of trees in {100, 200, . . . , 1000}, max number of features
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used by individual trees in {0.1, 0.2, . . . , 0.9, 1.0}, minimum number of samples of
the leaf nodes in {2, 3, . . . , 9}, maximum depth of individual trees in {4, 5, . . . , 9},
and the learning rate in {0.005, 0.01, 0.025, 0.05}.
TME is implemented by TensorFlow.8 The hyper-parameters tuned by the random
search process are mainly the learning rate from the continues range [0.0001, 0.001],
batch size in the continues range from 10 to 300, and the l2 regularization term λ

in the continues range from 0.1 to 5.0. The number of model parameter realizations
for building the ensemble is set to 20. Beyond this number, we found no significant
performance improvement. The window length is set to 9, when TME shows desirable
performance in all experiments.

4.3 Results

In this section, we present the results on the predictions of volume in both markets at
different time scales. Tables 2, 3, and 4 show the error metrics on the testing data for
the two markets and the four models. We observe that in all cases the smallest RMSE
is achieved by TMEwhile the smallestMAE is achieved byGBM. Concerning NNLL,
in Bitfinex TME outperforms the other models for 1-min and 5-min cases, while for
Bitstampmarkets econometricmodel have (slightly) lower values. Finally, the smallest
IW is always achieved by TME.

The fact that GBM has superior performance on MAE but not RMSE might be
related to the fact that GBM has been trained to minimize point prediction, while
ARMA-GARCH, ARMAX-GARCH and TME were trained with a maximum likeli-
hood objective, that handles better the larger deviations.

By comparing RMSE and MAE in both markets, we observe that for ARMA-
GARCHmodel in Bitfinex, external features and extra information from Bitstamp are
lowering MAE and RMSE errors (except on 1min interval on Bitfinex market). In
Bitstamp market, for ARMAX-GARCH model external features only help on 1-min
interval prediction. This phenomenon could indicate the one-directional information
relevance across two markets. However, due to the data source specific components
and temporal adaptive weighting schema, our TME is able to yield more accurate
prediction consistently, compared to ARMA-GARCH.

As for NNLL, similar pattern is observed in ARMA-GARCH family, i.e. additional
features impair theNNLLperformance instead, while TME retains comparable perfor-
mance. More importantly, TME has much lower IW. Together with the lower RMSE,
it implies that when TME predicts the mean closer to the observation, the predictive
uncertainty is also lower. Remind that GBM does not provide probabilistic predic-
tions. Overall we find that TME outperforms quite often the baseline benchmarks, by
providing smaller RMSE and tighter intervals.

In order to disentangle the different contributions to TME predictions and, at the
same time, understanding why choosing different predicting features at each time step
is important, we present in Figs. 3 and 4 the predictive volume and interval of 5-min
volume prediction in a sample time period of the testing data for the two markets.
The prediction interval is obtained via the same method as IW, i.e. the quantiles

8 https://github.com/tensorflow/tensorflow.

123

https://github.com/tensorflow/tensorflow


920 N. Antulov-Fantulin et al.

Table 2 Results of 1-min volume prediction

BITFINEX MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(5,5)-GARCH(1,1) 24.547 14.227 2.660 19.123

ARMAX(5,5)-GARCH(1,1) 24.629 14.189 2.664 19.051

GBM 21.026 7.978 NA NA

TME 20.142 10.204 2.654 17.436

BITSTAMP MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(3,3)-GARCH(1,1) 14.587 7.688 1.719 8.637

ARMAX(3,3)-GARCH(1,1) 14.292 7.487 1.719 8.413

GBM 11.740 3.515 NA NA

TME 11.378 4.299 1.720 6.462

The arrow symbols indicate the direction of the metrics for better models. GBM does not provide prob-
abilistic output and thus NNLL and IW results are not available (NA). Results in bold indicate the best
performance among models

Table 3 Results of 5-min volume prediction

BITFINEX MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(3,3)-GARCH(1,1) 64.999 39.909 4.642 80.014

ARMAX(3,3)-GARCH(1,1) 64.456 39.150 4.641 77.999

GBM 64.964 32.888 NA NA

TME 63.855 39.527 4.636 77.738

BITSTAMP MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(5,4)-GARCH(1,1) 38.300 17.606 3.732 32.478

ARMAX(5,4)-GARCH(1,1) 40.273 18.887 3.766 34.821

GBM 39.196 14.714 NA NA

TME 38.223 17.287 3.765 31.087

The arrow symbols indicate the direction of the metrics for better models. GBM does not provide prob-
abilistic output and thus NNLL and IW results are not available (NA). Results in bold indicate the best
performance among models

corresponding to 5% and 95% probability of the predictive distribution. For individual
data sources, the prediction interval is solely based on the predictive distribution by
the corresponding component model of the mixture.

Panel (a) shows how well the TME (pointwise and interval) predictions follows the
actual data. The TME is able to quantify at each time step the contribution of each
source to the target forecasting. In Panel(b) we show the dynamical contribution scores
of the four sources. These scores are simply the average of the probability of the latent
variable value corresponding to each data source, i.e. zt = s. We notice that the rela-
tive contributions varies with time and we observe that the external order book source
from the less liquid market (Bitstamp) does not contribute much to predictions. On the
contrary, in Panel (b) of Fig. 4, where the data for Bitstamp are shown, external order
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Table 4 Results of 10-min volume prediction

BITFINEX MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(3,2)-GARCH(1,1) 112.872 72.505 5.409 148.807

ARMAX(3,2)-GARCH(1,1) 111.987 71.149 5.373 145.024

GBM 110.197 61.506 NA NA

TME 109.878 68.382 5.386 151.797

BITSTAMP MARKET RMSE ↓ MAE ↓ NNLL ↓ IW ↓
ARMA(3,2)-GARCH(1,1) 66.486 31.942 4.452 60.285

ARMAX(3,2)-GARCH(1,1) 68.067 32.795 4.457 62.324

GBM 67.128 27.719 NA NA

TME 66.234 31.460 4.507 60.193

The arrow symbols indicate the direction of the metrics for better models. GBM does not provide prob-
abilistic output and thus NNLL and IW results are not available (NA). Results in bold indicate the best
performance among models

book and external transaction features from the more liquid market (Bitfinex) play a
more dominant role. Then, when we further look at the predictions by individual data
sources in TME, see Panel(c)–(f),9 what we observe is in line with the pattern of con-
tribution scores in Panel (b). For instance, the component model in TME responsible
for the data source frommore liquid Bitfinex captures more uncertainty, thereby being
given high contribution scores in the volatile period. The addition of the features from
the other markets allows to shrink the uncertainty intervals. We have also repeated
these experiments for 1-min and 10-min volume prediction. The results are collected
in the figures and tables in the appendix section.

Finally, we discuss how well the different predictors perform conditionally to the
volume size. To this end, we compute for each model, market, and time interval the
RMSEandMAEconditional to the volume quartile. However, finding the suitablemet-
rics to compare forecasting performance of amodel across different quartiles is a subtle
issue. Take for example a linear model for the log-volume. When considering it as a
model for (linear) volume, it is clear that the additive noise in the log-volume becomes
multiplicative in linear volume. Thus the RMSE conditional to volume becomes pro-
portional to (or increasing as a power-law of) the volume and therefore one expects
to see RMSE for high quartiles to be larger than the one for bottom quartiles. This
is exactly what we observe in Table 5 for 5min horizons (for 1 and 10min, see the
appendix) when looking at RMSE and MAE.

In order to take into account this statistical effect, essentially caused by the choice
of modeling log-volume and presenting error metrics for linear volume, in Table 5 we
show also relative error metrics, namely relative root mean squared error (RelRMSE)
and mean absolute percentage error (MAPE) conditioned to volume quartile. (Rel-

RMSE is defined as
√

1
T

∑T
t=1(

vt−v̂t
vt

)2), and MAPE is defined as 1
T

∑T
t=1 | vt−v̂t

vt
|.) In

9 The log-normal distribution is asymmetric and it is easy to show that the mean value could fall out of the
prediction interval corresponding to the probability range from 5% to 95%. A similar behavior is observed
in the figures for TME whose conditional distribution is a mixture of log-normal distributions.
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Fig. 3 Visualization ofTME in a sample period ofBitfinex for 5-min volumepredicting. Panel (a): Predictive
mean and interval w.r.t. 5% − 95% probability. Panel (b): Data source contribution scores (i.e. average of
latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and interval w.r.t.
5% − 95% probability. The color of each source’s plot corresponds to that of the contribution score in
Panel(b). (best viewed in colors)
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Fig. 4 Visualization of TME in a sample period of Bitstamp for 5-min volume predicting. Panel (a):
Predictive mean and interval w.r.t. 5% − 95% probability. Panel (b): Data source contribution scores (i.e.
average of latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and
interval w.r.t. 5%− 95% probability. The color of each source’s plot corresponds to that of the contribution
score in Panel (b). (best viewed in colors)
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Table 5 5-min volume prediction errors conditional on the quartile of the true volume values

BITFINEX MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 32.862 38.594 43.073 111.660

ARMAX-GARCH 31.939 36.887 41.005 112.020

GBM 17.632 17.332 22.056 125.604

TME 32.200 32.976 35.928 112.280

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 19.417 2.769 1.299 0.609

ARMAX-GARCH 18.845 2.657 1.243 0.594

GBM 12.672 1.268 0.615 0.623

TME 26.235 2.378 1.098 0.578

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 26.781 28.635 29.622 74.576

ARMAX-GARCH 26.145 27.625 28.190 74.612

GBM 14.719 11.985 16.674 88.122

TME 26.317 28.784 23.338 74.484

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 9.506 2.003 0.871 0.497

ARMAX-GARCH 9.272 1.935 0.831 0.493

GBM 5.717 0.846 0.460 0.570

TME 11.424 1.823 0.690 0.503

BITSTAMP MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 13.465 15.304 16.199 72.046

ARMAX-GARCH 14.2 16.835 20.0009 74.8532

GBM 6.432 6.679 8.732 77.317

TME 13.617 14.492 14.583 73.778

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 22.171 2.563 1.175 0.671

ARMAX-GARCH 24.259 2.784 1.429 0.889

GBM 12.578 1.154 0.596 0.658

TME 29.289 2.429 1.084 0.586

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 10.668 11.648 11.020 37.094

ARMAX-GARCH 11.0917 12.275 12.1831 39.9903

GBM 5.037 4.575 6.705 42.506

TME 11.778 11.342 10.138 36.827

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 11.049 1.910 0.792 0.523

ARMA-GARCH 11.656 2.007 0.873 0.603

GBM 5.838 0.755 0.456 0.599

TME 14.117 1.871 0.720 0.493

Measures: RMSEQx root mean squared error conditioned on x th quantile, RelRMSEQx relative root mean squared
error conditionedon x th quantile,MAEQxmeanaverage error conditionedon x th quantile,MAPEQxmeanabsolute
percentage error conditioned on x th quantile
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this case the scenario changes completely. First, across all models the relative error
is smaller for top volume quartiles and larger for bottom quartiles. Especially relative
errors for the lowest quartile are large, likely because small volumes at the denominator
create large fluctuations. Second, andmore important, TMEoutperformsmostly inQ4,
while GBM is superior in Q1, Q2, and Q3 frequently. The difference between models
in Q4 is somewhat smaller, while in Q1-Q3 the out-performance of machine learning
methods is up to a factor 2 with respect to econometric methods. Thus also when
considering large volumes and considering relative errors, TME and GBM provide
more accurate predictions.

5 Conclusion and discussion

In this paper, we analyzed the problem of predicting trading volume and its uncertainty
in cryptocurrency exchange markets. The main innovations proposed in this paper are
(i) the use of transaction and order book data from different markets and (ii) the use of
TME, a class of models able to identify at each time step the set of data locally more
useful in predictions.

By investigating data from BTC/USD exchange markets, we found that time series
models of the ARMA-GARCH family do provide fair basic predictions for volume
and its uncertainty, but when external data (e.g. from order book and/or from other
markets) are added, the prediction performance does not improve significantly. Our
analysis suggests that this might be due to the fact that the contribution of this data to
the prediction could be not constant over time, but depending on the “market state”.
The temporal mixture ensemblemodel is designed precisely to account for such a vari-
ability. Indeed we find that this method outperforms time series models both in point
and in interval predictions of trading volume. Moreover, especially when compared to
other machine learning methods, the temporal mixture approach is significantly more
interpretable, allowing the inference of the dynamical contributions from different
data sources as a core part of the learning procedure. This has important potential
implications for decision making in economics and finance.

Also when conditioning to volume quartile, TME and GBM outperform economet-
ric methods especially in the first three quartiles. For large volumes, likely due to the
presence of unexpected bursts of volume which are very challenging to forecast, the
performances of the methods are more comparable. However by using relative RMSE
and MAPE the forecasting errors for large volumes are small.

Finally, although the method has been proposed and tested for cryptocurrency vol-
ume in two specific exchanges, we argue that it can be successfully applied (in future
work) to other cryptocurrencies and to more traditional financial assets.
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Appendix

ARMAX-GARCH

As mentioned, our benchmarks belong to the ARMAX-GARCH class with external
regressors. More specifically, the volume process is modelled with the following:


(L)(ln(yt ) − μt ) = Θ(L)εt , (21)

where 
(L), Θ(L) denote polynomials of the lag operator L . The time varying mean
μt is modeled as

μt = μ +
S∑

s=1

ds∑

j=1

ψs, j xs,t−1( j) (22)

where xs,t−1( j) denotes the j th feature from external feature vector xs,t−1 at time t−1
from source s. The total number of sources S = 4, which includes transactions and
limit order book data of the two markets. The parameters for ARMAX-GARCH, were
inferred jointly (Ghalanos et al. 2019). Since the variance of volume might exhibit
time clustering, we assume that the residuals εt are modelled by a GARCH process
(Bollerslev 1986; Brownlees et al. 2010; Satish et al. 2014; Chen et al. 2016):

εt = σt et et ∼ N (0, 1) (23)

σ 2
t = ω + αε2t−1 + βσ 2

t−1 (24)

where ω is a constant term.

Gradient boosting

In the following, we summarize how GBM is the used in the context of volume
predicting. For more details of GBM, we suggest referring to Friedman (2001).

At time t , the target label is ut = ln yt+1, is the logarithm of deseasonalized volume
at next time segment. Gradient boosting approximates the target variable ut with a
function F(xt ) that has the following additive expansion (similar to other functional
approximation methods like radial basis functions, neural networks, wavelets, etc.):
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ût = F(xt ) =
M∑

m=0

βmh(xt ; am), (25)

wherext denotes the feature vector, that is constructed as a concatenation fromdifferent
sources10 xt = (xs=1,(−h,t), xs=2,(−h,t), xs=3,(−h,t), xs=4,(−h,t)).

For a given training sample {ut , xt }Tt=1, our goal is to find a function F∗(x) such
that the expected value of loss function 1

2 (u−F(x))2 (squared loss) is minimized over
the joint distribution of {u, x}

F∗(x) = argminF(x) Eu,x(u − F(x))2. (26)

Under the additive expansion F(x) = ∑M
m=0 βmh(x; am) with parameterized func-

tions h(x; am), we proceed by making the initial guess F0(x) = argminc
∑T

t=1(ut −
c)2 and then parameters are jointly fit in a forward incremental way m = 1, . . . , M :

(βm, am) = argminβ,a

T∑

t=1

(ut − (Fm−1(xt ) + βh(xt ; a)))2 (27)

and

Fm(xt ) = Fm−1(xt ) + βmh(xt ; am). (28)

First, the function h(xt ; a) is fit by least-squares to the pseudo-residuals ũt,m

am = argmina,ρ

T∑

t=1

[̃ut,m − ρh(xt ; a)]2, (29)

which at stage m is a residual ũt,m = (ut − Fm−1(xt )). Pseudo-residual at arbitrary
stage is defined as

ũt,m = −
[

∂ 1
2 (ut − F(xt ))2

∂F(xt )

]

F(x)=Fm−1(x)

. (30)

The parameter ρ acts as the optimal learning rate in the steepest-descent step, for more

10 Note, that we have omitted the transpose operators in the next line, as the concatenation is simple
operation and to avoid confusion with index of time.
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details check (Friedman 2001). Now, we just find the coefficient βm for the expansion
as

βm = argminβ

T∑

t=1

1

2
(ut − (Fm−1(xt ) + βh(xt ; am)))2. (31)

Each base learner h(xt ; am), parameterized with am partitions the feature space
xt ∈ X into Lm-disjoint regions {Rl,m}Lm

1 and predicts a separate constant value in
each:

h(xt ; {Rl,m}Lm
1 ) =

Lm∑

l=1

ūl,m1(xt ∈ Rl,m), (32)

where ūl,m is the mean value of pseudo-residual (Eq. 30) in each region Rl,m

ūl,m =
∑T

t=1 ũt,m1[xt ∈ Rl,m]
∑T

t=1 1[xt ∈ Rl,m] . (33)

We have used the GBM implementation from Scikit-learn library (Pedregosa et al.
2011) for all our experiments. Furthermore, note that different variants of tree boosting
have been empirically proven to be state-of-the-art methods in predictive tasks across
different machine learning challenges (Bentéjac et al. 2020; Chen and Guestrin 2016;
Lu and Mazumder 2020; Taieb and Hyndman 2014; Gulin et al. 2011) and more
recently in finance (Zhou et al. 2015; Sun et al. 2018). Note, that although by default
GBM does not provide confidence intervals, we are not claiming that is not possible to
construct confidence intervals for GBM. However, this adaptation falls out-of-scope
of our current work.

SGD-basedmodel ensemble

In stochastic gradient descent (SGD) based optimization, stochasticity comes from
two places:

• SGD trajectory. The iterates {Θ(0), . . . , Θ(i)} forms a exploratory trajectory, as
Θ(i) is updated by randomly data sample Di . Recent works (Mandt et al. 2017;
Gur-Ari et al. 2018) studied the connection of trajectory iterates to an approximate
Markov chain Monte Carlo sampler by analyzing the dynamics of SGD.

• Model initialization. Different initialization of model parameters, i.e. Θ(0), leads
to distinct trajectories. It has been shown that ensembles of independently ini-
tialized and trained models empirically often provide comparable performance in
prediction and uncertainty quantification w.r.t. sampling and variational inference
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based methods, even though it does not apply conventional Bayesian grounding
(Lakshminarayanan et al. 2017; Snoek et al. 2019).

In this paper, we make a hybrid approach, that uses both sources of stochasticity to
obtain parameter realizations {Θm} as follows:

{Θm} �
⋃

j

{Θ j (i), . . . , Θ j (I )} (34)

Equation 34 indicates that from each independently trained SGD trajectory (indexed
by j), we skip the beginning few epochs as a “burn-in” step. We choose the remaining
as samples from this trajectory. Then, we further take the union of samples from
independent trajectories as the samples used by the inference in Sect. 3.5.

In our experiments, we use Adam optimization, a variant of SGD, which has been
widely used in machine learning (Kingma and Ba 2015). We found that 5 to 25 inde-
pendent training processes can give rise to decently accurate and calibrated forecasting.
Moreover, by parallel computing onGPU, we perform each training process in parallel
without loss of efficiency.

Residual diagnostics of ARMA-GARCHmodels

In Figs. 5 and 6, we show auto-correlation function of the residuals for Bitfinex and
Bitstamp market, respectively. In all cases of ARMA(p, q)-GARCH(1,1) models,
parameters p, q were fitted to Akaike Information Criterion. For 1min, 5min and
10min target the majority of residuals ACF are within significance area and only a
small number falls very close to the significance area, which suggests that the residuals
are almost uncorrelated and models well specified.

Disentangling TME contributions on 1- and 10-min intervals

We report in Figs. 7 and 8 the contributions to TME prediction in the two markets
when the sampling interval is 1min, while in Figs. 9 and 10 the same figures for 10min
intervals.

Volume predictions conditional to volume quartile

Tables 6 and 7 show the performance of the forecast conditioned to volume quartile
for the four models and the two markets. As in Table 5 in the main text, we present
both absolute metrics (RMSE andMAE) and relative ones (relative MSE andMAPE).
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Fig. 5 Residual diagnostics for Bitfinex market: First row ACF of ARMA(3,2)-GARCH(1,1) model
residuals on log-volume 10min. Second row ACF of ARMA(3,3)-GARCH(1,1) model residuals on log-
volume 5min. Third row ACF of ARMA(5,5)-GARCH(1,1) model residuals on log-volume 1min

123



Temporal mixture ensemble for cryptocurrency intraday… 931

Fig. 6 Residual diagnostics for Bitstamp market: First row ACF of ARMA(3,2)-GARCH(1,1) model
residuals on log-volume 10min. Second row ACF of ARMA(5,4)-GARCH(1,1) model residuals on log-
volume 5min. Third row ACF of ARMA(3,3)-GARCH(1,1) model residuals on log-volume 1min
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Fig. 7 Visualization ofTME in a sample period ofBitfinex for 1-min volumepredicting. Panel (a): Predictive
mean and interval w.r.t. 5%−−95% probability. Panel (b): Data source contribution scores (i.e. average of
latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and interval w.r.t.
5%–95% probability. The color of each source’s plot corresponds to that of the contribution score in Panel
(b). (best viewed in colors)
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Fig. 8 Visualization of TME in a sample period of Bitstamp for 1-min volume predicting. Panel (a):
Predictive mean and interval w.r.t. 5%–95% probability. Panel (b): Data source contribution scores (i.e.
average of latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and
interval w.r.t. 5%–95% probability. The color of each source’s plot corresponds to that of the contribution
score in Panel(b). (best viewed in colors)
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Fig. 9 Visualization of TME in a sample period of Bitfinex for 10-min volume predicting. Panel (a):
Predictive mean and interval w.r.t. 5%–95% probability. Panel (b): Data source contribution scores (i.e.
average of latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and
interval w.r.t. 5%–95% probability. The color of each source’s plot corresponds to that of the contribution
score in Panel (b). (best viewed in colors)
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Fig. 10 Visualization of TME in a sample period of Bitstamp for 10-min volume predicting. Panel (a):
Predictive mean and interval w.r.t. 5%–95% probability. Panel (b): Data source contribution scores (i.e.
average of latent variable probabilities) over time. Panel (c)–(f): Each data source’s predictive mean and
interval w.r.t. 5%–95% probability. The color of each source’s plot corresponds to that of the contribution
score in Panel (b). (best viewed in colors)
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Table 6 1-min volume prediction errors conditional on the quantile of the true volume values

BITFINEX MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 13.618 17.314 20.287 38.903

ARMAX-GARCH 13.601 17.350 20.206 39.141

GBM 2.159 2.907 4.323 41.671

TME 8.700 10.032 10.154 36.916

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 93998.678 16.755 4.992 1.427

ARMAX-GARCH 96451.132 16.508 4.973 1.425

GBM 22735.646 2.764 0.968 0.754

TME 26968.219 9.269 2.539 0.737

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 9.173 11.300 12.659 23.777

ARMAX-GARCH 9.158 11.249 12.556 23.791

GBM 1.540 1.665 3.054 25.652

TME 8.225 8.620 7.252 20.629

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 1319.606 10.151 2.989 0.858

ARMAX-GARCH 1344.985 10.097 2.966 0.855

GBM 296.446 1.502 0.646 0.707

TME 318.682 7.372 1.692 0.568

BITSTAMP MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 8.2704 8.9885 11.0034 24.1002

ARMAX-GARCH 7.9412 8.6546 10.5348 23.8335

GBM 0.929 1.085 1.721 23.373

TME 3.047 3.426 3.540 22.005

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 16842.969 27.709 6.423 1.974

ARMAX-GARCH 16501.630 26.679 6.135 1.923

GBM 2082.545 3.190 0.845 0.786

TME 7279.497 10.951 2.107 0.696

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 5.400 6.125 7.003 12.223

ARMAX-GARCH 5.239 5.944 6.778 11.985

GBM 0.599 0.605 1.316 11.540

TME 2.664 2.780 2.259 9.615

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 1043.922 17.211 3.891 1.097

ARMAX-GARCH 1018.872 16.694 3.767 1.066

GBM 118.256 1.720 0.632 0.741

TME 500.100 8.035 1.301 0.571

Measures: RMSE Qx root mean squared error conditioned on x th quantile, RelRMSE Qx relative root mean
squared error conditioned on x th quantile,MAE Qxmean average error conditioned on x th quantile,MAPE
Qx mean absolute percentage error conditioned on x th quantile
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Table 7 10-min volume prediction errors conditional on the quartile of the true volume values

BITFINEX MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 61.494 70.540 74.188 191.332

ARMAX-GARCH 59.438 67.474 71.237 192.155

GBM 39.380 39.576 46.774 207.957

TME 57.252 64.705 67.354 185.136

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 9.262 1.998 1.037 0.544

ARMAX-GARCH 8.822 1.911 0.990 0.538

GBM 6.154 1.136 0.587 0.571

TME 11.434 1.878 0.945 0.543

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 50.542 54.148 53.169 131.891

ARMAX-GARCH 48.985 52.116 51.257 132.081

GBM 33.788 28.760 34.892 148.550

TME 46.680 48.797 43.890 128.578

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 5.109 1.503 0.705 0.462

ARMAX-GARCH 4.938 1.448 0.678 0.461

GBM 3.561 0.804 0.434 0.518

TME 6.739 1.499 0.590 0.465

BITSTAMP MARKET RMSE Q1 RMSE Q2 RMSE Q3 RMSE Q4

ARMA-GARCH 25.000 27.672 27.541 124.527

ARMAX-GARCH 24.963 29.748 29.545 126.985

GBM 14.355 14.700 16.749 131.497

TME 25.469 27.221 24.905 123.804

RelRMSE Q1 RelRMSE Q2 RelRMSE Q3 RelRMSE Q4

ARMA-GARCH 7.210 1.860 0.949 0.619

ARMAX-GARCH 6.926 1.974 0.984 0.739

GBM 5.638 0.993 0.541 0.625

TME 12.308 1.838 0.858 0.574

MAE Q1 MAE Q2 MAE Q3 MAE Q4

ARMA-GARCH 20.014 21.343 19.398 66.899

ARMAX-GARCH 19.633 21.685 19.718 70.021

GBM 11.622 10.490 12.965 75.674

TME 21.233 20.034 17.787 64.918

MAPE Q1 MAPE Q2 MAPE Q3 MAPE Q4

ARMA-GARCH 4.866 1.410 0.646 0.487

ARMAX-GARCH 4.716 1.429 0.653 0.528

GBM 3.341 0.695 0.414 0.555

TME 7.205 1.457 0.550 0.478

Measures: RMSE Qx root mean squared error conditioned on x th quantile, RelRMSE Qx relative root mean
squared error conditioned on x th quantile,MAE Qxmean average error conditioned on x th quantile,MAPE
Qx mean absolute percentage error conditioned on x th quantile
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Bentéjac, C., Csörgő, A., Martinez-Munoz, G.: A comparative analysis of gradient boosting algorithms.
Artif. Intell. Rev. 54 1–31 (2020)

Bialkowski, J., Darolles, S., Le Fol, G.: Improving vwap strategies: A dynamic volume approach. J. Banking
Finance 32(9), 1709–1722 (2008)

Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econom. 31(3), 307–327 (1986)
Bollerslev, T., Ghysels, E.: Periodic autoregressive conditional heteroscedasticity. J. Business Econom. Stat.

14(2), 139–151 (1996)
Bolt, W., Van Oordt, M.R.C.: On the value of virtual currencies. J Money Credit Bank 52(4), 835–862

(2020)
Bos, J.W., Halderman, J.A., Heninger, N.,Moore, J., Naehrig,M.,Wustrow, E.: “Elliptic curve cryptography

in practice,” In: International Conference on Financial Cryptography and Data Security. Springer, pp.
157–175 (2014)

Brownlees, C.T., Cipollini, F., Gallo, G.M.: Intra-daily volume modeling and prediction for algorithmic
trading. J. Financial Econom. 9(3), 489–518 (2010)

Calvori, F., Cipollini, F., Gallo, G.M.: “Go with the flow: A gas model for predicting intra-daily volume
shares,” Available at SSRN 2363483 (2013)

Chaboud, A.P., Chiquoine, B., Hjalmarsson, E., Vega, C.: Rise of the machines: Algorithmic trading in the
foreign exchange market. J. Finance 69(5), 2045–2084 (2014)

Cheah, E.-T., Fry, J.: Speculative bubbles in bitcoinmarkets? an empirical investigation into the fundamental
value of bitcoin. Econom. Lett. 130, 32–36 (2015)

Chen, R., Feng, Y., Palomar, D.: “Forecasting intraday trading volume: A kalman filter approach,” Available
at SSRN 3101695, (2016)

Chen, T., Guestrin, C.:“Xgboost: A scalable tree boosting system,” In: Proceedings of the 22ndACMSigkdd
International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

Chu, J., Nadarajah, S., Chan, S.: Statistical analysis of the exchange rate of bitcoin. PLoS ONE 10(7), 1–27
(2015)

Ciaian, P., Rajcaniova, M., Kancs, D.: The economics of bitcoin price formation. Appl. Econom. 48, 1799–
1815 (2016)

Cohen, A.C., Whitten, B.J.: Estimation in the three-parameter lognormal distribution. J. Am. Stat. Assoc.
75(370), 399–404 (1980)

123

http://arxiv.org/abs/1805.08550
http://arxiv.org/abs/1901.02327
http://arxiv.org/abs/1603.08199


Temporal mixture ensemble for cryptocurrency intraday… 939

Donier, J., Bouchaud, J.-P.: Why do markets crash? bitcoin data offers unprecedented insights. PLoS ONE
10, 1–11 (2015)

ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R., Baronchelli, A.: Evolutionary dynamics
of the cryptocurrency market. Royal Soc. Open Sci. 4(11), 170623 (2017)

Engle, R.: New frontiers for arch models. J. Appl. Econom. 17(5), 425–446 (2002)
Engle, R.F., Sokalska,M.E.: Forecasting intraday volatility in the us equitymarketmultiplicative component

garch. J. Financial Econom. 10(1), 54–83 (2012)
Frei, C., Westray, N.: Optimal execution of a vwap order: a stochastic control approach. Math. Finance

25(3), 612–639 (2015)
Friedman, J.H.: “Greedy function approximation: a gradient boosting machine,” Ann. Stat. 29, 1189–1232

(2001)
Garcia, D., Schweitzer, F.: Social signals and algorithmic trading of bitcoin. Royal Society Open Science

2(9), 150288 (2015)
Gerlach, J.-C., Demos, G., Sornette, D.: Dissection of bitcoin’s multiscale bubble history from January

2012 to February 2018. Royal Soc. Open Sci. 6(7), 180643 (2019)
Ghalanos, A., Ghalanos, M.A., Rcpp, L.: “Package ‘rugarch’,” (2019)
Gould, M.D., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D.: Limit order books.

Quant. Finance 13(11), 1709–1742 (2013)
Gulin, A., Kuralenok, I., Pavlov, D.: “Winning the transfer learning track of yahoo!’s learning to rank

challenge with yetirank,” In: Proceedings of the Learning to Rank Challenge, pp. 63–76 (2011)
Guo, T., Bifet, A., and Antulov-Fantulin, N.:“Bitcoin volatility forecasting with a glimpse into buy and sell

orders,” In: 2018 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 989–994 (2018)
Guo, T., Lin, T., Antulov-Fantulin, N.: “Exploring interpretable lstm neural networks over multi-variable

data,” In: International Conference on Machine Learning, pp. 2494–2504, (2019)
Gur-Ari, G., Roberts, D. A., Dyer, E.: “Gradient descent happens in a tiny subspace,” arXiv preprint

arXiv:1812.04754 (2018)
Hendershott, T., Jones, C., Menkveld, A.: Does algorithmic trading improve liquidity? J. Finance 66(1),

1–33 (2011)
Hougan, M., Kim, H., Lerner, M., Management, B.A.: “Economic and non-economic trading in bitcoin:

Exploring the real spot market for the world’s first digital commodity,” Bitwise Asset Management,
(2019)

Jakobsson, M., Juels, A.: “Proofs of work and bread pudding protocols,” In: Preneel, B. (ed.) Secure
Information Networks. Springer, pp. 258–272 (1999)

Jang, H., Lee, J.: An empirical study on modeling and prediction of bitcoin prices with bayesian neural
networks based on blockchain information. IEEE Access 6, 5427–5437 (2018)

Katsiampa, P.: Volatility estimation for bitcoin: A comparison of GARCH models. Econom. Lett. 158, 3–6
(2017)

Kawakatsu, H.: Direct multiperiod forecasting for algorithmic trading. J. Forecasting 37(1), 83–101 (2018)
Kingma, D.P., Ba, J.: “Adam: A method for stochastic optimization,” In: International Conference on

Learning Representations (2015)
Kondor, D., Csabai, I., Szule, J., Posfai, M., Vattay, G.: Inferring the interplay between network structure

and market effects in bitcoin. New J. Phys. 16, 125003 (2014)
Kurle, R., Günnemann, S., van der Smagt, P.: “Multi-source neural variational inference,” In: Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4114–4121 (2019)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: “Simple and scalable predictive uncertainty estimation

using deep ensembles,” In: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., Garnett, R. (eds.) Proceedings of the 31st Conference on Neural Information Processing
Systems (NIPS 2017), Long Beach, CA, USA, pp. 6402–6413 (2017)

Lu, H., Mazumder, R.: Randomized gradient boosting machine. SIAM J. Optim. 30(4), 2780–2808 (2020)
MacKay, D.J., Mac Kay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge Uni-

versity Press, Cambridge (2003)
Maddox, W.J., Izmailov, P., Garipov, T., Vetrov, D. P., Wilson, A. G.: “A simple baseline for bayesian

uncertainty in deep learning,” In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Proceedings of the 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), Vancouver, Canada, pp. 13 132–13 143 (2019)

Mandt, S., Hoffman, M.D., Blei, D.M.: Stochastic gradient descent as approximate bayesian inference. J.
Mach. Learn. Res. 18(1), 4873–4907 (2017)

123

http://arxiv.org/abs/1812.04754


940 N. Antulov-Fantulin et al.

Mayer, H.: “Ecdsa security in bitcoin and ethereum: a research survey,” CoinFaabrik, June, vol. 28, p. 126,
(2016)

Nakamoto, S.: “Bitcoin: A peer-to-peer electronic cash system,” [Online]. Available: http://bitcoin.org/
bitcoin.pdf (2008)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Rambaldi, M., Bacry, E., Lillo, F.: The role of volume in order book dynamics: a multivariate hawkes
process analysis. Quant. Finance 17(7), 999–1020 (2016)

Ron, D., Shamir, A.: “Quantitative analysis of the full bitcoin transaction graph,” In: International Confer-
ence on Financial Cryptography and Data Security. Springer, pp. 6–24 (2013)

Ruder, S.: “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747,
2016

Satish, V., Saxena, A., Palmer, M.: Predicting intraday trading volumeand volume percentages. J. Trading
9(3), 15–25 (2014)

Schwab, P., Miladinovic, D., Karlen, W.: “Granger-causal attentive mixtures of experts: Learning important
features with neural networks,” In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 4846–4853 (2019)

Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B., Nowozin, S., Sculley, D., Dillon, J., Ren, J., Nado,
Z.: “Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift,” In:
Wallach,H., Larochelle,H.,BeygelzimerA., d’Alché-Buc, F., Fox,E.,Garnett,R. (eds.) Proceedings of
the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada,
pp. 13 969–13 980 (2019)

Sun,X., Liu,M., Sima, Z.: A novel cryptocurrency price trend forecastingmodel based on lightgbm. Finance
Res. Lett. (2018)

Taieb, S.B., Hyndman, R.J.: A gradient boosting approach to the kaggle load forecasting competition. Int.
J. Forecast. 30(2), 382–394 (2014)

Urquhart, A.: The inefficiency of bitcoin. Econom. Lett. 148, 80–82 (2016)
Waterhouse, S., MacKay, D., Robinson, T.: Bayesian methods for mixtures of experts. In: Touretzky, D.,

Mozer, M.C., Hasselmo, M. (eds.) Proceedings of the 8th International Conference on Neural Infor-
mation Processing Systems (NIPS’95), pp. 351–357. MIT Press, Cambridge, MA, USA (1995)

Wei, X., Sun, J., Wang, X.: “Dynamic mixture models for multiple time-series.” In: IJCAI, vol. 7, (2007),
pp. 2909–2914

Wheatley, S., Sornette, D., Huber, T., Reppen, M., Gantner, R.N.: Are bitcoin bubbles predictable? combin-
ing a generalized metcalfe’s law and the log-periodic power law singularity model. Royal Soc. Open
Sci. 6(6), 180538 (2019)

Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE Trans. Neural Netw.
Learning Syst. 23, 1177–1193 (2012)

Zhou, N., Cheng,W., Qin, Y., Yin, Z.: Evolution of high-frequency systematic trading: a performance-driven
gradient boosting model. Quant. Finance 15(8), 1387–1403 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1609.04747

	Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume
	Abstract
	1 Introduction
	2 Multiple market cryptocurrency data
	3 Models
	3.1 Problem setting
	3.2 Overview of TME
	3.3 Model specification
	3.4 Learning
	3.5 Prediction

	4 Experiments
	4.1 Data and metrics
	4.2 Baseline models and TME setup
	4.3 Results

	5 Conclusion and discussion
	Acknowledgements
	Appendix
	ARMAX-GARCH
	Gradient boosting
	SGD-based model ensemble
	Residual diagnostics of ARMA-GARCH models
	Disentangling TME contributions on 1- and 10-min intervals
	Volume predictions conditional to volume quartile

	References




