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ABSTRACT
We introduce the concept of Kohn–Sham fragment localized molecular orbitals (KS-FLMOs), which are Kohn–Sham molecular orbitals
(MOs) localized in specific fragments constituting a generic molecular system. In detail, we minimize the local electronic energies of various
fragments, while maximizing the repulsion between them, resulting in the effective localization of the MOs. We use the developed KS-FLMOs
to propose a novel energy decomposition analysis, which we name Kohn–Sham fragment energy decomposition analysis, which allows for
rationalizing the main non-covalent interactions occurring in interacting systems both in vacuo and in solution, providing physical insights
into non-covalent interactions. The method is validated against state-of-the-art energy decomposition analysis techniques and with high-level
calculations.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0216596

I. INTRODUCTION

Understanding intermolecular interactions is fundamental for
shedding light on various chemical and biological phenomena.1
Non-covalent interactions drive various metabolic pathways and
influence many physicochemical properties of materials and liquids,
including their response to light.2–6 To investigate embedded sys-
tems, most theoretical approaches rely on a chemically intuitive,
hierarchical breakdown of the system under study,5,7,8 under the
assumption that the properties of interest, ranging from energetics to
spectroscopy, are generally localized to specific system components,
as in the case of localized electronic excitations.9–15 To conceptual-
ize these localized properties, localized molecular orbitals (LMOs)
are often exploited,12,16–22 serving as a conceptual bridge between
chemical intuition and theoretical frameworks.20,22–25

In this work, we present a novel category of LMOs, specifically
designed to be localized within specific fragments of molecular sys-
tems, as rooted in density functional theory (DFT) frameworks. We
refer to these as Kohn–Sham fragment localized molecular orbitals
(KS-FLMOs). This theory builds upon the same principles as our
previously introduced FLMOs defined at the Hartree–Fock (HF)26,27

level but translated in a KS-DFT picture. The method is based on
the reformulation of the DFT energy for a system composed of mul-
tiple fragments. The local electronic KS energy of each fragment
is then minimized while maintaining the total energy of the sys-
tem constant. The minimization process inherently maximizes the
repulsion between the fragments, thus resulting in molecular orbitals
(MOs) that are substantially localized to individual fragments.27 Our
methodology adopts a top–down variational approach, which local-
izes canonical KS MOs through an energy-based procedure, thus
differentiating from other fragment localization techniques.28–33

KS-FLMOs enable the calculation of local properties and
energetics of interacting fragments. Here, they are exploited to
introduce a novel energy decomposition analysis, which we name
Kohn–Sham fragment energy decomposition analysis (KS-FEDA).
The development of EDA methods has attracted much inter-
est in the literature because decomposing the interaction energy
in terms of physically consistent quantities allows for an in-
depth investigation and rationalization of the dominant contribu-
tions regulating many chemical and biological phenomena.12,34–46

EDA methods can be categorized into variational-,17,40,47–55

perturbation-,56–59 or real-space-based60–62 approaches. Varia-
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tional methods have been pioneered by Kitaura–Morokuma-EDA
(KM-EDA),47 which decomposes the interaction energy at the HF
level, by considering electrostatic, exchange, polarization, charge-
transfer, and mixed terms. Many EDA techniques belong to this
group, differing in how the self-consistent energy components
are determined. Led by symmetry-adapted perturbation theory
(SAPT),57,58,63 perturbation methods analyze intermolecular inter-
actions using perturbation theory, under the assumption of their
small magnitude. Real-space methods partition the physical space
into domains based on interacting electron densities.62 Similar to
KS-FEDA, some EDA techniques, such as the local energy decompo-
sition (LED)41,64–67 and LMO-EDA36,68–70 methods, exploit localized
MOs to decompose the interaction energy. LED is based on the
DLPNO approach for CCSD(T) and permits the decomposition of
the entire interaction energy, by localizing the MOs with standard
procedures (such as Boys20 or Pipek–Mezey21) and assigning them
to the interacting fragments. LMO-EDA is a method merging varia-
tional EDA with perturbation theory, adaptable to both HF and KS
localized orbitals.36

KS-FEDA decomposes the self-consistent DFT energy by first
localizing the MOs on the specific fragments by means of the KS-
FLMOs procedure. The interaction energy is dissected in terms
of electrostatics, exchange, correlation, and electronic-preparation
energies, the latter accounting for the energy spent to bring the
monomers into the final electronic configuration of the super-
molecule. Dispersion energy is also accounted for by resorting to
the charge-dependent London-dispersion correction D4 model;71–73

however, the method is general and can be coupled to more sophisti-
cated dispersion approaches, such as Tkatchenko–Scheffler,74 many-
body dispersion,75 non-local functionals, or double hybrids.76,77 The
KS-FEDA partition is conceptually similar to that proposed in the
LED technique (at the SCF level),64 but defined in a KS-DFT for-
malism. For this reason, we label this novel EDA KS-FEDA(LED).
The KS-FEDA energy decomposition is performed by using KS-
FLMOs, which are orthogonal by definition.27 This is similar to
other energy decompositions (e.g., LED) but differs from most EDA
techniques, in which the MOs belonging to different fragments
are generally non-orthogonal. This implies that the interactions are
computed with relaxed, distorted molecular densities.38 This is also
similar to absolutely localized MO-EDA.17,38,78–80 As a consequence,
the multipoles that reproduce the electrostatic interaction vary as a
function of the intermolecular distance. To properly compare our
approach to conventional EDA methods, we thus introduce a further
partitioning of the KS-FEDA(LED) energetic terms by introduc-
ing frozen (derived from the monomers’ undistorted densities) and
induced energy contributions, which are divided into two parts:
one arising from imposing the proper antisymmetry of the total
wave function and one arising from the self-consistent orbital relax-
ation. The resulting partitioning defines the KS-FEDA technique.
KS-FEDA energetic contributions can be directly compared to
conventional EDA techniques, also offering the possibility of
investigating the effects of antisymmetry on each energetic com-
ponent. Similar to other EDAs, such as extended transition
state combined with natural orbitals for chemical valence (ETS-
NOCV)-based approaches,81,82 KS-FEDA allows the dissection of
the interaction energy into meaningful components represent-
ing different steps toward the dimer formation from the isolated
fragments.

Finally, we extend the KS-FLMO procedure and the related
KS-FEDA method to study non-covalent interactions of molecular
systems in solution, by exploiting the polarizable continuum model
(PCM)83–85 in its integral equation formalism (IEF).86 In KS-FEDA,
the solvent modifies the density and the KS-FLMOs of monomers,
thus indirectly affecting all the energetic components, as well as
providing an explicit solvation term due to mutual solute–solvent
polarization.

The paper is structured as follows: first, the KS-FLMOs theory is
developed for a generic hybrid functional, followed by the derivation
of the KS-FEDA technique both in vacuo and in solution. Follow-
ing this, we briefly summarize the computational details, and we
evaluate the novel KS-FEDA scheme on widely exploited datasets
for non-covalent interactions, such as A24,87 S22,88 and IHB15.89

Conclusions and future perspectives end the manuscript.

II. THEORETICAL MODEL
A. Kohn–Sham fragment localized molecular orbitals

The DFT energy of a molecular system for a generic DFT
functional reads

E[D] = Tr hD +
1
2

Tr DJ(D) −
1
2

cx Tr DK(D)

+ (1 − cx)Ex[D] + Ec[D], (1a)

= Tr hD +
1
2

Tr DJ(D) −
1
2

Tr DK(D)

+ (1 − cx)(Ex[D] − EHF,x
[D]) + Ec[D], (1b)

where h, J, and K are the one-electron, Coulomb, and exchange
matrices, respectively. D is the one-particle density matrix expressed
in the atomic orbitals (AO) basis {χμ}, while ρ(r) is the DFT den-
sity function. The DFT functional is specified by Ex and Ec exchange
and correlation energy functionals, while EHF,x

[D] is the exact HF
exchange. The coefficient cx defines whether pure DFT (cx = 0)
or hybrid DFT functionals (cx ≠ 0) are used. It should be noted
that Eq. (1b) is well-defined in a generalized Kohn–Sham (GKS)
formalism,90,91 which is flexible enough to account for nonlocal
functionals, including hybrid, double hybrid, and range-separated
types.91 The Ex[D] and Ec[D] energies introduced in Eq. (1) can be
written as

(1 − cx)Ex[D] = (1 − cx)∫ ρ(r)εx(ρ(r))dr

−
β
2

Tr DKLR
(D), (2a)

Ec[D] = ∫ ρ(r)εc(ρ(r))dr, (2b)

where εx and εc are the exchange energy densities per unit particle,
respectively. KLR accounts for DFT long-range (LR) correction in
terms of the HF exchange integral using the erf(ωrij)/rij operator.
β and ω parameters define the specific range-separated
functional.92–94 The correlation energy functional is generally
written in terms of the correlation energy density per unit particle
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εc, however, for double-hybrids and non-local functionals, can
also account for MP2 and non-local corrections.76,77 The present
approach is general enough to consider such energy terms, but
will not be explicitly considered in the following derivation. By
considering Eq. (2), we can rewrite the total energy defined in
Eq. (1a) as

E[D] = Tr hD +
1
2

Tr DJ(D) −
1
2

cx Tr DK(D)

+ (1 − cx)∫ ρ(r)εx(ρ(r))dr −
β
2

Tr DKLR
(D)

+ ∫ ρ(r)εc(ρ(r))dr

= Tr hD +
1
2

Tr DJ(D) −
1
2

cx Tr DK(D)

+ ∫ ρ(r)εxc(ρ(r))dr −
β
2

Tr DKLR
(D), (3)

where the exchange and correlation energy functionals per unit par-
ticle are collected in εxc. Let us now consider a system that can be
decomposed into two closed-shell fragments A and B, e.g., two non-
covalently interacting molecules. Such a fragment partitioning can
be obtained by decomposing the density matrix of the whole sys-
tem D into the density matrices of the two fragments (DA and DB),
reflected into an equivalent decomposition on the density functions
ρ(r),

D = DA
+DB

⇒ ρ(r) = ρA
(r) + ρB

(r). (4)

The decomposition in Eq. (4) can be performed using different
methods. In this work, we use a partial Cholesky decomposition of
the total density matrix for the A and B occupied molecular orbitals
(MOs), from which the density matrices DA and DB are calculated
(vide infra).26,95–98 In this way, we ensure that A and B MOs remain
orthogonal in the subsequent SCF procedures.99

Equation (3) can be rewritten by using the partition in
Eq. (4),100,101

E = Tr hDA
+

1
2

Tr DAJ(DA
) −

1
2

cx Tr DAK(DA
)

+ ∫ ρA
(r)εxc(ρA

(r))dr −
β
2

Tr DAKLR
(DA
)

+ Tr hDB
+

1
2

Tr DBJ(DB
) −

1
2

cx Tr DBK(DB
)

+ ∫ ρB
(r)εxc(ρB

(r))dr −
β
2

Tr DBKLR
(DB
)

+ ∫ ρA
(r)εxc(ρB

(r))dr + ∫ ρB
(r)εxc(ρA

(r))dr

+ Tr DAJ(DB
) − cx Tr DAK(DB

) − β Tr DAKLR
(DB
)

+ EAB
non−add + hnuc. (5)

The last term EAB
non−add originates from the non-linearity of εx and εc

energy functionals per unit particle, and it is defined as100

EAB
non−add = ∫ ρ(r)εxc(ρ(r))dr − ∫ ρ(r)εxc(ρA

(r))dr

− ∫ ρ(r)εxc(ρB
(r))dr. (6)

As can be seen from Eq. (5), the energy of the total system is
formally equivalent to the DFT energy if the decomposed density
D corresponds to the fully converged DFT density.

Equation (5) can be partitioned into three terms, the energy of
the fragments and their interaction energy, by separating the one-
electron terms into the kinetic T and electron–nuclear interaction
VA and VB with the A and B nuclei, respectively. Such three energy
contributions read

E = EA
(AB) + EB

(AB) + EAB
int,(AB), (7a)

EA
(AB) = Tr hADA

+
1
2

Tr DAJ(DA
) −

1
2

cx Tr DAK(DA
)

+ ∫ ρA
(r)εxc(ρA

(r))dr −
β
2

Tr DAKLR
(DA
) + hA

nuc, (7b)

EB
(AB) = Tr hBDB

+
1
2

Tr DBJ(DB
) −

1
2

cx Tr DBK(DB
)

+ ∫ ρB
(r)εxc(ρB

(r))dr −
β
2

Tr DBKLR
(DB
) + hB

nuc, (7c)

EAB
int,(AB) = Tr VADB

+ Tr VBDA
+ Tr DAJ(DB

)

− cx Tr DAK(DB
) − β Tr DAKLR

(DB
)

+ ∫ ρA
(r)εxc(ρB

(r))dr + ∫ ρB
(r)εxc(ρA

(r))dr

+ EAB
non−add + hAB

nuc, (7d)

where hA
nuc and hB

nuc are the nuclear repulsion of the A and B frag-
ments, respectively, while hAB

nuc is the nuclear repulsion between the
A and B nuclei. In Eqs. (7b) and (7c), we have introduced the frag-
ment one-electron Hamiltonian hX

= T +VX, X = {A, B}. It should
be noted that we have introduced the (AB) label, indicating that all
the energies are computed by using fragment densities relaxed in the
dimer electronic structure.

The partitioning in Eq. (7a) provides the basis for an energy-
based localization of the MOs on the specific fragment regions
(A and B). In fact, a rotation among the occupied MOs does not
change the total energy. Thus, by minimizing the sum of the frag-
ment energies (EA

+ EB
) in the space spanned by the occupied MOs,

their interaction energy (EAB
int ), and thus their repulsion, is maxi-

mized while keeping the total energy E constant.26,27,102 Therefore,
the resulting MOs are confined to the pre-defined A and B spatial
regions and those are maximally localized within the fragment space
because they are obtained by maximizing the interaction between
the two fragments. For this reason, by recalling the nomenclature
introduced in Ref. 27 at the Hartree–Fock level, we name them
Kohn–Sham Fragment Localized Molecular Orbitals (KS-FLMOs).
In physical terms, the minimization of the local electronic energies
of the fragments is carried out at the cost of maximizing the repul-
sion between them. A similar idea has also been proposed in Ref. 103
to separate the frozen density into isolated fragment contributions.
We recall that by a rotation in the occupied MO space, the total
density matrix D = DA +DB remains constant. Thus, the sum of
the fragment energies [EA

+ EB defined in Eqs. (7b) and (7c)] can be
reformulated in terms of the total and A fragment density matrices
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and functions by using Eq. (4) [DB
= D −DA, ρB

(r) = ρ(r) − ρA
(r)],

yielding

EA
+ EB

= Tr (VA
−VB
)DA
+ Tr DAJ(DA

) − cx Tr DAK(DA
)

+ ∫ ρA
(r)εxc(ρA

(r))dr − β Tr DAKLR
(DA
)

+ ∫ (ρ(r) − ρA
(r))εxc(ρ(r) − ρA

(r))dr

− Tr DAJ(D) + cx Tr DAK(D) + β Tr DAKLR
(D)

+ Tr hBD +
1
2

Tr DJ(D) −
1
2

cx Tr DK(D)

−
β
2

Tr DKLR
(D) + hA

nuc + hB
nuc. (8)

Since the total density matrix, and consequently, the total den-
sity function ρ(r), remains constant, we can calculate the Fock
matrix elements in atomic orbital basis (AO, {χμ}) by functionally
differentiating the energy in Eq. (8) with respect to DA and ρA

(r),

Fμν = VA
μν − VB

μν + 2Jμν(DA
) − 2cxKμν(DA

)

+ ∫ vxc(ρA
(r))χμ(r)χν(r)dr − 2βKLR

μν (D
A
)

− ∫ vxc(ρ(r) − ρA
(r))χμ(r)χν(r)dr

− Jμν(D) + cxKμν(D) + βKLR
μν (D), (9)

where vxc = vc + (1 − cx)vx is the exchange-correlation potential
density. It should be noted that the last two terms are one-electron
terms entering the Fock matrix since the total density matrix (D)
remains fixed during the SCF localization optimization.

In this work, the formulation of KS-FLMOs is presented for
the particular case of two interacting fragments, which is used in
the following for the numerical applications. However, the method
is general and can be formulated to the general case of N interact-
ing fragments, even covalently, similar to what we have previously
reported in the HF framework.27

Summarizing, the KS-FLMOs are obtained by using the
following computational protocol.

1. Partitioning of a given idempotent AO density matrix of a
dimer into A and B density matrices, using Cholesky decom-
position for the A and B occupied orbitals.14,99,104–107 To
obtain the guess orthogonal orbitals, other methods can also
be exploited, for instance, by resorting to MO localization pro-
cedures.26 However, the Cholesky decomposition is unique if
the same pivots are used and guarantees the potential energy
surface continuity as compared to other localization proce-
dures.26 Generally, the density matrix of the dimer is obtained
by minimizing the total DFT energy defined in Eq. (1). How-
ever, different density matrices can be exploited, as it is done
in multilevel methods.100,101 The Cholesky decomposition is
performed by selecting the diagonal elements corresponding
to the AO basis functions centered on the pre-defined A and
B atoms.96,99,100 In particular, DA is calculated in the AO basis
{μ, ν} by a partial Cholesky decomposition of the total density
matrix D as97

∑
IJ

DμID̃−1
IJ DνJ =∑

I
LμILνI = DA

μν, (10)

where I and J are the diagonal elements (selected among
the AOs centered on the pre-defined A and B atoms), which
are Cholesky decomposed, D̃ is the submatrix of D contain-
ing the selected diagonal elements, and LαI are the resulting
Cholesky orbitals of the A fragment. The number of D diago-
nal elements that are selected corresponds to the number of
occupied orbitals of the A fragment (nA

o ). This means that
the largest nA

o diagonal elements are selected. The B density
matrix DB

= D −DA is then Cholesky decomposed by consid-
ering the nB

o largest diagonal elements belonging to B atoms.26

As a result of the decomposition, the A and B Cholesky MOs
are obtained, and the A and B density matrices DA, DB are con-
structed [see Eq. (10)]. It should be noted that both fragment
MOs and density matrices are defined in the full AO basis set.

2. From the two Cholesky decompositions, A and B occupied
MOs are obtained, and the space spanned by the occupied
MOs is thus defined. The local energy of the two fragments
is minimized [see Eqs. (8) and (9)] in the MO space defined.
The equations are solved in the reduced occupied space by
transforming the AO basis through the A and B MO coeffi-
cients. The KS-FLMOs are the MOs obtained at convergence.
The whole computational cost of the localization procedure
is generally lower than that associated with a DFT energy
minimization on the whole system.

B. Energy decomposition analysis based on KS-FLMOs
The KS-FLMOs provide a valuable basis for decomposing the

interaction energy of two fragments into diverse energetic com-
ponents. We name the resulting EDA Kohn–Sham fragment EDA
(KS-FEDA) to highlight its grounds on KS-FLMOs. The interaction
energy can be written as

Eint
= E − EA

(0) − EB
(0)

= EAB
int,(AB) + EA

(AB) − EA
(0) + EB

(AB) − EB
(0), (11)

where E is the full DFT-optimized energy, whereas EA
(0) and EB

(0) are
the energy of isolated A and B fragments in the gas phase. In this
work, the basis set superposition error (BSSE) is reduced by means
of the counterpoise correction proposed by Boys and Bernardi,108

i.e., EA
(0) and EB

(0) are computed in the full AO basis set. By using the
definition of EAB

int,(AB) [see Eq. (7d), readjusted in a GKS framework]
and EAB

non−add [see Eq. (6)], Eq. (11) can be rewritten as

Eint
= Eele
(AB) + EHF,x

(AB) + Ecorr
(AB) + Eel−prep

(AB) , (12a)

Eele
(AB) = Tr DA

(AB)J(D
B
(AB))+ Tr VADB

(AB)+ Tr VBDA
(AB)+ hAB

rep,
(12b)

EHF,x
(AB) = −Tr DA

(AB)K(D
B
(AB)), (12c)

Ecorr
(AB) = Exc

(AB) − (1 − cx)EHF,x
(AB), (12d)

Eel−prep
(AB) = EA

(AB) − EA
(0) + EB

(AB) − EB
(0), (12e)
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where

Exc
(AB) = ∫ ρ(r)εxc(ρ(r))dr − ∫ ρA

(AB)(r)εxc(ρA
(AB)(r))dr

− ∫ ρB
(AB)(r)εxc(ρB

(AB)(r))dr − β Tr DAKLR
(DB
)

= Exc[D] − Exc[DA
] − Exc[DB

]. (13)

In Eq. (12a), the electrostatic Eele
(AB), the HF exchange EHF,x

(AB), the
correlation Ecorr

(AB), and electronic preparation EAB
el−prep energies are

introduced. It should be noted that we have used the same nota-
tion introduced in Eq. (7a); the subscript (AB) indicates that the
electrostatic energy, exchange, and correlation terms are calculated
by using the fragment densities as in the relaxed dimer electronic
structure. The electrostatic energy comprises four terms: the elec-
tronic and nuclear repulsion energies and the nuclear–electron
attraction contributions. The exchange–correlation energy term is
decomposed according to a GKS framework [see also Eq. (1b)] in
terms of a purely HF exchange and the correlation contribution
of the specific DFT functional, similar to what has been proposed
in Ref. 69. The electronic preparation energy represents the energy
needed to deform the electron density of the two fragments from
the vacuo to the supramolecular structure (AB) and is repulsive
(positive) by construction. It is worth remarking that the decompo-
sition presented in Eq. (12) represents the DFT extension of the LED
approach presented in Ref. 64 defined at the HF/DPLNO-CCSD(T)
level. For this reason, the energy partitioning in Eq. (12) is labeled
KS-FEDA(LED).

Since the energetic contributions in Eq. (12a) are calculated
using the relaxed fragment densities, they are not directly related
to the energetic contributions that are commonly exploited in other
EDA techniques, such as KM-EDA47 and SAPT.57,58 As an exam-
ple, in most EDA schemes, the electrostatic energy is classically
computed by considering the unperturbed isolated fragment den-
sities (classical limit).38 For this reason, in the following, we provide
an additional partitioning of the KS-FEDA(LED) energy terms that
physically describe how the intermolecular interaction terms change
as the frozen fragment densities evolve into those within the dimer.
The resulting energy decomposition terms, which properly define
the KS-FEDA technique, will be directly compared to established
EDA methods.

The fragment densities (DA
0 , ρA

0 and DB
0 , ρB

0 ) obtained by mini-
mizing the energy of the two isolated fragments can be exploited to
compute the frozen interaction energy components,

Eint
(0) = Eele

(0) + EHF,x
(0) + Ecorr

(0) , (14a)

Eele
(0) = Tr DA

0 J(DB
0) + Tr VADB

0 + Tr VBDA
0 + hAB

rep, (14b)

EHF,x
(0) = −Tr DA

0 K(DB
0), (14c)

Ecorr
(0) = Exc[D0] − Exc[DA

0 ] − Exc[DB
0 ] − (1 − cx)EHF,x

(0) , (14d)

where the electronic preparation energy is zero by definition
and D0 = DA

0 +DB
0 . As also pointed out by Head-Gordon and

co-workers,38,109 these quantities are properly defined only if the two
fragment densities do not overlap. To get a more physically consis-
tent picture, the antisymmetry of the total wave function needs to
be taken into account. This can be imposed by first minimizing the
energy of the two isolated fragments and then ortho-normalizing the
MOs of the dimer (i.e., ϕ0 = ϕA

0 ⊕ ϕB
0 ) by means of a Löwdin proce-

dure110 (ϕ̄ASN = S
1
2 ϕAB

0 , where S is the overlap matrix). The density
matrix and the density function associated with the antisymmetrized
(ASN) wavefunction can then be calculated as

DASN = 2CS−1C, (15a)

ρASN(r) =∑
μ,ν

DASN,μνχμ(r)χν(r), (15b)

where C are the MO coefficients of the isolated monomers. It should
be noted that DASN represents the physically valid single determi-
nant density matrix belonging to the frozen fragment orbitals. The
related energy EASN is computed by substituting DASN and ρASN in
Eq. (1). As a result of applying the antisymmetry operator, a delocal-
ized wavefunction is obtained. A KS-FLMO localization procedure
is thus performed to obtain the density matrices (DA

ASN, DB
ASN) and

energies (EA
ASN, EB

ASN) of the fragments in the electronic structure of
the antisymmetrized dimer. In this way, the ASN energy EASN can
be decomposed into the electrostatic, HF exchange, correlation, and
electronic preparation energies as

Eint
ASN = Eele

ASN + EHF,x
ASN + Ecorr

ASN + Eel−prep
ASN , (16a)

Eele
ASN = Tr DA

ASNJ(DB
ASN) + Tr VADB

ASN + Tr VBDA
ASN + hAB

rep,
(16b)

EHF,x
ASN = −Tr DA

ASNK(DB
ASN), (16c)

Ecorr
ASN = Exc[DASN] − Exc[DA

ASN] − Exc[DB
ASN] − (1 − cx)EHF,x

ASN ,
(16d)

Eel−prep
ASN = EA

ASN − EA
(0) + EB

ASN − EB
(0). (16e)

By combining Eqs. (14) and (16), Eint
ASN can be rewritten as

Eint
ASN = Eele

(0) + EHF,x
(0) + Ecorr

(0) + ΔEASN. (17)

Here, ΔEASN represents the energy variation due to the antisym-
metrization of the dimer wavefunction. It can be decoupled into
electrostatic, HF exchange, and correlation contributions,

ΔEASN = ΔEele
ASN + ΔEHF,x

ASN + Eel−prep
ASN + ΔEcorr

ASN

= ΔEHF
ASN + ΔEcorr

ASN, (18a)

ΔEele
ASN = Eele

ASN − Eele
(0), (18b)

ΔEHF,x
ASN = EHF,x

ASN − EHF,x
(0) , (18c)

ΔEcorr
ASN = Ecorr

ASN − Ecorr
(0) . (18d)

J. Chem. Phys. 161, 104110 (2024); doi: 10.1063/5.0216596 161, 104110-5

© Author(s) 2024

 13 Septem
ber 2024 18:16:32

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Using Eq. (18), we can introduce in Eq. (17) the electrostatic
(Eele

= Eele
(0)), exchange (Eex

= EHF,x
(0) ), and repulsion (Erep

= ΔEHF
ASN)

quantities that are commonly exploited in other EDA techniques,

Eint
ASN = Eele

+ Eex
+ Erep

+ Ecorr
ASN. (19)

Equation (19) highlights that the repulsion energy is associated with
the energy increase resulting from the antisymmetrization of the
total wavefunction, i.e., by the inclusion of Pauli repulsion.

By combining Eqs. (12) and (19), we can decompose the total
interaction energy [see Eq. (11)] as follows:

Eint
= Eele

+ Eex
+ Erep

+ Ecorr
ASN + ΔEorb, (20)

where ΔEorb accounts for the interaction energy due to the orbital
relaxation and reads

ΔEorb = ΔEele
orb + ΔEHF,x

orb + ΔEel−prep
orb + ΔEcorr

orb

= ΔEHF
orb + ΔEcorr

orb , (21a)

ΔEele
orb = Eele

(AB) − Eele
ASN, (21b)

ΔEHF,x
orb = EHF,x

(AB) − EHF,x
ASN , (21c)

ΔEel−prep
orb = Eel−prep

(AB) − Eel−prep
ASN , (21d)

ΔEcorr
orb = Ecorr

(AB) − Ecorr
ASN. (21e)

As for the other energy components, the total orbital relaxation
energy can be decomposed in the variations of electrostatic (ΔEele

orb),
HF exchange (ΔEHF,x

orb ), correlation energy (ΔEcorr
orb ), and electronic

preparation energy (ΔEel−prep
orb ). These components capture the ener-

getics associated with the relaxation of the electronic structure as the
orbitals relax to their new equilibrium minimum following the mini-
mization of the dimer energy. In passing, we note that similar orbital
relaxation energy terms have been introduced for the LED method
at the HF level.67 Equation (20) can thus be rewritten by inserting
Ecorr
(AB) = Ecorr [see Eq. (12d)], yielding a five-term EDA,

Eint
= Eele

+ Eex
+ Erep

+ Ecorr
+ ΔEHF

orb, (22)

where Eex and Erep can also be combined together as it is done in most
EDA schemes, such as KM-EDA and SAPT.

Our decomposition also allows for an equivalent 11-term EDA
decomposition that can be obtained by combining Eq. (22) with
Eqs. (18) and (21),

Eint
= Eele

+ Eex
+ Ecorr
(0) + ΔEele

ASN + ΔEHF,x
ASN + Eel−prep

ASN + ΔEcorr
ASN

+ ΔEele
orb + ΔEHF,x

orb + ΔEel−prep
orb + ΔEcorr

orb . (23)

Such an expansion is particularly useful because it allows for
an in-depth investigation of the physicochemical origin of the
Erep
= ΔEHF

ASN and ΔEHF
orb energy terms, which differentiates the

proposed EDA technique from most other EDA methods. Equa-
tions (22) and (23) represent the final KS-FEDA partitioning, which
physically takes into account how the interaction energy terms
change as the densities of the monomers evolve as the adduct is
electronically formed. In such a picture, the energy contributions
defined at the KS-FEDA(LED) level [Eq. (12)] represent the interac-
tion terms for monomers’ densities in the final electronic structure
of the dimer. In other words, by exploiting Eq. (23) (which defines all
the terms defined in KS-FEDA) KS-FEDA(LED) energy terms have
been decomposed into their frozen, ASN, and orbital-relaxation
contributions as

Eele
(AB) = Eele

+ ΔEele
ASN + ΔEele

orb, (24a)

EHF,x
(AB) = Eex

+ ΔEHF,x
ASN + ΔEHF,x

orb , (24b)

Ecorr
(AB) = Ecorr

(0) + ΔEcorr
ASN + ΔEcorr

orb , (24c)

Eel−prep
(AB) = Eel−prep

ASN + ΔEel−prep
orb . (24d)

Finally, it is known that most DFT functionals cannot prop-
erly describe dispersion interactions. In this work, the dispersion
interaction is treated by using the empirical D4 method, an effective
parameter-dependent approach that does not depend on molecular
densities. The interaction dispersion energy Edisp reads

Edisp
= Edisp

AB − Edisp
A − Edisp

B , (25)

where Edisp
A and Edisp

B are the dispersion energies of the A and B
monomers, respectively, while Edisp

AB is that of the dimer. It should
be noted that the dispersion contribution can also be introduced
by exploiting more sophisticated, yet additive, approaches, such
as the mothod by Tkatchenko–Scheffler74 or many-body disper-
sion.75 In addition, dispersion-corrected density functionals can be
used,76 which will include the dispersion energy contribution in the
correlation term.

By inserting Edisp in Eqs. (12), (22), and (23), the KS-
FEDA(LED) and the 6- and 12-term KS-FEDA are obtained

Eint
= Eele
(AB) + EHF,x

(AB) + Ecorr
(AB) + Eel−prep

(AB) + Edisp, (26a)

Eint
= Eele

+ Eex
+ Erep

+ Ecorr
+ ΔEHF

orb + Edisp, (26b)

Eint
= Eele

+ Eex
+ Ecorr
(0)

+ ΔEele
ASN + ΔEHF,x

ASN + Eel−prep
ASN + ΔEcorr

ASN

+ ΔEele
orb + ΔEHF,x

orb + ΔEel−prep
orb + ΔEcorr

orb + Edisp. (26c)

The energetic components defined in Eq. (26b) can be directly com-
pared to most EDA techniques and closely recall GKS-EDA,69 with
a different procedure to calculate repulsion and orbital-relaxation
energy terms.

We remark that the energetic components in Eq. (26) are
defined for a generic hybrid DFT functional. However, the method
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is general and can thus be also applied to an HF wavefunction
by imposing εxc = 0; cx = 1. In this case, all Ecorr contributions
vanish.

In summary, the density evolution from frozen isolated frag-
ments to the final electronic structure of the dimer is computed by
performing the following steps, which provide all KS-FEDA energy
terms:

1. Minimization of isolated A and B DFT energies (EA
0 and EB

0 )
in the full AO basis set to minimize the BSSE.

2. Calculation of the interaction frozen energy terms through
Eq. (14) by using the obtained A and B density matrices
DA

0 and DB
0 .

3. Antisymmetrization of the total wavefunction using the
Löwdin procedure and construction of the ASN density
matrix [DASN – Eq. (15a)].

4. KS-FLMO localization using the ASN density matrix
(see Sec. II A) to obtain the fragment density matrices
(DA

ASN, DB
ASN) and energies (EA

ASN, EB
ASN) in the electronic

structure of the ASN dimer.
5. Calculation of the interaction energy terms related to the

antisymmetrization of the dimer wavefunction by exploiting
Eqs. (16) and (18).

6. Minimization of the total system DFT energy E [see Eq. (1)].
7. KS-FLMO localization of the total system density matrix

D (see Sec. II A) to obtain the fragment density matrices
(DA
(AB), DB

(AB)) and energies (EA
(AB), EB

(AB)) in the relaxed
electronic structure of dimer.

8. Calculation of KS-FEDA(LED) interaction energy terms in
Eq. (12) and those related to the orbital relaxation by using
Eq. (21).

It is worth remarking that for computing KS-FEDA(LED) terms in
Eq. (26a), steps 1, 6, 7, and 8 are only required.

C. Solvent effects in KS-FEDA
Similar to most electronic properties, interaction energies are

affected by the surrounding environment.36,70,111–113 In this work,
such effects are included by means of the polarizable continuum
model (PCM),83–85 which models the environment as a continuum
dielectric characterized by a static dielectric constant (ε) and is gen-
erally applied to solutions. The total system is thus divided into a QM
part (the solute), which is accommodated into a molecular-shaped
cavity, interacting with the external solvent treated as a continuum.
A surface density on the cavity arises as a response to the electrostatic
potential generated by the QM density. Such density then perturbs
the QM density in a mutual polarization fashion. Numerically, the
cavity surface meshes into surface elements, called tesserae, and the
surface density is discretized in a set of charges placed at the centers
of each tesserae.

The interaction between the DFT and PCM parts is expressed
in terms of the electrostatic interaction between the QM poten-
tial [V i(D) calculated by the QM density at the position of the ith
charge] and the PCM charges σ,83

EDFT/PCM[D] =
Nσ

∑
i

σi(D)Vi(D). (27)

In Eq. (27), we have made explicit that the PCM charges depend on
the QM density D. In fact, the PCM charges are obtained by solving
the following set of linear equations (in a vector notation):83

Tσ = −RV(D), (28)

where the matrices T and R depend on the cavity geometrical factors
and the dielectric constant ε of the considered solvent.83 The solva-
tion energy is calculated as half the electrostatic interaction energy
between the QM density and the PCM charges as83

EPCM
[D] =

1
2

σ(D)V(D). (29)

The KS-FLMO localization procedure for a DFT/PCM calculation
does not require any modification because the PCM term defined
in Eq. (27) depends on the total density matrix D. Thus, such a term
remains constant during the localization procedure to obtain the KS-
FLMOs. Therefore, Eqs. (8) and (9) are not directly affected by the
presence of the environment, which only modifies the MOs and the
associated densities.

Differently, the interaction energy Eint between two QM frag-
ments varies due to the presence of the surrounding PCM layer via
an explicit solvation energy term [Eq. (29)]. The proposed KS-FEDA
is thus modified by inserting three additional terms related to the
solvation contributions,

Eint
= Eele

+ Eex
+ Erep

+ Ecorr
+ ΔEHF

orb + E solv
+ Edisp, (30a)

Eint
= Eele

+ Eex
+ E solv
(0) + Ecorr

(0)

+ ΔEele
ASN + ΔEHF,x

ASN + Eel−prep
ASN + ΔEcorr

ASN + ΔE solv
ASN

+ ΔEele
orb + ΔEHF,x

orb + ΔEel−prep
orb + ΔEcorr

orb + ΔE solv
orb + Edisp, (30b)

where Esolv, E solv
(0) , ΔE solv

ASN, and ΔE solv
orb read [using Eq. (29)]

E solv
= E solv
(0) + ΔE solv

ASN + ΔE solv
orb , (31a)

E solv
(0) = EPCM

[DA
0 +DB

0 ] − EPCM
[DA

0 ] − EPCM
[DB

0 ], (31b)

ΔE solv
ASN = EPCM

[DASN] − EPCM
[DA

0 +DB
0 ], (31c)

ΔE solv
orb = EPCM

[D] − EPCM
[DASN]. (31d)

To account for the solvent effects, the computational protocol
sketched in Sec. II B is thus modified by including the defined frozen,
ASN, and orbital relaxation energy terms associated with solvent
effects in steps 2, 5, and 8. As specified in Sec. II B, the DFT energy
of the isolated fragments is minimized in the full AO basis set to
reduce the BSSE. In a DFT/PCM calculation for a dimer system in
the equilibrium geometry, this means that the PCM cavity used in
the monomers calculation is the same as in the dimer case. As a
consequence, similarly to Ref. 113, cavitation effects associated with
the formation of the dimer cavity are not taken into account in our
approach.

We finally remark that in addition to the direct solvation con-
tributions to the interaction energy defined in Eq. (31), the inclusion
of solvent effects also perturbs the fragment densities, MOs and
FLMOs, thus indirectly affecting all energetic terms in Eq. (30). It
is worth noting that this is close to what has been proposed in the
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context of ALMO-EDA,112 which provides a similar ASN solvation
energy (E solv

ASN = E solv
(0) + ΔE solv

ASN), which also accounts for cavitation
effects related to the formation of the dimer cavity.

III. COMPUTATIONAL DETAILS
The procedure to obtain KS-FLMOs and the associated KS-

FEDA is implemented in a development version of the electronic
structure code e𝒯 .114 To showcase the method, we select two datasets
widely exploited to study non-covalent interactions in molecular
systems. In particular, we use the A24 and S22 datasets, two sets of
bimolecular systems consisting of 24 (A24)87 and 22 (S22)88 dimers.
The A24 dataset is a set of non-covalent complexes specifically
designed to benchmark computational methods against highly accu-
rate calculations.87 It encompasses various types of non-covalent
interactions, making it suitable for testing the accuracy of novel
theoretical approaches such as KS-FEDA. In particular, in Ref. 87,
the 24 dimers are partitioned into three families: five hydrogen-
bonded (HB), ten mixed electrostatics/dispersion interactions (MX),
and nine dispersion-dominated (DD, including π − π stacking). In
Fig. 1, we show a graphical depiction of the A24 dataset, with a color

FIG. 1. Graphical representation of the A24 dataset. The dimers are grouped
according to the classification provided in Ref. 87.

map depending on the classification of Ref. 87 (blue, HB; green,
MX; and salmon, DD). All the A24 geometries are recovered from
Ref. 87.

The S22 dataset88 comprises 22 complexes characterized by
HB, DD, and MX non-covalent interactions. This dataset has been
amply exploited in testing and benchmarking the accuracy of var-
ious computational methods for non-covalent interactions.63,115,116

The S22 dataset is composed of systems of larger size than A24,
up to 30 atoms (thymine-adenine S15). Similar to A24, we pro-
vide a graphical depiction of S22 dimers shown in Fig. 2, where the
same color code introduced above is used according to the classifica-
tion proposed in Ref. 88. All the S22 geometries are recovered from
Ref. 88.

To further investigate the performance of KS-FEDA, we also
consider the IHB15 dataset,89 which is composed of 15 complexes
characterized by ionic hydrogen bonding non-covalent interac-
tions. Ionic HB systems are studied for the different nature of
the non-covalent interactions117 compared to neutral A24 and S22
datasets. The IHB15 dataset covers charged acetate, methylam-
monium, guanidinium, and imidazolium, interacting with water,
methanol, methylamine, and formaldehyde. Such a dataset has been
specifically constructed to represent charged molecular systems that
can be found in biomolecules, such as proteins.89 Similar to A24 and
S22, we provide a graphical depiction of IHB15 dimers in Fig. 3,
where we color the dimers according to their total charge follow-
ing the classification in Ref. 89, from which IHB15 geometries are
recovered.

For each system, the B3LYP118,119 and PBE0120 hybrid func-
tionals combined with the aug-cc-pVDZ and aug-cc-pVTZ basis
sets are exploited to highlight the dependence of the computed
energy components on the choice of basis sets and DFT function-
als (Secs. S3–S8 in the supplementary material). For all systems,
dispersion energies are calculated at the D4 level.71–73 For the sake

FIG. 2. Graphical representation of the S22 dataset. The dimers are grouped
according to the classification provided in Ref. 88.
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FIG. 3. Graphical representation of the IHB15 dataset. The dimers are grouped
according to the classification provided in Ref. 89.

of comparison, the interaction energy is also decomposed at the
SAPT(DFT) for the neutral couples (A24 and S22), using both
B3LYP and PBE0 functionals, and SAPT2+(3)δMP2 levels (for all
dimers) in combination with aug-cc-pVDZ and aug-cc-pVTZ basis
sets. SAPT2+(3)δMP2/aug-cc-pVTZ is selected as it is considered
the golden standard for SAPT methods.63 All the SAPT calculations
are performed by using Psi4 1.9.121,122 For SAPT(DFT) calculations,
we compute the ionization potential shift by subtracting the HOMO
energies of each monomer and reference data recovered from the
NIST database123 (see Secs. S3–S6 in the supplementary material,
where raw data are reported).

To showcase how solvent effects can affect intermolecu-
lar interactions and their components, we select water as sol-
vent (ε = 78.39) described using IEFPCM86 as implemented in

PCMSolver,124,125 which is interfaced to e𝒯 .114 The PCM cavity
is constructed by using UFF radii.126 For each dimer, the dimer
geometries are kept frozen to those of the gas phase; thus, solvent
effects only affect the electronic structure of the dimers.

IV. NUMERICAL APPLICATIONS
In this section, we first analyze the dependence of KS-FEDA

energy contributions on the basis set and the DFT functionals (GGA,
hybrid, and range-separated). The distance dependence of the KS-
FEDA energy terms is then analyzed for a water dimer (structure
2 of the A24 dataset). Finally, KS-FEDA is exploited to study
the non-covalent interactions of the A24, S22, and IHB15
datasets, and the quality of the method is assessed by compar-
ing it to established EDA approaches, such as SAPT(DFT) and
SAPT2+(3)δMP2.

A. KS-FEDA dependence on basis set and DFT
functional

We start our discussion by first analyzing the dependence
of KS-FEDA energy terms on the basis set. KS-FEDA is based
on counterpoise-corrected energies; thus, the BSSE is substantially
reduced. However, the energy contributions might still be influ-
enced by basis set incompleteness error (BSIE). To examine the
BSIE impact on KS-FEDA energy contributions, we consider the
water–ammonia and methane dimers (structures 1 and 19 of the A24
datasets), as previously done in Ref. 64 at the LED level. Such systems
are chosen as representative of weak interactions, such as hydro-
gen bonding (water-ammonia) and dispersion (methane dimer).
The KS-FEDA(LED) energy terms computed by using the B3LYP
functional are provided in Table I as combined with cc-pVXD and
aug-cc-pVXD basis sets (X = D, T, Z). All the KS-FEDA energy

TABLE I. Dependence of KS-FEDA(LED) energy terms on the basis set.

CH4–CH4

Basis-set Eint Eele
(AB) EHF,x

(AB) Ecorr
(AB) Eel−prep

(AB)

cc-pVDZ 0.45 −1.11 −0.62 −0.11 2.29
cc-pVTZ 0.46 −1.14 −0.69 −0.08 2.37
cc-pVQZ 0.47 −1.14 −0.69 −0.08 2.38

aug-cc-pVDZ 0.47 −1.11 −0.69 −0.06 2.33
aug-cc-pVTZ 0.46 −1.15 −0.69 −0.09 2.39
aug-cc-pVQZ 0.46 −1.15 −0.69 −0.09 2.39

NH3–H2O

cc-pVDZ −5.81 −35.90 −7.74 −2.57 40.40
cc-pVTZ −5.81 −35.68 −7.54 −2.52 39.92
cc-pVQZ −5.92 −35.72 −7.52 −2.51 39.83

aug-cc-pVDZ −5.96 −35.25 −7.60 −2.53 39.42
aug-cc-pVTZ −6.05 −35.87 −7.54 −2.50 39.86
aug-cc-pVQZ −6.06 −35.91 −7.53 −2.50 39.87
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terms [see Eq. (26c)] are presented in Table S1 in the supplementary
material.

Table I presents the KS-FEDA(LED) basis set convergence
behavior for these systems. The interaction energy and its con-
stituent components rapidly converge with increasing basis set
size, especially when augmented basis sets are exploited. Further-
more, the qualitative trends remain consistent across all tested
basis sets. For the weakly interacting methane dimer, the maximum
change from the cc-pVDZ to cc-pVQZ basis set is 0.09 kcal/mol
for Eel−prep

(AB) , which reduces to 0.06 kcal/mol when augmented basis
are considered. For the strongly interacting water–ammonia sys-
tem at the cc-pVXZ level, the convergence behavior is slightly
less favorable for both ΔEint and its components, although the
results remain stable with the maximum variation (0.57 kcal/mol)
reported for the ΔEel−prep

(AB) term. Such findings are consistent with
what has been reported at the LED level in Ref. 64. A much bet-
ter convergence is achieved by using aug-cc-pVXZ basis sets, for
which converged results of all energy components are displayed
by using the aug-cc-pVTZ basis set [maximum discrepancy of
0.04 kcal/mol for Eele

(AB)]. For this reason, in all the following calcu-
lations, we exploit the aug-cc-pVTZ basis-set, for which the BSIE is
negligible.

We now move to study KS-FEDA(LED) energy terms depen-
dence on the DFT functionals. To demonstrate the flexibility of
the KS-FEDA scheme, we select GGA (B97127), hybrid (B3LYP,
PBE0), and range-separated (CAM-B3LYP,93 ωB97xD92) function-
als. Dispersion interactions are considered by using D2 (ωB97xD92),
D3 (B97), or D4 (B3LYP, PBE0, CAM-B3LYP) corrections. The
KS-FEDA(LED) energy terms computed by using the aug-cc-
pVTZ basis set are presented in Table I. All the KS-FEDA
energy terms [see Eq. (26c)] are reported in Table S2 in the
supplementary material.

As expected, Table II shows that the computed interaction
energy for the two considered dimers depends on the chosen func-
tional. For the weakly interacting methane dimer, B97 reports

the largest absolute interaction energy; the opposite holds for the
water–ammonia case. B3LYP predicts the most repulsive interac-
tion energy for the methane dimer, while the most attractive energy
for the HB system is reported by CAM-B3LYP. Although such
differences are also reflected in the KS-FEDA(LED) energy con-
tributions, the qualitative description provided by all functionals
is very similar, especially when combining together the correla-
tion and dispersion contributions (Ecorr

(AB) + Edisp
). In fact, while for

Eele
(AB), EHF,x

(AB), and Eel−prep
(AB) , a qualitative agreement between all func-

tionals is obtained, Ecorr
(AB) reflects the physical differences between

the functionals in describing correlation effects. This is partic-
ularly evident by moving from B97 (GGA) to hybrid function-
als for both systems. The underestimation of correlation effects
is generally compensated by the empirical dispersion correction,
which, as expected, is again dependent on the DFT functional
exploited.

B. Distance dependence of KS-FEDA energy terms
In this section, we discuss the dependence of the KS-

FEDA(LED) energy terms on the intermolecular distance (d). To
this end, we consider a water dimer (structure 2 – A24 dataset)
following the analysis reported in Ref. 128 at the LED level. The KS-
FEDA is performed at the B3LYP-D4/aug-cc-pVTZ level, and the
resulting KS-FEDA(LED) energy terms as a function of the O⋅ ⋅ ⋅H
distance are shown in Fig. 4 (from 1.5 to 6 Å, step 0.05 Å, raw
data provided in Table S3 in the supplementary material). In the
left panel, Eele

(AB) and Eel−prep
(AB) are reported, while the remaining Ecorr

(AB),

EHF,x
(AB), and Edisp are given in the right panel.

In the long range (d ≥ 3.5 Å), the only significant KS-
FEDA(LED) term is the electrostatic energy. As expected due to
the strong dipole moment of water, in this region, Eele

(AB) exhibits
a slow polynomial decay with the distance. This can be further

TABLE II. Dependence of KS-FEDA(LED)/aug-cc-pVTZ energy terms on the DFT functional.

CH4–CH4

Functional Eint Eele
(AB) EHF,x

(AB) Ecorr
(AB) Eel−prep

(AB) Edisp

B97-D3 −0.63 −1.16 −0.69 0.05 2.43 −1.26
B3LYP-D4 −0.41 −1.15 −0.69 −0.09 2.39 −0.87
PBE0-D4 −0.56 −1.07 −0.66 −0.57 2.30 −0.56
CAM-B3LYP-D4 −0.48 −1.12 −0.68 −0.49 2.37 −0.58
ωB97xD −0.56 −1.02 −0.63 −0.30 2.23 −0.84

NH3–H2O

B97-D3 −6.41 −38.00 −8.14 −1.38 42.45 −1.35
B3LYP-D4 −6.80 −35.87 −7.53 −2.50 39.86 −0.76
PBE0-D4 −7.11 −34.86 −7.25 −2.88 38.32 −0.43
CAM-B3LYP-D4 −7.14 −34.79 −7.16 −3.34 38.59 −0.43
ωB97xD −6.76 −34.46 −7.09 −2.06 37.46 −0.61
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FIG. 4. KS-FEDA(LED) energy terms of water dimer as a function of the inter-
molecular distance. The log–log (Eele

(AB)) and semi-log (EHF,x
(AB)) plots are given as

insets. The equilibrium distance is indicated by the dotted vertical line at ∼1.95 Å.

appreciated by inspecting the log–log plot provided as an inset
in Fig. 4, left. In the short-range region (d < 3.5 Å), the repulsive
Eel−prep
(AB) rapidly becomes the dominating contributions. At the equi-

librium position (∼1.95 Å), such an energy term (28.89 kcal/mol)
almost entirely counteracts the sum of the attractive Eele

(AB) and
Edisp (−26.7 kcal/mol). At this position, the remaining term, i.e.,
the exchange–correlation energy, amounts to −7.26 kcal/mol, which
is close to the overall B3LYP-D4 contribution to the interaction
energy (−5.07 kcal/mol), thus providing a fundamental stabilizing
component. As expected, the exchange term decays exponentially
with intermolecular distance, as indicated by the linear relation
in the semi-log plot shown in the inset of Fig. 4, right panel.
Remarkably, our findings agree with those reported in Ref. 128 at
the LED level.

To conclude this section, it is worth pointing out that in the
short-range region (d < 3.5 Å), the log–log plot of the electrostatic
interaction does not follow a linear trend (see inset in Fig. 4, left
panel). As commented in Sec. II B, this is due to the fact that in this
region, the dimer densities overlap and, thus, the localized fragment
densities (and the associated multipoles) change as a function of the
intermolecular distance. As a result, such energy terms cannot be
directly compared to common EDAs, such as KM-EDA or SAPT.
For this reason, in the following, we discuss the results obtained by
using the KS-FEDA formulation in Eqs. (26b) and (26c).

C. A24 dataset
1. KS-FEDA in vacuo

We first start our analysis from the A24 dataset in the gas
phase by considering the energetic components calculated at the
KS-FEDA/aug-cc-pVTZ level of theory using B3LYP as the DFT
functional. All KS-FEDA energy terms expressed in Eq. (26c) are
graphically shown as a bar plot in Fig. 5 for all 24 dimers (raw data
are provided in Table S17 in the supplementary material). The bars
are colored according to the color palette introduced in Fig. 1 (blue:
HB; green: MX; and salmon: DD).

An attractive interaction energy characterizes all dimers, except
for 22–24 dimers, for which a small yet positive (∼1 kcal/mol)
interaction energy is obtained. Examining the different types of

FIG. 5. KS-FEDA (B3LYP/aug-cc-pVTZ) of the A24 dataset in the gas phase [see
Eq. (26c)]. All the energies are reported in kcal/mol.
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interactions, HB complexes (1–5) generally display the largest inter-
action energies, ranging from approximately −3 to −7 kcal/mol. In
contrast, DD dimers (16–24) report the lowest Eint, ranging from
around −1.5 to 1.5 kcal/mol. As expected, MX complexes (6–15)
demonstrate significant variability in interaction energies, ranging
from about −5 to −0.5 kcal/mol.

The frozen interaction energy terms (Eele, Eex, Ecorr
(0)) are char-

acterized by similar trends for all dimers. In particular, electrostatic
and exchange interactions are attractive, while the opposite holds
for frozen correlation energy. The magnitude of the interactions
varies depending on the specific complex considered. The largest
and lowest absolute values of Eele are reported for HB (average −6.30
kcal/mol) and DD dimers (average −0.36 kcal/mol), respectively.
Some notable cases are reported for MX couples, such as formalde-
hyde dimer (structure 9), for which a large Eele is calculated (−6.82
kcal/mol). The same trend is obtained for Eex [largest and lowest
absolute values reported on average for HB (−6.30 kcal/mol) and
DD (−4.37 kcal/mol) respectively]. However, it should be noted
that large absolute Eex energies are also observed by some DD com-
plexes, as, for instance, structures 22–24, which show a particularly
low absolute Eele (<0.8 kcal/mol), highlighting the role of quantum
interactions. Ecorr

(0) almost exactly follows the same trend calculated
for Eex, but opposite in sign. In particular, Ecorr

(0) values are about
half Eex for all dimers, yielding a negative, attractive total DFT
exchange–correlation contribution, which is obtained by summing
the two terms [see Eqs. (14c) and (14d)].

We now move to the energy variations associated with the
antisymmetrization of the dimer wavefunction (ASN), which can
be grouped into the purely repulsive contributions Erep associated
with the Pauli principle [Erep

= ΔEHF
ASN, see Eq. (18a)] and the vari-

ation in the correlation energy (Ecorr
ASN). Differently from most EDA

techniques, KS-FEDA allows for dissecting Erep into the electrostatic,
HF exchange, and electronic preparation contributions. Such three
energy terms display a similar behavior for all 24 complexes: in fact,
the antisymmetrization of the total wavefunction is characterized
by a stabilizing electrostatic interaction energy (ΔEele

ASN), which is
particularly significant for HB complexes (average −5.24) and also
non-negligible for DD dimers (especially for structures 22–24). Sim-
ilar trends, but opposite in sign, are reported for ΔEHF,x

ASN and Eel−prep
ASN ,

for which a significant energy destabilization is obtained (up to ∼24
kcal/mol for Eel−prep

ASN of structure 1). The largest average absolute val-
ues of such interactions are calculated for HB complexes, following
the same trend reported above for frozen terms. However, in this
case, the differences between DD and MX energy components are
attenuated. In fact, ΔEele

ASN and ΔEHF,x
ASN average values differ by about

0.3 kcal/mol, while for Eel−prep
ASN , a larger, yet small, discrepancy is

reported (6.33 vs 5.1 kcal/mol for MX and DD dimers, respectively).
The total repulsive energy Erep, given by the sum of the three terms,
is almost twice the absolute values of the exchange energy computed
by using the frozen energy (Eex

) for all dimers. In particular, their
ratio (∣Erep

∣/∣Eex
∣) varies from an average of 1.6 for DD complexes

to 1.75 for HB dimers. Their sum is thus positive and represents
the so-called exchange–repulsion interaction energy, which is com-
puted in other EDA techniques. While for HB dimers the absolute
value of such energy term is almost equal (or less) to the electrostatic
energy (Eele

), for MX and DD couples, it is larger than Eele for all

dimers. The last energetic contribution associated with the antisym-
metrization of the dimer wavefunction is Ecorr

ASN, which is attractive
for all 24 complexes and follows similar trends discussed above
for the other interactions. In fact, the average Ecorr

ASN for HB dimers
(−4.41 kcal/mol) is almost twice the average corresponding values
computed for MX and DD complexes (−2.30 and −2.02 kcal/mol,
respectively).

By obtaining KS-FLMOs using the SCF-converged density
matrix, we access the orbital relaxation energy components, which,
similar to ASN energy terms, can be grouped into HF energy
components [electrostatics, HF exchange, and electronic prepara-
tion – ΔEHF

orb, see Eq. (21a)] and the orbital relaxation correlation
energy (Ecorr

orb ). Discordantly from the energy terms discussed above,
ΔEele

orb, ΔEel−prep
orb , and ΔEcorr

orb differ in sign depending on the con-
sidered dimers, while ΔEHF,x

orb is always negative. In particular, the
sign change is associated with very low absolute energy contribu-
tions and is reported for DD dimers (structures 22–24). Indeed,
for DD complexes, the orbital relaxation contributions are gener-
ally negligible, except for structure 16. The largest energy variation
for all components is reported for structure 9 (MX set), followed
by HB dimers. The average values of ΔEele

orb highly vary as a func-
tion of the dataset, ranging from −9.12 kcal/mol (HB) to −3.95
kcal/mol (MX) and 0.08 kcal/mol (DD). A similar trend, but oppo-
site in sign, is reported for the average values of ΔEel−prep

orb (HB:
8.84 kcal/mol; MX: 4.47 kcal/mol; DD: −0.11 kcal/mol). Gener-
ally, ΔEel−prep

orb and ΔEele
orb almost counterbalance for HB and MX

dimers, while for DD complexes, the former is about 50% larger
than the latter (absolute value). When the two terms are summed
together with ΔEHF,x

orb , the total HF relaxation energy is obtained,
which is attractive for all dimers following the same trend discussed
above (on average, HB: −2.08 kcal/mol; MX: −0.64 kcal/mol; DD:
−0.11 kcal/mol). Finally, the correlation energy variation associ-
ated with orbital relaxation is generally negative and small, above
−1 kcal/mol, except for structures 1 (−1.04 kcal/mol) and 9 (−1.12
kcal/mol).

The last KS-FEDA energy component is the dispersion energy
Edisp, which is negative and attractive for all dimers, as expected. Edisp

follows the opposite trend commented above for all the other ener-
getic components. In fact, the largest and lowest absolute values are
reported for DD (average: −1.12 kcal/mol) and HB dimers (average:
−0.61 kcal/mol), respectively.

We finally comment on the classification proposed in Ref. 87,
which has been used to classify the A24 dimers into HB, MX, and
DD families. The analysis provided by KS-FEDA highlights that such
partitioning of MX and DD structures should be slightly modified
in light of the relative ratio between electrostatics and dispersion
(∣Eele

∣/∣Edisp
∣) terms. In particular, structure 16 (ratio = 1.2) can

be assigned to the MX family (1.0 < ratio < 4.0), while structures
14 (ratio = 0.66) and 15 (ratio = 0.7) instead better belong to DD
dimers for which the considered ratio is lower than 1.0. It should be
noted that similar findings have also been reported in Ref. 129 based
on SAPT2+3(CCD)130/aug-cc-pVTZ results.

2. Comparison with reference data
Among the many EDA techniques that have been proposed

in the literature, SAPT has been particularly successful due to the
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decomposition of the interaction energy in a few physically mean-
ingful energy terms. In particular, within SAPT, the intermolecu-
lar interaction is treated as a perturbation to the energies of the
monomers. Various SAPT methods exist depending on the trunca-
tion level of the perturbation series and the level of theory used to
describe the isolated monomers.63 Generally, the SAPT interaction
energy Eint

SAPT is decomposed as57,58,131

Eint
SAPT = Eele

SAPT + Eexch
SAPT + Eind

SAPT + Edisp
SAPT, (32)

where Eele
SAPT is the electrostatic energy, Eexch

SAPT is the
exchange–repulsion term, Eind

SAPT is the induction contribution,
and Edisp

SAPT is the dispersion energy. Here, we focus on two SAPT
variants, namely, SAPT(DFT) and SAPT2+(3)δMP2. The former is
based on a DFT treatment of the monomers’ electronic structure,
including short-range correlation effects, while dispersion interac-
tions are obtained by computing time-dependent DFT (TD-DFT)
response functions.59,132–137 SAPT2+(3)δMP2 is a wavefunction-
based SAPT method, which introduces a more accurate treatment
of electron correlation and uses HF as the reference wavefunction
for monomers. SAPT(DFT) is a cost-effective EDA method that
provides accurate results without introducing many terms as accu-
rate wavefunction-based SAPT methods, such as SAPT2+(3)δMP2.
The latter is selected because, when combined with the aug-cc-
pVTZ basis, it is considered the “gold standard” among SAPT
variants.63

Comparing the KS-FEDA method and SAPT requires estab-
lishing a correspondence between the energy terms expressed in
Eq. (26) (reduced KS-FEDA) and Eq. (32) (SAPT). In this work, the
following relationship is proposed:

Eele
SAPT ↔ Eele, (33a)

Eexch
SAPT ↔ Eex

+ Erep, (33b)

Eind
SAPT ↔ ΔEHF

orb, (33c)

Edisp
SAPT ↔ Ecorr

+ Edisp. (33d)

The electrostatic terms can be directly compared, while Eind
SAPT

can be related to the HF-like energy variation due to the orbital
relaxation (ΔEHF

orb) proposed in KS-FEDA. As commented in
Sec. IV C 1, the sum of Eex and Erep KS-FEDA terms represents the
exchange–repulsion contribution and can thus be related to Eexch

SAPT
in Eq. (32). Finally, SAPT dispersion energy can be related to the
sum of KS-FEDA Ecorr and Edisp to account for the correlation effects
in dispersion interactions. In fact, it should be noted that disper-
sion energy computed by using D3 and the D4 corrections adopted
here are generally smaller than the corresponding SAPT energy
term138 because part of the dispersion energy is accounted for by the
correlation functional.39

In Fig. 6, the four SAPT(DFT) energy components
(B3LYP/aug-cc-pVTZ) in Eq. (32) are correlated with the
corresponding KS-FEDA (B3LYP/aug-cc-pVTZ) terms. The
electrostatic component is almost equally described by the two

FIG. 6. Correlation plots between KS-FEDA and SAPT(DFT) energy components
of the A24 dataset in the gas phase (B3LYP/aug-cc-pVTZ). All the energies are
reported in kcal/mol.

methods, showing a linear coefficient and R2 close to 1. The average
and maximum discrepancies between the two approaches are, in
fact, negligible, being 0.05 and 0.15 kcal/mol, respectively. Similar
findings are also valid for the exchange–repulsion energy term, for
which a linear coefficient and an R2 close to 1 are obtained, reporting
slightly larger differences than in the electrostatic term (−0.13 and
−0.56 kcal/mol). In addition, induction and dispersion SAPT(DFT)
energies well-correlate with the corresponding KS-FEDA terms.
However, while for the dispersion energy, KS-FEDA predicts less
attractive interaction energies, especially for MX and DD dimers
(linear coefficient < 1), for induction, the opposite holds (KS-FEDA
generally predicts more attractive interaction energies—on average
9%). By comparing KS-FEDA with SAPT2+(3)δMP2 reference
data (see Fig. S8 in the supplementary material), such a linear fit,
and in general all the correlation plots, displays an almost perfect
agreement between the two methods, with all the linear coefficients
between 0.97 and 1.02.

The excellent agreement between KS-FEDA and the refer-
ence SAPT2+(3)δMP2 compared to SAPT(DFT) suggests that the
approaches provide different total interaction energy. To deepen
this point, we compare the three approaches with the reference
CCSD(T)/aug-cc-pV5(6)Z data interaction energies reported in Ref.
129. It is worth noting that the KS-FEDA interaction energy is equal
to that calculated at the B3LYP-D4/aug-cc-pVTZ level of theory by
definition.

In Fig. 7, the correlation plots between SAPT(DFT),
SAPT2+(3)δMP2, and KS-FEDA with the reference CCSD(T)
data are graphically shown. The data yield a linear dependence
with R2

> 0.99 for all methods. SAPT(DFT) provides a fitted
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FIG. 7. Correlation plots between KS-FEDA, SAPT(DFT), SAPT2+(3)δMP2, and
reference interaction [CCSD(T)/aug-cc-pV5(6)Z recovered from Ref. 129] ener-
gies of the A24 dataset in the gas phase. KS-FEDA and SAPT(DFT) energies are
computed at the B3LYP/aug-cc-pVTZ. All the energies are reported in kcal/mol.

linear coefficient (0.912) and a mean absolute error (MAE = 0.196
kcal/mol), which, as expected, is the worst among the selected
EDA methods. SAPT2+(3)δMP2 provides the best agreement
with the reference data (MAE = 0.098 kcal/mol). However, an
excellent agreement is also obtained by using KS-FEDA, but at a
much lower computational cost. Finally, it should be noted that
such a good agreement is preserved by performing KS-FEDA at
the B3LYP/aug-cc-pVDZ. On the contrary, using such a basis set
in combination with SAPT(DFT) and SAPT2+(3)δMP2 generally
worsens the agreement with the reference data (see Figs. S5 and S9
in the supplementary material).

3. KS-FEDA in solution
In this work, we also introduce a description of solvent effects

by means of the implicit PCM approach.83 As stated in Sec. II C,
in KS-FEDA, there are three explicit solvation contributions
[see Eq. (31)], which can be summed up in a solvation interac-
tion energy Esolv. Moreover, including solvent effects in the KS Fock
matrix indirectly modifies all the other energy components through
the variation of the solute MOs.

To analyze the effect of solvation, we graphically show in Fig. 8
the variation of the energy components defined in Eq. (30a), which
are calculated as

ΔEX
= EX

solv − EX
vac, (34)

where EX
solv and EX

vac are the specific energy decomposed terms as
computed in solution (water) or in vacuo, respectively. It should
be noted that dispersion energy as computed at the D4 level is not

affected by the presence of the solvent. All raw data are presented in
Tables S21–S24 in the supplementary material.

The data depicted in Fig. 8 shows that the inclusion of solvent
effects non-trivially affects all the energetic components, yielding
an increase or a decrease in the energies depending on the specific
structure. The largest total energy variation is reported by struc-
ture 9 (formaldehyde dimer), for which a large percentage variation
(∼35%) is also given. On average, solvent effects yield about 10%
absolute variation of the total interaction energy, with the largest
destabilization reported for structure 5 (ammonia dimer – 51%). As
stated above, the total energy variation is due to the modification
of all energetic components and the explicit solvation energy Esolv.
While solvent effects generally make the electrostatic and correlation
energies more negative, the opposite holds for the orbital relax-
ation terms (ΔEHF

orb). Exchange and repulsion terms instead provide
diverse trends depending on the dimer and display the opposite
behavior, except for structure 3, for which both terms destabilize the
interaction. The explicit contribution Esolv follows the same trend as
the total interaction energy variation. Compared to the other energy

FIG. 8. KS-FEDA (B3LYP/aug-cc-pVTZ) interaction energy shifts induced by the
solvent (water, ε = 78.39) of the A24 dataset [see Eq. (30a)]. All the energies are
reported in kcal/mol.
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terms, the largest absolute values are reported by Esolv, which yields a
stabilization or destabilization of the dimer depending on the spe-
cific considered system. Finally, it is worth pointing out that the
explicit and implicit solvent effects are generally opposite in sign,
and KS-FEDA allows for an in-depth analysis of such differences in
terms of the diverse energetic contributions as shown in Fig. 8.

D. S22 dataset
1. KS-FEDA in vacuo

We now move to study the S22 dataset interaction energies
in vacuo. As for A24 dimers, all the energetic components are com-
puted at the KS-FEDA/aug-cc-pVTZ level using the B3LYP hybrid
DFT functional. All the following analyses are also performed at the
PBE0/aug-cc-pVTZ, as well as by using the aug-cc-pVDZ basis set
in combination with both hybrid DFT functionals (see Secs. S5–S6
in the supplementary material). In Fig. 9, all KS-FEDA energy terms
[see Eq. (26c)] are graphically shown as a bar plot, colored according
to the color palette introduced in Fig. 2 (blue: HB; green: MX; and
salmon: DD).

An attractive interaction energy is computed for all couples.
For HB complexes (1–5), the interaction energies display a signif-
icant variation, with an average value of about −14.43 kcal/mol.
As expected, these complexes exhibit the most negative Eint, with
dimer 5 (uracil dimer) reporting the lowest interaction energy
(−21.40 kcal/mol). In contrast, DD dimers demonstrate consider-
ably less negative interaction energies ranging from −0.41 kcal/mol
(structure 8) to −12.51 kcal/mol (structure 15), averaging around
−4.92 kcal/mol, while for MX complexes, the highest average Eint

is reported (−3.72 kcal/mol).
By first considering the frozen energy components, for HB

complexes, Eele is highly variable (from −4.95 to −33.27 kcal/mol)
and averages at ∼−22.45 kcal/mol, indicating strong attractive forces,
as expected considering the HB character of the intermolecular
interaction. The exchange energy Eex for these complexes shows gen-
erally larger absolute values, averaging at about −31.86 kcal/mol,
remarkably reflecting the significant covalent contribution at short
distances for HB interactions. The correlation energy Ecorr

(0) is instead
repulsive (average of 15.02 kcal/mol) for all HB dimers. DD com-
plexes, in contrast, report an average Eele of−4.18 kcal/mol, reflecting
the overall weaker electrostatic interactions compared to HB dimers,
although some notable exceptions are reported (structure 13 and
15). Similarly, the exchange and correlation energies are also signif-
icantly smaller (in absolute value), averaging at about −13.05 and
6.06 kcal/mol, respectively. However, while for HB complexes, Eex is
40% larger than Eele, for DD dimers; Eex is significantly larger (up to
∼500% for structure 8). MX complexes exhibit the smallest absolute
values for the frozen components: the average electrostatic energy,
Eele, is −3.50 kcal/mol, and Eex averages at −7.70 kcal/mol, while
correlation energy at 3.47 kcal/mol.

The analysis of ASN contributions reveals an overall signif-
icant repulsive energy, particularly noticeable in HB complexes
resulting from a delicate balance between interactions of different
natures. The average ΔEele

ASN for HB dimers is stabilizing (average
−15.31 kcal/mol), as well for DD and MX complexes (average −5.94
and −3.71 kcal/mol, respectively). Similarly, the average ΔEcorr

ASN for
HB complexes stabilizes the interaction (average −17.72 kcal/mol),
substantially more attractive than those observed for DD (−6.81

FIG. 9. KS-FEDA (B3LYP/aug-cc-pVTZ) of the S22 dataset in the gas phase [see
Eq. (26c)]. All the energies are reported in kcal/mol.
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kcal/mol) and MX (−4.05 kcal/mol) dimers, reflecting the stronger
electrostatic interactions and correlation readjustments occurring
in HB complexes as a consequence of the antisymmetrization of
the total wavefunction. In contrast, HF exchange and electronic
preparation contributions to the ASN energy variation are destabi-
lizing for all complexes. In addition, in this case, HB dimers report
the most destabilizing interaction energy components (on average,
49.74 and 23.40 kcal/mol for ΔEcorr

ASN and EHF,x
ASN , respectively). We

remark that the ASN energy contributions associated with the Pauli
repulsion principle can be grouped into the purely repulsive term
Erep
= ΔEHF

ASN, which is large for all dimers (especially HB, for which
it reaches 91.46 kcal/mol) and follows the same trend described
above for Eel−prep

ASN . Such huge repulsive interactions highlight the
substantial electronic reorganization associated with the studied
dimers upon imposing antisymmetry.

The total contribution arising from orbital relaxation energy
components stabilizes the interaction in all S22 dimers, highlighting
the attractive forces resulting from electronic structural relaxations.
HB complexes demonstrate significant variations, with an average
ΔEele

orb of −39.41 kcal/mol, while for DD and MX dimers, such an
energetic component is almost one order of magnitude lower on
average (−4.88 and −5.67 kcal/mol, respectively). In this case, both
ΔEHF,x

orb and ΔEcorr
orb are attractive and stabilize the dimer interaction.

While for DD and MX complexes, their magnitude is compara-
ble with the electrostatic relaxation term, for HB couples, they are
much lower in absolute value (−6.47 and −1.98 kcal/mol on aver-
age). This indicates that HB interactions, compared to the other
dimers, are generally characterized by a substantial lowering of the
electrostatic energy upon relaxation of the electronic structure of
the dimer. The electronic preparation component, ΔEel−prep

orb is pos-
itive for all dimers, taking into account the energy spent to bring
the monomers from the ASN electronic configuration to the fully
optimized electronic structure. HB complexes require significant
average reorganization energy of 35.26 kcal/mol, whereas DD and
MX dimers need less energy on average (5.91 kcal/mol). The energy
variation in electrostatics, HF-exchange, and electronic preparation
summed together represent ΔEHF

orb [see Eq. (21a)], which is attractive
for all dimers. For HB complexes, such an energy term is gener-
ally large in absolute value (average −10.62 kcal/mol), especially for
structure 3 (urea dimer: −19.53 kcal/mol). For both DD and MX
dimers, it is instead much smaller (in absolute value), on average
−0.93 and −1.28 kcal/mol, respectively, coherently with the different
nature of the interactions involved.

To end the discussion, we move to the dispersion energy term.
For HB complexes, the dispersion energy generally shows small
absolute values, averaging around −2.65 kcal/mol. Such a finding
indicates that while dispersion forces contribute to the overall stabil-
ity, they play a less dominant role compared to the stronger electro-
static and bonding forces prevalent in these complexes. In contrast,
DD complexes exhibit significantly higher average dispersion ener-
gies, around −6.51 kcal/mol. MX complexes display intermediate
dispersion energy values, averaging −2.79 kcal/mol. This indicates
a balanced contribution from dispersion alongside other stabilizing
forces, reflecting the hybrid nature of their interactions.

We finally remark that in the present study, we have used
the assignment in HB, MX, and DD couples provided in Ref. 88.
However, similar to the A24 dataset, also in this case, the KS-

FEDA decomposition suggests that the definition of the MX and DD
groups should be modified by considering the ratio between electro-
statics and dispersion (∣Eele

∣/∣Edisp
∣). In particular, if the dimers that

are characterized by a ratio lower than 0.75 are assigned to the DD
group, structures 13 (uracil dimer) and 15 (adenine-thymine) should
be moved to the MX subset, while the T-shaped benzene dimer
(structure 20) should be moved to DD one. This is in agreement with
the SAPT2+(3)/aug-cc-pVTZ findings.58

2. Comparison with reference data
In this section, we first assess the KS-FEDA quality by compar-

ing with SAPT(DFT) and SAPT2+(3)δMP2 levels variants for the
S22 dataset, by using the same assignment in Eq. (33).

In Fig. 10, the four SAPT(DFT) energy components
(B3LYP/aug-cc-pVTZ) in Eq. (32) are correlated to the corre-
sponding KS-FEDA (B3LYP/aug-cc-pVTZ) terms (also see Sec.
S6.2 in the supplementary material). The electrostatic component is
almost equally described by the two methods, showing an R2 equal
to 1 and a fitted linear coefficient close to 1 (1.003). The average
and maximum discrepancies between the two approaches are, in
fact, negligible, being 0.03 and 0.27 kcal/mol, respectively. For
the exchange–repulsion energy term, an R2 close to 1 is obtained,
while the linear coefficient is about 0.96, showing that KS-FEDA
predicts smaller repulsive interactions. The discrepancies between
the two methods are in this case larger than in the electrostatic
term. In fact, the average difference is 0.69 kcal/mol, displaying
a maximum deviation for structure 5 of about 2.02 kcal/mol. On
average, KS-FEDA repulsive interactions are 7% larger than those
computed at the SAPT(DFT) level.

FIG. 10. Correlation plots between KS-FEDA and SAPT(DFT) energy components
of the S22 dataset in the gas phase (B3LYP/aug-cc-pVTZ). All the energies are
reported in kcal/mol.
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Induction and dispersion SAPT(DFT) energies also well-
correlate with the corresponding KS-FEDA terms (R2

> 0.99).
As also reported for the A24 dataset, for induction, KS-FEDA
generally predicts more attractive, interaction energies, especially
for the HB dimers (1–7) (on average 9%). The agreement for
the dispersion energy component is in this case similar to that
reported for the frozen terms: KS-FEDA predicts more attrac-
tive interaction energies, especially for DD complexes (on average
5%, −0.28 kcal/mol).

By comparing KS-FEDA with SAPT2+(3)δMP2 reference data
(see Fig. S17 in the supplementary material), the linear fit, and in
general all the correlation plots, displays a general better agreement
between the two methods, with all the linear coefficients between
0.95 (dispersion) and 1.08 (induction).

We finally compare the total interaction energies as computed
at the KS-FEDA, SAPT(DFT), and SAPT2+(3)δMP2 levels with the
reference best estimate interaction energies reported in Ref. 139. As
for the A24 dataset, we remark that the KS-FEDA interaction energy
corresponds to that computed at the B3LYP-D4/aug-cc-pVTZ
level.

In Fig. 11, the correlation plots between the various EDA
techniques and the reference CCSD(T) data are shown. For all
methods, we report a linear dependence with R2

> 0.99. Similar to
A24, SAPT(DFT) yields the worst fitted linear coefficient (0.860)
and a mean absolute error (MAE = 0.968 kcal/mol), while the
SAPT2+(3)δMP2 method yields the best agreement with the refer-
ence data (MAE = 0.161 kcal/mol). For KS-FEDA, an MAE of about
0.4 kcal/mol is computed, highlighting the overall good performance
of the DFT-D4 method, at a much lower computational cost than

FIG. 11. Correlation plots between KS-FEDA, SAPT(DFT), SAPT2+(3)δMP2, and
reference interaction energies (recovered from Ref. 139) of the S22 dataset in the
gas phase. KS-FEDA and SAPT(DFT) energies are computed at the B3LYP/aug-
cc-pVTZ. All the energies are reported in kcal/mol.

SAPT techniques. It is also worth remarking that for the S22 dataset,
the computed KS-FEDA MAE and trend are consistently produced
by changing the DFT functional (PBE0) or the basis set (aug-cc-
pVDZ), demonstrating the method stability. It should be noted that
the same trend is not reported by SAPT methodologies, for which
the change in the basis set or DFT functional, for SAPT(DFT), gen-
erally deteriorates the agreement with the reference data (see Secs.
S5–S6 in the supplementary material).

3. KS-FEDA in solution
In this section, we study how solvent effects, as modeled by

the implicit PCM model, affect the interaction energy components
of the S22 as solvated in water. As for the A24 dataset, in Fig. 12,
the interaction energy shifts [see Eq. (34)] for the energy com-
ponents defined in Eq. (30a) are graphically shown for all S22
dimers. All raw data are presented in Tables S47–S50 in the
supplementary material.

The data presented in Fig. 12 shows that including solvent
effects significantly influences all energetic components, resulting in

FIG. 12. KS-FEDA (B3LYP/aug-cc-pVTZ) interaction energy shifts induced by the
solvent (water, ε = 78.39) of the S22 dataset [see Eq. (30a)]. All the energies are
reported in kcal/mol.
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either an increase or decrease in the energies, depending on the spe-
cific molecular structure. The most substantial total energy change
of about 5.8 kcal/mol is reported in structure 5 (uracil dimer), which
also exhibits a considerable percentage change of about 30%. Similar
to the A24 dataset, solvent effects, on average, lead to a 13% absolute
change in the total interaction energy, with the largest destabilization
occurring for structure 1 (ammonia dimer – 51%).

The total energy change arises from variations in all energetic
components coupled with the explicit solvation energy Esolv. Typi-
cally, solvent effects tend to make the electrostatic and correlation
energies more negative, whereas they have the opposite effect on the
orbital relaxation terms (ΔEHF

orb). The exchange and repulsion terms
show varying trends across different dimers, generally exhibiting
opposite behaviors. The explicit contribution Esolv directly resembles
the trend depicted for the total interaction energy variation. Indeed,
as for the A24 dataset, Esolv records the largest absolute values among
the various energy terms, leading to a destabilization of the dimer in
HB and DD complexes, while it tends to stabilize MX complexes.
Interestingly, Esolv is mainly determined by E solv

(0) , while ASN and
relaxation solvation terms [see Eq. (30b)] are generally substantially
lower in absolute value (see Secs. S5 and S6 in the supplementary
material). Remarkably, KS-FEDA provides a detailed examination of
these variations, highlighting that explicit and implicit solvent effects
are typically opposite in sign, non-trivially affecting the interaction
energies as shown in Fig. 12.

E. Ionic hydrogen bondend systems: IHB15 dataset
1. KS-FEDA in vacuo

We now move to study the IHB15 dataset interaction energies
in the gas phase. As for A24 and S22 dimers, all the energetic com-
ponents are computed at the KS-FEDA/aug-cc-pVTZ level using the
B3LYP hybrid DFT functional. All the following analyses are also
performed at the PBE0/aug-cc-pVTZ, exploiting the aug-cc-pVDZ
basis set in combination with both hybrid DFT functionals (see Secs.
S7–S8 in the supplementary material). In Fig. 13, all the KS-FEDA
energy terms [see Eq. (26c)] are graphically shown as a bar plot, col-
ored according to the palette introduced in Fig. 3 (salmon: anions
and blue: cations).

An attractive, large interaction energy (Eint
) is computed for all

complexes. For anionic dimers (1–3), Eint varies between −11.64 and
−21.10 kcal/mol, with an average value of about −17.64 kcal/mol.
Cationic complexes (4–15) display a wider range of interaction ener-
gies, from −16.94 kcal/mol (structure 11) to −29.94 kcal/mol (struc-
ture 13), with an average interaction energy of −20.66 kcal/mol.
Overall, the computed Eint values for IHB15 dimers are substantially
larger than those computed for A24 and S22 dimers, highlighting the
different nature of the non-covalent interactions characterizing this
dataset.

To deepen into the nature of the interactions, we first con-
sider the frozen energy components. For complexes 1–3, Eele varies
significantly (from −13.11 to −28.21 kcal/mol) and averages at
−22.29 kcal/mol, indicating strong attractive electrostatic forces. The
exchange energy Eex for anions has larger absolute values, averag-
ing at −27.32 kcal/mol, reflecting significant covalent contributions
at equilibrium distances. For all anions, exchange energy is larger
than electrostatics (in absolute values). As also reported for both

FIG. 13. KS-FEDA (B3LYP/aug-cc-pVTZ) of the IHB15 dataset in the gas phase
[see Eq. (26c)]. All the energies are reported in kcal/mol.
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A24 and S22, the frozen correlation energy Ecorr
(0) is repulsive for

all dimers, averaging at about 12.42 kcal/mol for complexes 1–3.
Cationic dimers (4–15) report an average Eele of −23.37 kcal/mol,
reflecting generally larger attractive electrostatic interactions com-
pared to anions (1–3). The exchange and correlation energies in
complexes 4–15 are instead smaller (in absolute value), averaging
−22.90 and 11.00 kcal/mol, respectively. While for complexes 1–3,
Eex overcomes Eele (in absolute value – up to 55% for structure 1), for
complexes 4–15, Eex is generally less stabilizing, except for structures
5, 9, 13 (ions interacting with MeNH2), and 10, for which the two
interactions are almost equivalent.

Analysis of ASN contributions reveals significant repulsive
energy, resulting from a delicate balance between interactions of
diverse natures. The average ΔEele

ASN for complexes 1–3 is stabiliz-
ing (average −15.23 kcal/mol), as is the case for complexes 4–15
(average −7.93 kcal/mol). The correlation contribution ΔEcorr

ASN sta-
bilizes the interaction with a similar extent (average −14.66 and
−12.92 kcal/mol for the anions and cations, respectively). In con-
trast, HF exchange and electronic preparation contributions to the
ASN energy variation act as destabilizing terms for all complexes.
As expected, Eel−prep

ASN represents the most destabilizing interaction
energy component, which accounts, on average, 42.10 and 34.13
kcal/mol for the two subsets, respectively. The sum of the two desta-
bilizing energy terms and the electrostatic variation results in the
ASN energy contributions associated with the Pauli repulsion [Erep

= ΔEHF
ASN; see Eq. (18a)]. Such energy term is large for all com-

plexes (on average 44.07 kcal/mol), reaching the maximum for
dimer 9 (82.16 kcal/mol). Such huge repulsive interactions highlight
the substantial electronic reorganization associated with the studied
complexes upon imposing antisymmetry.

Opposite to the destabilization provided by the antisym-
metrization, the total contribution arising from orbital relaxation
energy components stabilizes the interaction in all complexes. This
again arises from a delicate balance between the various inter-
actions, the most substantial being electrostatic, followed by the
electronic preparation, exchange, and finally correlation. Anionic
complexes (1–3) demonstrate significant inductive contributions
(average ΔEele

orb −28.15 kcal/mol); for cationic complexes 4–15, such
an energetic component is even more stabilizing (on average −44.13
kcal/mol). In addition, ΔEHF,x

orb and ΔEcorr
orb are attractive and stabi-

lize the complex interaction. For all complexes, their magnitude is
considerably lower in absolute value with respect to the electro-
static relaxation term by almost one order of magnitude (−5.80 and
−1.70 kcal/mol on average, respectively). The electronic prepara-
tion component, ΔEel−prep

orb , accounting for the energy spent to bring
the monomers from the ASN electronic configuration to the fully
optimized electronic structure, destabilizes the interaction for all
complexes. Its magnitude is comparable with the electrostatic vari-
ation (on average, 22.94 and 38.05 kcal/mol for anions and cations,
respectively). The energy variation in electrostatics, HF-exchange,
and electronic preparation summed together represent ΔEHF

orb, which
is attractive for all complexes, stabilizing the interaction of about
−11.77 kcal/mol on average.

To conclude, we consider the dispersion energy term. For all
dimers, Edisp displays small absolute values, ranging from −1.12 to
−2.32 kcal/mol. This indicates that while dispersion forces con-
tribute to the overall stability, they play a less dominant role in

determining the global interaction energy contributing by less than
9% on average. For both anionic and cationic dimers, the importance
of electrostatic, exchange, and orbital relaxation terms compared to
dispersion energy confirms the HB nature of the considered dimers.

2. Comparison with reference data
In this section, we first assess the KS-FEDA quality by compar-

ing it with the SAPT2+(3)δMP2 variant for the IHB15 dataset, by
using the same assignment in Eq. (33).

In Fig. 14, the four SAPT2+(3)δMP2 energy compo-
nents in Eq. (32) are correlated with the corresponding
KS-FEDA (B3LYP/aug-cc-pVTZ) terms (also see Sec. S8.2 in
the supplementary material). The electrostatic component is almost
equally described by the two methods, showing an R2 and a fitted
linear coefficient close to 1, with an average discrepancy between the
two approaches of just −0.04 kcal/mol. For the exchange–repulsion
energy term, an R2 close to 1 is obtained, while the linear coefficient
is about 1.010, showing again the good agreement between the
two methods. KS-FEDA generally predicts repulsive interactions
slightly larger than those computed at the SAPT2+(3)δMP2 level
(on average, 0.13 kcal/mol).

Induction SAPT2+(3)δMP2 energies also well-correlate with
the corresponding KS-FEDA terms (R2

> 0.99). As reported for
the A24 and S22 datasets, KS-FEDA induction energies are more
attractive (about 3%). The fitted linear coefficient for dispersion con-
tributions is lower than that computed for the induction term (1.033
vs 1.040). However, the qualitative agreement for the IHB15 dataset
is less satisfactory compared to that obtained for A24 and S22. It is, in
fact, worth noting that KS-FEDA dispersive interactions are gener-
ally less attractive than the reference (0.89 kcal/mol on average) for

FIG. 14. Correlation plots between KS-FEDA (B3LYP/aug-cc-pVTZ) and
SAPT2+(3)δMP2 energy components of the IHB15 dataset in the gas phase. All
the energies are reported in kcal/mol.
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FIG. 15. Correlation plots between KS-FEDA, SAPT2+(3)δMP2, and reference
interaction energies (recovered from Ref. 89) of the IHB15 dataset in the gas
phase. KS-FEDA energies are computed at the B3LYP/aug-cc-pVTZ. All the
energies are reported in kcal/mol.

anion complexes, while the opposite holds for the cationic dimers
(−0.46 kcal/mol on average).

We finally compare the total interaction energies, as com-
puted at the KS-FEDA and SAPT2+(3)δMP2, to the reference
CCSD(T)/complete basis set (CBS) interaction energies reported in
Ref. 89. We remark once again that KS-FEDA interaction energy
corresponds to that computed at the B3LYP-D4/aug-cc-pVTZ level.

In Fig. 15, the correlation plots between the two EDA tech-
niques and the reference CCSD(T) data are shown. For both meth-
ods, we report a linear dependence with R2

∼ 0.99. Similar to A24
and S22, the SAPT2+(3)δMP2 method yields the best agreement
with the reference data (MAE = 0.160 kcal/mol). For KS-FEDA, an
MAE of about 0.5 kcal/mol is computed, highlighting the overall
good performance of the DFT-D4 method. It is worth remark-
ing that also for the IHB15 dataset, the computed KS-FEDA MAE
and trend are consistently produced by changing the DFT func-
tional (PBE0) or the basis set (aug-cc-pVDZ), demonstrating the
method stability (see Secs. S7–S8 in the supplementary material).
Such results show that KS-FEDA has the potential to be applied to
complex cases, such as ionic HB complexes.

3. KS-FEDA in solution
We finally investigate solvent effects on the interaction energy

components of the IHB15 as solvated in water. As for the A24
and S22 datasets, shown in Fig. 16, the interaction energy shifts
[see Eq. (34)] for the energy components defined in Eq. (30a) are
graphically depicted for all IHB15 dimers. All raw data are presented
in Tables S69–S72 in the supplementary material.

Figure 16 shows that solvent effects substantially affect all ener-
getic components, resulting in an overall destabilization of the global
interaction energies for all ionic dimers. This is in agreement with
what has been previously reported for HB dimers in A24 and S22
datasets. The largest energy variation of about 10.6 kcal/mol is
reported in structure 12, which also exhibits the largest percentage
change of about 53%. On average, solvent effects destabilize the non-
covalent interactions by about 38%, reporting the most considerable
variation compared to the other two datasets. This indeed highlights
how solvent effects can crucially determine the interaction between
ionic species.

To deepen the analysis, we investigate how solvent effects influ-
ence the energetic components. For all dimers, solvation enhances

electrostatic interactions as calculated in vacuo, which become more
attractive for all dimers, with a contribution ranging from −0.58
to −2.53 kcal/mol. Interestingly, depending on the charge of the
ionic dimers, exchange and repulsion terms behave in an oppo-
site way. For instance, for anionic complex, Eex increases, while
Erep decreases. Solvent effects act in the opposite direction also for
the exchange–repulsion term, given by the sum of the two contri-
butions, stabilizing or destabilizing the non-covalent interaction for
anions (1–3) and cations (4–15), respectively. A similar outcome
is also reported for the influence on correlation energy, for which,
however, the anionic complex 1 displays a destabilizing contribu-
tion. For all dimers, instead, solvent effects destabilize the orbital
relaxation terms (ΔEHF

orb) interaction energy.
The global variation provided by summing all the energetic

terms is generally small in absolute value, varying from −0.31 to
0.47 kcal/mol. Finally, as reported for both A24 and S22 datasets,
Esolv shows the largest values among the various energy terms, lead-
ing to a destabilization of all dimers, correlating particularly well
with the total energy variation ΔEint. Interestingly, while for A24
and S22 dimers, Esolv is mainly determined by the frozen contribu-
tion, for IHB15 complexes, a large contribution (on average, 21.42%)
of ΔE solv

orb is reported. This again highlights the different nature

FIG. 16. KS-FEDA (B3LYP/aug-cc-pVTZ) interaction energy shifts induced by the
solvent (water, ε = 78.39) of the IHB15 dataset [see Eq. (30a)]. All the energies
are reported in kcal/mol.
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of the interactions governing the electronic structure of the ionic
complexes.

V. SUMMARY AND CONCLUSIONS

We have introduced the Kohn–Sham fragment energy decom-
position analysis (KS-FEDA), which is a novel EDA technique
based on the developed KS-FLMOs. FLMOs are obtained through
a variational minimization of the local energies of the fragments
constituting a molecular system. This is equivalent to maximiz-
ing their electronic repulsion energy: as a consequence, FLMOs
are maximally localized in the pre-defined fragment regions. In
the resulting KS-FEDA, the interaction energy is decomposed into
electrostatics, exchange, and correlation. Dispersion has been con-
sidered by employing empirical corrections (such as the D4 model);
however, the approach is general and can be coupled with more
sophisticated methods and non-local approaches. To validate our
method, we study the dependence of KS-FEDA(LED) energy con-
tributions on the basis set and DFT functional, as well as the decay
of the energetic contributions as a function of the intermolecular
distance for a water dimer. Detailed assessments on the KS-FEDA
dependence on the DFT functionals will be the topic of future
communications.

The energy contributions of KS-FEDA(LED) are further
dissected into frozen, antisymmetry, and orbital relaxation con-
tributions, permitting to analyze the interactions between unper-
turbed, antisymmetrized, and self-consistently relaxed densities.
This not only provides novel physical insights into the inter-
molecular interactions but also facilitates the comparison with
traditional EDA techniques. In this paper, this is demonstrated
by comparing the final KS-FEDA energetic components with
SAPT methods, based on DFT—SAPT(DFT)—or wavefunction
theory—SAPT2+(3)δMP2—for two datasets (A24 and S22) that are
widely exploited for non-covalent interactions. The method has also
been challenged to calculate the intermolecular interactions of ionic
hydrogen bonding dimers (IHB15 dataset), showing the potential
to study such systems. By properly comparing the energetic com-
ponents, a very good agreement between KS-FEDA and the golden
standard SAPT2+(3)δMP2 is reported for all datasets, demonstrat-
ing the validity and robustness of the developed approach. It is
worth remarking that SAPT dispersion interactions have been com-
pared to the sum of KS-FEDA correlation and dispersion terms.
To further dissect correlation and dispersion terms in KS-FEDA,
the definition of a suitable dispersionless functional, as proposed
in Ref. 103, would be ideal. Such an aspect will be investigated in
future communications. Furthermore, the extension to analyze non-
covalent interactions in solution, as modeled by using the PCM
approach, highlights the versatility of our method, allowing for
studying both direct and indirect solvent effects on intermolecular
interactions.

To conclude, KS-FLMOs and KS-FEDA have been applied to
non-covalently interacting molecular systems. However, the devel-
oped theory is general enough to also be applied to covalently
bonded fragments, differently from perturbation-based EDA meth-
ods. Furthermore, the developed KS-FLMOs can be potentially
exploited for diverse applications other than KS-FEDA, ranging
from reactive chemistry and spectroscopy to studying local phe-

nomena taking place in vacuo or solution, possibly described at the
atomistic level in a polarizable QM/MM fashion.140

SUPPLEMENTARY MATERIAL

The supplementary material encompasses the computational
protocol; raw data for Figs. 1–16; and additional raw data for
KS-FEDA (B3LYP/aug-cc-pVDZ, PBE0/aug-cc-pVDZ, PBE0/aug-
cc-pVTZ) and SAPT(DFT) (B3LYP/aug-cc-pVDZ, PBE0/aug-cc-
pVDZ, PBE0/aug-cc-pVTZ).
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