Fidelity is a convenient tool to study the sensitivity of quantum motion under Hamiltonian perturbations. In this paper we first show that classical chaos can produce the dephasing necessary to suppress quantum interference, even in the absence of any environment. To this end we consider the fidelity of mixed states, which takes into account interference amplitudes, and directly relate its decay to the decay of an appropriate classical correlation function, which is totally unrelated to quantum phases. We then discuss the dephasing in a two-qubit system, induced by the coupling to a single-particle, deterministic chaotic environment. The latter is shown to behave as a pure dephasing many-body object which induces decoherence in the system; memory effects are also taken into account.

Dynamical chaos and decoherence

ROSSINI, DAVIDE
2007

Abstract

Fidelity is a convenient tool to study the sensitivity of quantum motion under Hamiltonian perturbations. In this paper we first show that classical chaos can produce the dephasing necessary to suppress quantum interference, even in the absence of any environment. To this end we consider the fidelity of mixed states, which takes into account interference amplitudes, and directly relate its decay to the decay of an appropriate classical correlation function, which is totally unrelated to quantum phases. We then discuss the dephasing in a two-qubit system, induced by the coupling to a single-particle, deterministic chaotic environment. The latter is shown to behave as a pure dephasing many-body object which induces decoherence in the system; memory effects are also taken into account.
2007
Quantum Mechanics and Chaos
Osaka (Japan)
2006
Progress of Theoretical Physics Supplement, Vol. 166 -- Proceedings of the International Conference on “Quantum Mechanics and Chaos”, Osaka (Japan) 2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/10457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact