This thesis addresses the study of two semilinear elliptic problems that arise in Riemannian Geometry. More precisely, we are interested in the prescription of certain geometric quantities on Riemannian manifolds with boundary under conformal changes of the metric, namely, the Gaussian and geodesic curvatures on a compact surface and its boundary, and the scalar and mean curvatures on a manifold of higher dimension. Most of the results available in the literature concern closed manifolds, whereas the boundary cases have been less considered. In that regard, we highlight that the presence of the boundary leads to a wider variety of phenomena, many of which nd no counterpart on the closed versions of these problems. In particular, the variational approach in Chapter 4, and the compactness and existence arguments of Chapter 5 are strictly related to the presence of boundary. Furthermore, the focus of our research concerns the case in which both curvatures are nonconstant, for which there are only a few known results. These problems admit a variational structure, so we will discuss the existence of solutions from the point of view of the Calculus of Variations. Sometimes the energy functionals considered here are bounded from below and a minimizer can be found; in other cases, though, this is not possible, and the use of min-max theory is needed. In the latter situation we are led to the blow-up analysis of solutions of approximated problems. The work developed in this thesis has given rise to two research papers, [31] and [32].
Questa tesi riguarda lo studio di due problemi ellittici semilineari che appaiono nel campo della Geometria Riemanniana. In particolare, siamo interessati a prescrivere certe quantit a geometriche su variet a Riemanniane con bordo per mezzo di trasformazioni conformi della metrica, cio e le curvature Gaussiana e geodetica su una super cie compatta e il suo bordo, e le curvature scalare e media su una variet a di dimensione superiore. La maggior parte dei risultati disponibili si concentra sullo studio di queste equazioni in variet a chiuse, mentre il caso con bordo e stato trattato molto meno. In relazione a ci o, evidenziamo che la presenza del bordo produce una pi u ampia variet a di fenomeni, molti dei quali non trovano una controparte sulle versioni chiuse di questi problemi. In particolare, la formulazione variazionale del capitolo 4, e gli argomenti di compattezza ed esistenza del capitolo 5 sono intimamente legati alla presenza del bordo. Inoltre, la nostra ricerca e focalizzata sul caso in cui le curvature prescritte sono non costanti, per il quale ci sono solo pochi risultati noti. Questo tipo di problemi ammette una struttura variazionale, quindi discuteremo l'esistenza di soluzioni dal punto di vista del Calcolo delle Variazioni. A volte i funzionali di energia considerati saranno limitati dal basso e sar a possibile trovare un minimo globale; in altri casi, tuttavia, questo non e possibile e l'uso della teoria min-max diventa necessario. In quest'ultima situazione, questo ci porta all'analisi di blow-up delle soluzioni dei problemi approssimati. Il lavoro sviluppato in questa tesi ha portato a due articoli di ricerca, [31] e [32].
Curvature prescription problems on manifolds with boundary / CRUZ BLÁZQUEZ, Sergio; relatore: MALCHIODI, ANDREA; relatore esterno: Ruiz, David; Scuola Normale Superiore, ciclo 33, 29-Jun-2021.
Curvature prescription problems on manifolds with boundary
CRUZ BLÁZQUEZ, Sergio
2021
Abstract
This thesis addresses the study of two semilinear elliptic problems that arise in Riemannian Geometry. More precisely, we are interested in the prescription of certain geometric quantities on Riemannian manifolds with boundary under conformal changes of the metric, namely, the Gaussian and geodesic curvatures on a compact surface and its boundary, and the scalar and mean curvatures on a manifold of higher dimension. Most of the results available in the literature concern closed manifolds, whereas the boundary cases have been less considered. In that regard, we highlight that the presence of the boundary leads to a wider variety of phenomena, many of which nd no counterpart on the closed versions of these problems. In particular, the variational approach in Chapter 4, and the compactness and existence arguments of Chapter 5 are strictly related to the presence of boundary. Furthermore, the focus of our research concerns the case in which both curvatures are nonconstant, for which there are only a few known results. These problems admit a variational structure, so we will discuss the existence of solutions from the point of view of the Calculus of Variations. Sometimes the energy functionals considered here are bounded from below and a minimizer can be found; in other cases, though, this is not possible, and the use of min-max theory is needed. In the latter situation we are led to the blow-up analysis of solutions of approximated problems. The work developed in this thesis has given rise to two research papers, [31] and [32].File | Dimensione | Formato | |
---|---|---|---|
CRUZ_BLAZQUEZ_tesi.pdf
accesso aperto
Tipologia:
Tesi PhD
Licenza:
Solo Lettura
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.