Detecting anomalous behaviors in a network function virtualization infrastructure is of the utmost importance for network operators. In this paper, we propose a technique, based on Self-Organizing Maps, to address such problem by leveraging on the massive amount of historical system data that is typically available in these infrastructures. Indeed, our method consists of a joint analysis of system-level metrics, provided by the virtualized infrastructure monitoring system and referring to resource consumption patterns of the physical hosts and the virtual machines (or containers) that run on top of them, and application-level metrics, provided by the individual virtualized network functions monitoring subsystems and related to the performance levels of the individual applications. The implementation of our approach has been validated on real data coming from a subset of the Vodafone infrastructure for network function virtualization, where it is currently employed to support the decisions of data center operators. Experimental results show that our technique is capable of identifying specific points in space (i.e., components of the infrastructure) and time of the recent evolution of the monitored infrastructure that are worth to be investigated by human operators in order to keep the system running under expected conditions.

Using Self-Organizing Maps for the Behavioral Analysis of Virtualized Network Functions

Lanciano, Giacomo;
2021

Abstract

Detecting anomalous behaviors in a network function virtualization infrastructure is of the utmost importance for network operators. In this paper, we propose a technique, based on Self-Organizing Maps, to address such problem by leveraging on the massive amount of historical system data that is typically available in these infrastructures. Indeed, our method consists of a joint analysis of system-level metrics, provided by the virtualized infrastructure monitoring system and referring to resource consumption patterns of the physical hosts and the virtual machines (or containers) that run on top of them, and application-level metrics, provided by the individual virtualized network functions monitoring subsystems and related to the performance levels of the individual applications. The implementation of our approach has been validated on real data coming from a subset of the Vodafone infrastructure for network function virtualization, where it is currently employed to support the decisions of data center operators. Experimental results show that our technique is capable of identifying specific points in space (i.e., components of the infrastructure) and time of the recent evolution of the monitored infrastructure that are worth to be investigated by human operators in order to keep the system running under expected conditions.
2021
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
10th International Conference on Cloud Computing and Services Science (CLOSER 2020)
Praga
7-9 maggio 2020
Cloud Computing and Services Science : 10th International Conference, CLOSER 2020, Prague, Czech Republic, May 7–9, 2020, Revised Selected Papers
Springer
978-3-030-72368-2
978-3-030-72369-9
Self-Organizing Maps; Machine Learning; Network Function Virtualization
File in questo prodotto:
File Dimensione Formato  
Lanciano et al_2021_Using Self-Organizing Maps for the Behavioral Analysis of Virtualized Network.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/131266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact