Natural Language Processing is used to address several tasks, linguistic related ones, e.g. part of speech tagging, dependency parsing, and downstream tasks, e.g. machine translation, sentiment analysis. To tackle these tasks, dedicated approaches have been developed over time.A methodology that increases performance on all tasks in a unified manner is language modeling, this is done by pre-training a model to replace masked tokens in large amounts of text, either randomly within chunks of text or sequentially one after the other, to develop general purpose representations that can be used to improve performance in many downstream tasks at once.The neural network architecture currently best performing this task is the transformer, moreover, model size and data scale are essential to the development of information-rich representations. The availability of large scale datasets and the use of models with billions of parameters is currently the most effective path towards better representations of text.However, with large models, comes the difficulty in interpreting the output they provide. Therefore, several studies have been carried out to investigate the representations provided by transformers models trained on large scale datasets.In this thesis I investigate these models from several perspectives, I study the linguistic properties of the representations provided by BERT, a language model mostly trained on the English Wikipedia, to understand if the information it codifies is localized within specific entries of the vector representation. Doing this I identify special weights that show high relevance to several distinct linguistic probing tasks. Subsequently, I investigate the cause of these special weights, and link them to token distribution and special tokens.To complement this general purpose analysis and extend it to more specific use cases, given the wide range of applications for language models, I study their effectiveness on technical documentation, specifically, patents. I use both general purpose and dedicated models, to identify domain-specific entities such as users of the inventions and technologies or to segment patents text. I always study performance analysis complementing it with careful measurements of data and model properties to understand if the conclusions drawn for general purpose models hold in this context as well.

L'elaborazione del linguaggio naturale viene utilizzata per affrontare diversi compiti, sia di tipo linguistico, come ad esempio l'etichettatura della parte del discorso, il parsing delle dipendenze, sia più specifiche, come ad esempio la traduzione automatica e l'analisi del sentimento. Per affrontare questi compiti, nel tempo sono stati sviluppati approcci dedicati.Una metodologia che aumenta le prestazioni in tutti questi casi in modo unificato è la modellazione linguistica, che consiste nel preaddestrare un modello per sostituire i token mascherati in grandi quantità di testo, in modo casuale all'interno di pezzi di testo o in modo sequenziale uno dopo l'altro, per sviluppare rappresentazioni di uso generale che possono essere utilizzate per migliorare le prestazioni in molti compiti contemporaneamente.L'architettura di rete neurale che attualmente svolge al meglio questo compito è il transformer, inoltre, le dimensioni del modello e la quantità dei dati sono essenziali per lo sviluppo di rappresentazioni ricche di informazioni. La disponibilità di insiemi di dati su larga scala e l'uso di modelli con miliardi di parametri sono attualmente il percorso più efficace verso una migliore rappresentazione del testo.Tuttavia, i modelli di grandi dimensioni comportano una maggiore difficoltà nell'interpretazione dell'output che forniscono. Per questo motivo, sono stati condotti diversi studi per indagare le rappresentazioni fornite da modelli di transformers.In questa tesi indago questi modelli da diversi punti di vista, studiando le proprietà linguistiche delle rappresentazioni fornite da BERT, per capire se le informazioni che codifica sono localizzate all'interno di specifiche elementi della rappresentazione vettoriale. A tal fine, identifico pesi speciali che mostrano un'elevata rilevanza per diversi compiti di sondaggio linguistico. In seguito, analizzo la causa di questi particolari pesi e li collego alla distribuzione dei token e ai token speciali.Per completare questa analisi generale ed estenderla a casi d'uso più specifici, studio l'efficacia di questi modelli sui brevetti. Utilizzo modelli dedicati, per identificare entità specifiche del dominio, come le tecnologie o per segmentare il testo dei brevetti. Studio sempre l'analisi delle prestazioni integrandola con accurate misurazioni dei dati e delle proprietà del modello per capire se le conclusioni tratte per i modelli generici valgono anche in questo contesto.

Transfomer Models: From Model Inspection to Applications in Patents / Puccetti, Giovanni; relatore esterno: Fantoni, Gualtiero; Scuola Normale Superiore, ciclo 35, 07-Nov-2023.

Transfomer Models: From Model Inspection to Applications in Patents

PUCCETTI, Giovanni
2023

Abstract

Natural Language Processing is used to address several tasks, linguistic related ones, e.g. part of speech tagging, dependency parsing, and downstream tasks, e.g. machine translation, sentiment analysis. To tackle these tasks, dedicated approaches have been developed over time.A methodology that increases performance on all tasks in a unified manner is language modeling, this is done by pre-training a model to replace masked tokens in large amounts of text, either randomly within chunks of text or sequentially one after the other, to develop general purpose representations that can be used to improve performance in many downstream tasks at once.The neural network architecture currently best performing this task is the transformer, moreover, model size and data scale are essential to the development of information-rich representations. The availability of large scale datasets and the use of models with billions of parameters is currently the most effective path towards better representations of text.However, with large models, comes the difficulty in interpreting the output they provide. Therefore, several studies have been carried out to investigate the representations provided by transformers models trained on large scale datasets.In this thesis I investigate these models from several perspectives, I study the linguistic properties of the representations provided by BERT, a language model mostly trained on the English Wikipedia, to understand if the information it codifies is localized within specific entries of the vector representation. Doing this I identify special weights that show high relevance to several distinct linguistic probing tasks. Subsequently, I investigate the cause of these special weights, and link them to token distribution and special tokens.To complement this general purpose analysis and extend it to more specific use cases, given the wide range of applications for language models, I study their effectiveness on technical documentation, specifically, patents. I use both general purpose and dedicated models, to identify domain-specific entities such as users of the inventions and technologies or to segment patents text. I always study performance analysis complementing it with careful measurements of data and model properties to understand if the conclusions drawn for general purpose models hold in this context as well.
7-nov-2023
Settore INF/01 - Informatica
Matematica e Informatica
35
Transformers; Language Modeling; Outlier Parameters; Patents
Scuola Normale Superiore
Fantoni, Gualtiero
Dell'Orletta, Felice
GIANNOTTI, Fosca
File in questo prodotto:
File Dimensione Formato  
Tesi.pdf

accesso aperto

Descrizione: Tesi PhD
Licenza: Creative Commons
Dimensione 9.68 MB
Formato Adobe PDF
9.68 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/136082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact