Sentiment analysis aims to automatically estimate the sentiment in a given text as positive, objective or negative, possibly together with the strength of the sentiment. Polarity lexicons that indicate how positive or negative each term is, are often used as the basis of many sentiment analysis approaches. Domain-specific polarity lexicons are expensive and time-consuming to build; hence, researchers often use a general purpose or domain-independent lexicon as the basis of their analysis. In this work, we address two sub-tasks in sentiment analysis. We apply a simple method to adapt a general purpose polarity lexicon to a specific domain [1]. Subsequently, we propose and evaluate new features to be used in a word polarity based approach to sentiment classification. In particular, we analyze sentences as the first step for estimating the overall review polarity. We consider different aspects of sentences, such as length, purity, irrealis content, subjectivity, and position within the opinionated text. This analysis is then used to find sentences that may convey better information about the overall review polarity.We use a subset of hotel reviews from the TripAdvisor database [2] to evaluate the effect of sentence-level features on sentiment classification. Then, we measure the performance of our sentiment analysis engine using the domain-adapted lexicon on a large subset of theTripAdvisor database.
Sentiment analysis using domain-adaptation and sentence-based analysis
Gezici, Gizem
;
2015
Abstract
Sentiment analysis aims to automatically estimate the sentiment in a given text as positive, objective or negative, possibly together with the strength of the sentiment. Polarity lexicons that indicate how positive or negative each term is, are often used as the basis of many sentiment analysis approaches. Domain-specific polarity lexicons are expensive and time-consuming to build; hence, researchers often use a general purpose or domain-independent lexicon as the basis of their analysis. In this work, we address two sub-tasks in sentiment analysis. We apply a simple method to adapt a general purpose polarity lexicon to a specific domain [1]. Subsequently, we propose and evaluate new features to be used in a word polarity based approach to sentiment classification. In particular, we analyze sentences as the first step for estimating the overall review polarity. We consider different aspects of sentences, such as length, purity, irrealis content, subjectivity, and position within the opinionated text. This analysis is then used to find sentences that may convey better information about the overall review polarity.We use a subset of hotel reviews from the TripAdvisor database [2] to evaluate the effect of sentence-level features on sentiment classification. Then, we measure the performance of our sentiment analysis engine using the domain-adapted lexicon on a large subset of theTripAdvisor database.File | Dimensione | Formato | |
---|---|---|---|
5677.pdf
Open Access dal 02/01/2018
Tipologia:
Published version
Licenza:
Solo Lettura
Dimensione
182.77 kB
Formato
Adobe PDF
|
182.77 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.