Several combinatorial optimization problems can be solved with NISQ devices once that a corresponding quadratic unconstrained binary optimization (QUBO) form is derived. The aim of this work is to drastically reduce the variables needed for these QUBO reformulations in order to unlock the possibility to efficiently obtain optimal solutions for a class of optimization problems with NISQ devices. This is achieved by introducing novel tools that allow an efficient use of slack variables, even for problems with non-linear constraints, without the need to approximate the starting problem. We divide our new techniques in two independent parts, called the iterative quadratic polynomial and the master-satellite methods. Hence, we show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario called Max-Profit Balance Settlement. We follow by submitting several instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios. Moreover, this study allows to appreciate several performance differences between the D-wave Advantage and Advantage2 quantum annealers.

Optimized QUBO formulation methods for quantum computing

Dario De Santis;Salvatore Tirone;Stefano Marmi;Vittorio Giovannetti
2024

Abstract

Several combinatorial optimization problems can be solved with NISQ devices once that a corresponding quadratic unconstrained binary optimization (QUBO) form is derived. The aim of this work is to drastically reduce the variables needed for these QUBO reformulations in order to unlock the possibility to efficiently obtain optimal solutions for a class of optimization problems with NISQ devices. This is achieved by introducing novel tools that allow an efficient use of slack variables, even for problems with non-linear constraints, without the need to approximate the starting problem. We divide our new techniques in two independent parts, called the iterative quadratic polynomial and the master-satellite methods. Hence, we show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario called Max-Profit Balance Settlement. We follow by submitting several instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios. Moreover, this study allows to appreciate several performance differences between the D-wave Advantage and Advantage2 quantum annealers.
2024
Settore INFO-01/A - Informatica
Quantum Physics
   Taming complexity with quantum strategies: a hybrid integrated photonics approach. Cod. 2017SRNBRK_004
   Ministero della pubblica istruzione, dell'università e della ricerca

   Quantum Pathfinder
   PRO3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148724
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact