Several combinatorial optimization problems can be solved with NISQ devices once that a corresponding quadratic unconstrained binary optimization (QUBO) form is derived. The aim of this work is to drastically reduce the variables needed for these QUBO reformulations in order to unlock the possibility to efficiently obtain optimal solutions for a class of optimization problems with NISQ devices. This is achieved by introducing novel tools that allow an efficient use of slack variables, even for problems with non-linear constraints, without the need to approximate the starting problem. We divide our new techniques in two independent parts, called the iterative quadratic polynomial and the master-satellite methods. Hence, we show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario called Max-Profit Balance Settlement. We follow by submitting several instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios. Moreover, this study allows to appreciate several performance differences between the D-wave Advantage and Advantage2 quantum annealers.
Optimized QUBO formulation methods for quantum computing
De Santis, Dario;Tirone, Salvatore;Marmi, Stefano;Giovannetti, Vittorio
2024
Abstract
Several combinatorial optimization problems can be solved with NISQ devices once that a corresponding quadratic unconstrained binary optimization (QUBO) form is derived. The aim of this work is to drastically reduce the variables needed for these QUBO reformulations in order to unlock the possibility to efficiently obtain optimal solutions for a class of optimization problems with NISQ devices. This is achieved by introducing novel tools that allow an efficient use of slack variables, even for problems with non-linear constraints, without the need to approximate the starting problem. We divide our new techniques in two independent parts, called the iterative quadratic polynomial and the master-satellite methods. Hence, we show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario called Max-Profit Balance Settlement. We follow by submitting several instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios. Moreover, this study allows to appreciate several performance differences between the D-wave Advantage and Advantage2 quantum annealers.File | Dimensione | Formato | |
---|---|---|---|
2406.07681v2.pdf
accesso aperto
Descrizione: Full paper
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.