Deep learning has been shown to achieve impressive results in several domains like computer vision and natural language processing. A key element of this success has been the development of new loss functions, like the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. While the cross-entropy loss is usually justified from a probabilistic perspective, this paper shows an alternative and more direct interpretation of this loss in terms of t-norms and their associated generator functions, and derives a general relation between loss functions and t-norms. In particular, the presented work shows intriguing results leading to the development of a novel class of loss functions. These losses can be exploited in any supervised learning task and which could lead to faster convergence rates that the commonly employed cross-entropy loss.
On the Relation Between Loss Functions and T-Norms
Giannini, Francesco
;
2020
Abstract
Deep learning has been shown to achieve impressive results in several domains like computer vision and natural language processing. A key element of this success has been the development of new loss functions, like the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. While the cross-entropy loss is usually justified from a probabilistic perspective, this paper shows an alternative and more direct interpretation of this loss in terms of t-norms and their associated generator functions, and derives a general relation between loss functions and t-norms. In particular, the presented work shows intriguing results leading to the development of a novel class of loss functions. These losses can be exploited in any supervised learning task and which could lead to faster convergence rates that the commonly employed cross-entropy loss.File | Dimensione | Formato | |
---|---|---|---|
On_the_relations_Giannini.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
443.33 kB
Formato
Adobe PDF
|
443.33 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.