Deep neural networks are usually considered black-boxes due to their complex internal architecture, that cannot straightforwardly provide human-understandable explanations on how they behave. Indeed, Deep Learning is still viewed with skepticism in those real-world domains in which incorrect predictions may produce critical effects. This is one of the reasons why in the last few years Explainable Artificial Intelligence (XAI) techniques have gained a lot of attention in the scientific community. In this paper, we focus on the case of multi-label classification, proposing a neural network that learns the relationships among the predictors associated to each class, yielding First-Order Logic (FOL)-based descriptions. Both the explanation-related network and the classification-related network are jointly learned, thus implicitly introducing a latent dependency between the development of the explanation mechanism and the development of the classifiers. Our model can integrate human-driven preferences that guide the learning-to-explain process, and it is presented in a unified framework. Different typologies of explanations are evaluated in distinct experiments, showing that the proposed approach discovers new knowledge and can improve the classifier performance.
Human-driven FOL explanations of deep learning
Giannini, Francesco;Gori, Marco;
2020
Abstract
Deep neural networks are usually considered black-boxes due to their complex internal architecture, that cannot straightforwardly provide human-understandable explanations on how they behave. Indeed, Deep Learning is still viewed with skepticism in those real-world domains in which incorrect predictions may produce critical effects. This is one of the reasons why in the last few years Explainable Artificial Intelligence (XAI) techniques have gained a lot of attention in the scientific community. In this paper, we focus on the case of multi-label classification, proposing a neural network that learns the relationships among the predictors associated to each class, yielding First-Order Logic (FOL)-based descriptions. Both the explanation-related network and the classification-related network are jointly learned, thus implicitly introducing a latent dependency between the development of the explanation mechanism and the development of the classifiers. Our model can integrate human-driven preferences that guide the learning-to-explain process, and it is presented in a unified framework. Different typologies of explanations are evaluated in distinct experiments, showing that the proposed approach discovers new knowledge and can improve the classifier performance.File | Dimensione | Formato | |
---|---|---|---|
IJCAI - Human-Driven FOL Explanations of Deep Learning.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Solo Lettura
Dimensione
567.7 kB
Formato
Adobe PDF
|
567.7 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.