This is a Snowmass white paper on the utility of existing and future superconducting cavities to probe fundamental physics. Superconducting radio frequency (SRF) cavity technology has seen tremendous progress in the past decades, as a tool for accelerator science. With advances spear-headed by the SQMS center at Fermilab, they are now being brought to the quantum regime becoming a tool in quantum science thanks to the high degree of coherence. The same high quality factor can be leveraged in the search for new physics, including searches for new particles, dark matter, including the QCD axion, and gravitational waves. We survey some of the physics opportunities and the required directions of R&D. Given the already demonstrated integration of SRF cavities in large accelerator systems, this R&D may enable larger scale searches by dedicated experiments.
Searches for New Particles, Dark Matter, and Gravitational Waves with SRF Cavities
Raffaele Tito D'Agnolo;
2022
Abstract
This is a Snowmass white paper on the utility of existing and future superconducting cavities to probe fundamental physics. Superconducting radio frequency (SRF) cavity technology has seen tremendous progress in the past decades, as a tool for accelerator science. With advances spear-headed by the SQMS center at Fermilab, they are now being brought to the quantum regime becoming a tool in quantum science thanks to the high degree of coherence. The same high quality factor can be leveraged in the search for new physics, including searches for new particles, dark matter, including the QCD axion, and gravitational waves. We survey some of the physics opportunities and the required directions of R&D. Given the already demonstrated integration of SRF cavities in large accelerator systems, this R&D may enable larger scale searches by dedicated experiments.File | Dimensione | Formato | |
---|---|---|---|
2203.12714v1.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
6.41 MB
Formato
Adobe PDF
|
6.41 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.