Among the post-LHC generation of particle accelerators, the muon collider represents a unique machine with capability to provide very high energy leptonic collisions and to open the path to a vast and mostly unexplored physics programme. However, on the experimental side, such great physics potential is accompanied by unprecedented technological challenges, due to the fact that muons are unstable particles. Their decay products interact with the machine elements and produce an intense flux of background particles that eventually reach the detector and may degrade its performance. In this paper, we present technologies that have a potential to match the challenging specifications of a muon collider detector and outline a path forward for the future R&D efforts.

Promising Technologies and R&D Directions for the Future Muon Collider Detectors

Alessandro Cerri;Luciano Ristori;Lucio Rossi;
2022

Abstract

Among the post-LHC generation of particle accelerators, the muon collider represents a unique machine with capability to provide very high energy leptonic collisions and to open the path to a vast and mostly unexplored physics programme. However, on the experimental side, such great physics potential is accompanied by unprecedented technological challenges, due to the fact that muons are unstable particles. Their decay products interact with the machine elements and produce an intense flux of background particles that eventually reach the detector and may degrade its performance. In this paper, we present technologies that have a potential to match the challenging specifications of a muon collider detector and outline a path forward for the future R&D efforts.
2022
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
Snowmass 2021
Physics - Instrumentation and Detectors; Physics - Instrumentation and Detectors; High Energy Physics - Experiment
File in questo prodotto:
File Dimensione Formato  
2203.07224v1.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 8.97 MB
Formato Adobe PDF
8.97 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/151294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact