The design of interpretable deep learning models working in relational domains poses an open challenge: interpretable deep learning methods, such as Concept Bottleneck Models (CBMs), are not designed to solve relational problems, while relational deep learning models, such as Graph Neural Networks (GNNs), are not as interpretable as CBMs. To overcome these limitations, we propose Relational Concept Bottleneck Models (R-CBMs), a family of relational deep learning methods providing interpretable task predictions. As special cases, we show that R-CBMs are capable of both representing standard CBMs and message-passing GNNs. To evaluate the effectiveness and versatility of these models, we designed a class of experimental problems, ranging from image classification to link prediction in knowledge graphs. In particular we show that R-CBMs (i) match generalization performance of existing relational black-boxes, (ii) support the generation of quantified concept-based explanations, (iii) effectively respond to test-time interventions, and (iv) withstand demanding settings including out-of-distribution scenarios, limited training data regimes, and scarce concept supervisions.

Relational Concept Bottleneck Models

Giannini, Francesco
;
2024

Abstract

The design of interpretable deep learning models working in relational domains poses an open challenge: interpretable deep learning methods, such as Concept Bottleneck Models (CBMs), are not designed to solve relational problems, while relational deep learning models, such as Graph Neural Networks (GNNs), are not as interpretable as CBMs. To overcome these limitations, we propose Relational Concept Bottleneck Models (R-CBMs), a family of relational deep learning methods providing interpretable task predictions. As special cases, we show that R-CBMs are capable of both representing standard CBMs and message-passing GNNs. To evaluate the effectiveness and versatility of these models, we designed a class of experimental problems, ranging from image classification to link prediction in knowledge graphs. In particular we show that R-CBMs (i) match generalization performance of existing relational black-boxes, (ii) support the generation of quantified concept-based explanations, (iii) effectively respond to test-time interventions, and (iv) withstand demanding settings including out-of-distribution scenarios, limited training data regimes, and scarce concept supervisions.
2024
Settore INFO-01/A - Informatica
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
38th Conference on Neural Information Processing Systems, NeurIPS 2024
Vancouver
9-15 December 2024
Advances in Neural Information Processing Systems
Neural information processing systems foundation
9798331314385
Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Neural and Evolutionary Computing; Bottleneck Models; Neuro-symbolic Models; Message Passing, Logic-based explanations;
  
     https://papers.nips.cc/paper_files/paper/2024
File in questo prodotto:
File Dimensione Formato  
NeurIPS - RCBM.pdf

accesso aperto

Tipologia: Published version
Licenza: Non specificata
Dimensione 611.93 kB
Formato Adobe PDF
611.93 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/152464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 1
social impact