In this paper we propose a practical human-in-the-loop approach for algorithmic fairness, utilizing the selective classification framework. We describe a classification model that abstains from making predictions in cases of unfairness or uncertainty. Any rejected predictions can be passed on to a human expert, to review the possible unfairness issues and make the decisions more just.

A Fair Selective Classifier to Put Humans in the Loop

Lenders D.;Pellungrini R.
;
Giannotti Fosca;
2024

Abstract

In this paper we propose a practical human-in-the-loop approach for algorithmic fairness, utilizing the selective classification framework. We describe a classification model that abstains from making predictions in cases of unfairness or uncertainty. Any rejected predictions can be passed on to a human expert, to review the possible unfairness issues and make the decisions more just.
2024
Settore INFO-01/A - Informatica
3rd European Workshop on Algorithmic Fairness, EWAF 2024
Mainz, Germany
1 luglio 2024 - 3 luglio 2024
European Workshop on Algorithmic Fairness 2024
CEUR-WS
Fair Classification; Human in the loop; Selective Classification
   Science and technology for the explanation of AI decision making
   XAI
   European Commission
   H2020
   834756

   It takes two to tango: a synergistic approach to human-machine decision making
   TANGO
   European Commission
   Grant Agreement n. 101120763

   PNRR Infrastrutture di Ricerca - SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics.
   SoBigData.it
   Ministero della pubblica istruzione, dell'università e della ricerca
   IR0000013

   FAIR - Future Artificial Intelligence Research" - Spoke 1 “Human-centered AI",
   FAIR
File in questo prodotto:
File Dimensione Formato  
paper_14.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/157449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact