The use of viscoelastic materials, such as polymers, constantly increases in the field of nanotechnology. These materials are softer than metallic and inorganic ones, and, because of that, they are easier to deform and wear off. The wear mechanisms occurring for viscoelastic materials are rather complex, and, generally, present more complications for a direct investigation with respect to metals or ceramics materials. With the advent of Scanning Probe Microscopy (SPM), well characterized forces can be applied to a surface with a nanometer-scale spatial resolution. In particular Atomic ForceMicroscopy (AFM), working at high contact forces, can significantly modify many surfaces. Polymers are soft enough to be modified by hard AFM tips, such as those of silicon, silicon nitride or diamond. For these reasons, the AFM is today the main tool employed to investigate wear occurrence on polymer surfaces. The wear of a polymer surface caused by an AFM tip in a regime of single asperity contact is an articulate process that depends on conditions such as, namely, the applied forces, the tip shape, size and the relative velocity. Since the influence of all these parameters is in close connection with the sample properties, one can expect a dependence of the wearing process on the mechanical properties of the sample surfaces. These properties can vary significantly from the bulk properties, if cross linking is made or, on contrary, residual solvents are present in the specimens. This chapter is divided in three sections following a general introduction. Specifically, the first section deals with wear induced by means of AFM tips to study the mechanical properties of films at the nanoscale; the second one regards the exploitation of wear for the creation of nanolithographic patterns; the last one is finally dedicated to an applicative field such as the characterization ofwear of polymers for biomedical applications at the meso- and nanoscales.

Nanowear of polymers

Pingue, Pasqualantonio
2015

Abstract

The use of viscoelastic materials, such as polymers, constantly increases in the field of nanotechnology. These materials are softer than metallic and inorganic ones, and, because of that, they are easier to deform and wear off. The wear mechanisms occurring for viscoelastic materials are rather complex, and, generally, present more complications for a direct investigation with respect to metals or ceramics materials. With the advent of Scanning Probe Microscopy (SPM), well characterized forces can be applied to a surface with a nanometer-scale spatial resolution. In particular Atomic ForceMicroscopy (AFM), working at high contact forces, can significantly modify many surfaces. Polymers are soft enough to be modified by hard AFM tips, such as those of silicon, silicon nitride or diamond. For these reasons, the AFM is today the main tool employed to investigate wear occurrence on polymer surfaces. The wear of a polymer surface caused by an AFM tip in a regime of single asperity contact is an articulate process that depends on conditions such as, namely, the applied forces, the tip shape, size and the relative velocity. Since the influence of all these parameters is in close connection with the sample properties, one can expect a dependence of the wearing process on the mechanical properties of the sample surfaces. These properties can vary significantly from the bulk properties, if cross linking is made or, on contrary, residual solvents are present in the specimens. This chapter is divided in three sections following a general introduction. Specifically, the first section deals with wear induced by means of AFM tips to study the mechanical properties of films at the nanoscale; the second one regards the exploitation of wear for the creation of nanolithographic patterns; the last one is finally dedicated to an applicative field such as the characterization ofwear of polymers for biomedical applications at the meso- and nanoscales.
2015
NanoScience and Technology
Springer Verlag
Materials Science (all); Condensed Matter Physics; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/74032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact