Synopsis: Understanding the molecular mechanisms regulating cardiac cell proliferation during the embryonic, fetal and adult life is of paramount importance in view of developing innovative strategies aimed at inducing myocardial regeneration after cardiac damage. The Notch pathway plays a key role in the regulation of cardiomyocyte proliferation during mammalian embryonic life. Moreover, it is essentially involved in the cardiac regeneration process after injury in Zebrafish. Therefore, we assessed the efficacy of Notch pathway activation to sustain cardiac regeneration in a model of myocardial infarction in mice. During early postnatal life, cardiomyocytes exit the cell cycle. We demonstrated that this event is paralleled by a decrease of Notch signaling and by the establishment of a repressive chromatin environment at Notch target genes, characterized by Polycomb Group protein 2-mediated silencing. The stimulation of the Notch pathway through Adeno-associated virus-mediated gene transfer of activated Notch1 or of the soluble form of the ligand Jagged1 prolonged the capacity of cardiomyocytes to replicate, which correlated with an increased rate of Notch target gene expression and the maintenance of an open chromatin conformation at Notch target gene promoters. However, the same vectors were ineffective in stimulating cardiac repair in a model of myocardial infarction in adult mice, despite efficient transgene expression. We identified the molecular cause of the lack of action of Notch signaling stimulation in adults in the increased DNA methylation at Notch target gene promoters, which correlated with permanent switch off of the Notch pathway. Our results confirm that the Notch pathway is an important regulator of neonata adults, due to the permanent epigenetic modifications at the DNA level at Notch responsive genes l.

Regulation of Notch signaling in the heart by epigenetic modifications / Felician, Giulia; relatore: Giacca, Mauro; Scuola Normale Superiore, 03-Feb-2015.

Regulation of Notch signaling in the heart by epigenetic modifications

Felician, Giulia
2015

Abstract

Synopsis: Understanding the molecular mechanisms regulating cardiac cell proliferation during the embryonic, fetal and adult life is of paramount importance in view of developing innovative strategies aimed at inducing myocardial regeneration after cardiac damage. The Notch pathway plays a key role in the regulation of cardiomyocyte proliferation during mammalian embryonic life. Moreover, it is essentially involved in the cardiac regeneration process after injury in Zebrafish. Therefore, we assessed the efficacy of Notch pathway activation to sustain cardiac regeneration in a model of myocardial infarction in mice. During early postnatal life, cardiomyocytes exit the cell cycle. We demonstrated that this event is paralleled by a decrease of Notch signaling and by the establishment of a repressive chromatin environment at Notch target genes, characterized by Polycomb Group protein 2-mediated silencing. The stimulation of the Notch pathway through Adeno-associated virus-mediated gene transfer of activated Notch1 or of the soluble form of the ligand Jagged1 prolonged the capacity of cardiomyocytes to replicate, which correlated with an increased rate of Notch target gene expression and the maintenance of an open chromatin conformation at Notch target gene promoters. However, the same vectors were ineffective in stimulating cardiac repair in a model of myocardial infarction in adult mice, despite efficient transgene expression. We identified the molecular cause of the lack of action of Notch signaling stimulation in adults in the increased DNA methylation at Notch target gene promoters, which correlated with permanent switch off of the Notch pathway. Our results confirm that the Notch pathway is an important regulator of neonata adults, due to the permanent epigenetic modifications at the DNA level at Notch responsive genes l.
3-feb-2015
BIO/11 BIOLOGIA MOLECOLARE
Scienze biologiche
Biology
human cardiac cell
molecular biology
myocardial regeneration
Notch pathway
Polycomb Group protein 2
Scuola Normale Superiore
Giacca, Mauro
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis-Felician-definitiva.pdf

accesso aperto

Descrizione: doctoral thesis full text
Tipologia: Tesi PhD
Licenza: Solo Lettura
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/85955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact