The muon gyromagnetic anomaly aµ has been measured with a precision δaµ/aµ = 540 ppb using magic-momentum muon decays recorded up to 2001 by the E821 BNL experiment. Two projects aim at significantly improving that experimental precision: the E989 Collaboration at Fermilab plans to collect 21 times the BNL statistics and to improve by a factor four the uncertainty, the E34 Collaboration is designing a new experiment at J-PARC with a novel approach based on the production, injection and storage of ultra-cold low-energy muons. E34 aims at matching the BNL precision in a first phase, and to provide a significantly higher precision measurement in a second phase.
Muon g − 2, current experimental status and future prospects
Lusiani A.
2018
Abstract
The muon gyromagnetic anomaly aµ has been measured with a precision δaµ/aµ = 540 ppb using magic-momentum muon decays recorded up to 2001 by the E821 BNL experiment. Two projects aim at significantly improving that experimental precision: the E989 Collaboration at Fermilab plans to collect 21 times the BNL statistics and to improve by a factor four the uncertainty, the E34 Collaboration is designing a new experiment at J-PARC with a novel approach based on the production, injection and storage of ultra-cold low-energy muons. E34 aims at matching the BNL precision in a first phase, and to provide a significantly higher precision measurement in a second phase.File | Dimensione | Formato | |
---|---|---|---|
Lusiani_ACTA_PHYSICA_VoR.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.