Quantum illumination is a technique for detecting the presence of a target in a noisy environment by means of a quantum probe. We prove that the two-mode squeezed vacuum state is the optimal probe for quantum illumination in the scenario of asymmetric discrimination, where the goal is to minimize the decay rate of the probability of a false positive with a given probability of a false negative. Quantum illumination with two-mode squeezed vacuum states offers a 6 dB advantage in the error probability exponent compared to illumination with coherent states. Whether more advanced quantum illumination strategies may offer further improvements had been a longstanding open question. Our fundamental result proves that nothing can be gained by considering more exotic quantum states, such as, e.g., multimode entangled states. Our proof is based on a fundamental entropic inequality for the noisy quantum Gaussian attenuators. We also prove that without access to a quantum memory, the optimal probes for quantum illumination are the coherent states.

Quantum illumination is a technique for detecting the presence of a target in a noisy environment by means of a quantum probe. We prove that the two-mode squeezed vacuum state is the optimal probe for quantum illumination in the scenario of asymmetric discrimination, where the goal is to minimize the decay rate of the probability of a false positive with a given probability of a false negative. Quantum illumination with two-mode squeezed vacuum states offers a 6 dB advantage in the error probability exponent compared to illumination with coherent states. Whether more advanced quantum illumination strategiesmay offer further improvements had been a longstanding open question. Our fundamental result proves that nothing can be gained by considering more exotic quantum states, such as, e.g., multimode entangled states. Our proof is based on a fundamental entropic inequality for the noisy quantum Gaussian attenuators. We also prove that without access to a quantum memory, the optimal probes for quantum illumination are the coherent states.

Minimum error probability of quantum illumination

De Palma, G
;
2018

Abstract

Quantum illumination is a technique for detecting the presence of a target in a noisy environment by means of a quantum probe. We prove that the two-mode squeezed vacuum state is the optimal probe for quantum illumination in the scenario of asymmetric discrimination, where the goal is to minimize the decay rate of the probability of a false positive with a given probability of a false negative. Quantum illumination with two-mode squeezed vacuum states offers a 6 dB advantage in the error probability exponent compared to illumination with coherent states. Whether more advanced quantum illumination strategiesmay offer further improvements had been a longstanding open question. Our fundamental result proves that nothing can be gained by considering more exotic quantum states, such as, e.g., multimode entangled states. Our proof is based on a fundamental entropic inequality for the noisy quantum Gaussian attenuators. We also prove that without access to a quantum memory, the optimal probes for quantum illumination are the coherent states.
Settore MAT/07 - Fisica Matematica
File in questo prodotto:
File Dimensione Formato  
Minimum error probability of quantum illumination.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Accesso gratuito (sola lettura)
Dimensione 249.68 kB
Formato Adobe PDF
249.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
11384_100366_preprint.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative commons
Dimensione 404.67 kB
Formato Adobe PDF
404.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/100366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact