Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires. [Figure not available: see fulltext.].
Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires
Beltram F.;Rossella F.;
2019
Abstract
Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires. [Figure not available: see fulltext.].File | Dimensione | Formato | |
---|---|---|---|
Wu2019_Article_AnisotropiesOfTheG-factorTenso.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Richiedi una copia |
1910.08725.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
702.37 kB
Formato
Adobe PDF
|
702.37 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.