Let q be an odd prime power and n an integer. Let ℓ∈Fq(n) be a q-linearized t-scattered polynomial of linearized degree r. Let d=max⁡{t,r} be an odd prime number. In this paper we show that under these assumptions it follows that ℓ=x. Our technique involves a Galois theoretical characterization of t-scattered polynomials combined with the classification of transitive subgroups of the general linear group over the finite field Fq.

Exceptional scatteredness in prime degree

Ferraguti, Andrea;
2020

Abstract

Let q be an odd prime power and n an integer. Let ℓ∈Fq(n) be a q-linearized t-scattered polynomial of linearized degree r. Let d=max⁡{t,r} be an odd prime number. In this paper we show that under these assumptions it follows that ℓ=x. Our technique involves a Galois theoretical characterization of t-scattered polynomials combined with the classification of transitive subgroups of the general linear group over the finite field Fq.
2020
Settore MAT/03 - Geometria
Chebotarev density theorem; Exceptionality; Finite fields; Galois theory; Rank metric codes; Scattered linear sets; Scattered polynomials
File in questo prodotto:
File Dimensione Formato  
2002.00500.pdf

Open Access dal 02/01/2023

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 169.14 kB
Formato Adobe PDF
169.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/101130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact