Let K be a quadratic number field and let E be a ℚ-curve without CM completely defined over K and not isogenous to an elliptic curve over ℚ. In this setting, it is known that there exists a weight 2 newform of suitable level and character, such that L(E, s) = L(f, s)L(σf, s), where σf is the unique Galois conjugate of f. In this paper, we first describe an algorithm to compute the level, the character and the Fourier coefficients of f. Next, we show that given an invariant differential ωE on E, there exists a positive integer Q = Q(E, ωE) such that L(E, 1)/P(E/K) · Q is an integer, where P(E/K) is the period of E. Assuming a generalization of Manin's conjecture, the integer Q is made effective. As an application, we verify the weak BSD conjecture for some curves of rank two, we compute the L-ratio of a curve of rank zero and we produce relevant examples of newforms of large level.

Let K be a quadratic number field and let E be a ℚ-curve without CM completely defined over K and not isogenous to an elliptic curve over ℚ. In this setting, it is known that there exists a weight 2 newform of suitable level and character, such that L(E, s) = L(f, s)L(σf, s), where σf is the unique Galois conjugate of f. In this paper, we first describe an algorithm to compute the level, the character and the Fourier coefficients of f. Next, we show that given an invariant differential ωE on E, there exists a positive integer Q = Q(E, ωE) such that L(E, 1)/P(E/K) · Q is an integer, where P(E/K) is the period of E. Assuming a generalization of Manin's conjecture, the integer Q is made effective. As an application, we verify the weak BSD conjecture for some curves of rank two, we compute the L-ratio of a curve of rank zero and we produce relevant examples of newforms of large level.

### On L-functions of quadratic ℚ-curves

#### Abstract

Let K be a quadratic number field and let E be a ℚ-curve without CM completely defined over K and not isogenous to an elliptic curve over ℚ. In this setting, it is known that there exists a weight 2 newform of suitable level and character, such that L(E, s) = L(f, s)L(σf, s), where σf is the unique Galois conjugate of f. In this paper, we first describe an algorithm to compute the level, the character and the Fourier coefficients of f. Next, we show that given an invariant differential ωE on E, there exists a positive integer Q = Q(E, ωE) such that L(E, 1)/P(E/K) · Q is an integer, where P(E/K) is the period of E. Assuming a generalization of Manin's conjecture, the integer Q is made effective. As an application, we verify the weak BSD conjecture for some curves of rank two, we compute the L-ratio of a curve of rank zero and we produce relevant examples of newforms of large level.
##### Scheda breve Scheda completa Scheda completa (DC)
Settore MAT/03 - Geometria
BSD; L-functions; Newforms; Number fields; ℚ-curves
File in questo prodotto:
File
mcom3217_AM.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative commons
Dimensione 716.32 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11384/101138`
• ND
• 1
• 1