Let K be a number field with ring of integers O. After introducing a suitable notion of density for subsets of O, generalising the natural density for subsets of ℤ, we show that the density of the set of coprime m-tuples of algebraic integers is 1/ζK(m), where ζK is the Dedekind zeta function of K. This generalises a result found independently by Mertens ['Ueber einige asymptotische Gesetze der Zahlentheorie', J. reine angew. Math. 77 (1874), 289-338] and Cesàro ['Question 75 (solution)', Mathesis 3 (1883), 224-225] concerning the density of coprime pairs of integers in ℤ.
ON THE MERTENS-CESÀRO THEOREM FOR NUMBER FIELDS
Ferraguti, Andrea;
2016
Abstract
Let K be a number field with ring of integers O. After introducing a suitable notion of density for subsets of O, generalising the natural density for subsets of ℤ, we show that the density of the set of coprime m-tuples of algebraic integers is 1/ζK(m), where ζK is the Dedekind zeta function of K. This generalises a result found independently by Mertens ['Ueber einige asymptotische Gesetze der Zahlentheorie', J. reine angew. Math. 77 (1874), 289-338] and Cesàro ['Question 75 (solution)', Mathesis 3 (1883), 224-225] concerning the density of coprime pairs of integers in ℤ.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
on-the-mertens-cesaro-theorem-for-number-fields.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
171.76 kB
Formato
Adobe PDF
|
171.76 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.