Let K be a number field with ring of integers O. After introducing a suitable notion of density for subsets of O, generalising the natural density for subsets of ℤ, we show that the density of the set of coprime m-tuples of algebraic integers is 1/ζK(m), where ζK is the Dedekind zeta function of K. This generalises a result found independently by Mertens ['Ueber einige asymptotische Gesetze der Zahlentheorie', J. reine angew. Math. 77 (1874), 289-338] and Cesàro ['Question 75 (solution)', Mathesis 3 (1883), 224-225] concerning the density of coprime pairs of integers in ℤ.

ON THE MERTENS-CESÀRO THEOREM FOR NUMBER FIELDS

Ferraguti, Andrea;
2016

Abstract

Let K be a number field with ring of integers O. After introducing a suitable notion of density for subsets of O, generalising the natural density for subsets of ℤ, we show that the density of the set of coprime m-tuples of algebraic integers is 1/ζK(m), where ζK is the Dedekind zeta function of K. This generalises a result found independently by Mertens ['Ueber einige asymptotische Gesetze der Zahlentheorie', J. reine angew. Math. 77 (1874), 289-338] and Cesàro ['Question 75 (solution)', Mathesis 3 (1883), 224-225] concerning the density of coprime pairs of integers in ℤ.
2016
Settore MAT/03 - Geometria
algebraic integers; Mertens-Cesàro theorem; natural density; number fields; zeta function
File in questo prodotto:
File Dimensione Formato  
on-the-mertens-cesaro-theorem-for-number-fields.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 171.76 kB
Formato Adobe PDF
171.76 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/101140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact