In this paper, we prove several results on finitely generated dynamical Galois groups attached to quadratic polynomials. First, we show that, over global fields, quadratic post-critically finite (PCF) polynomials are precisely those having an arboreal representation whose image is topologically finitely generated. To obtain this result, we also prove the quadratic case of Hindes’ conjecture on dynamical non-isotriviality. Next, we give two applications of this result. On the one hand, we prove that quadratic polynomials over global fields with abelian dynamical Galois group are necessarily PCF, and we combine our results with local class field theory to classify quadratic pairs over Q with abelian dynamical Galois group, improving on recent results of Andrews and Petsche. On the other hand, we show that several infinite families of subgroups of the automorphism group of the infinite binary tree cannot appear as images of arboreal representations of quadratic polynomials over number fields, yielding unconditional evidence toward Jones’ finite index conjecture.
Constraining Images of Quadratic Arboreal Representations
Ferraguti, Andrea;
2020
Abstract
In this paper, we prove several results on finitely generated dynamical Galois groups attached to quadratic polynomials. First, we show that, over global fields, quadratic post-critically finite (PCF) polynomials are precisely those having an arboreal representation whose image is topologically finitely generated. To obtain this result, we also prove the quadratic case of Hindes’ conjecture on dynamical non-isotriviality. Next, we give two applications of this result. On the one hand, we prove that quadratic polynomials over global fields with abelian dynamical Galois group are necessarily PCF, and we combine our results with local class field theory to classify quadratic pairs over Q with abelian dynamical Galois group, improving on recent results of Andrews and Petsche. On the other hand, we show that several infinite families of subgroups of the automorphism group of the infinite binary tree cannot appear as images of arboreal representations of quadratic polynomials over number fields, yielding unconditional evidence toward Jones’ finite index conjecture.File | Dimensione | Formato | |
---|---|---|---|
arXiv_2004.02847.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
320.44 kB
Formato
Adobe PDF
|
320.44 kB | Adobe PDF | |
rnaa243.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
283.37 kB
Formato
Adobe PDF
|
283.37 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.