We consider the minimal average action (Mather's β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1-holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather's β function.

On the regularity of Mather's β-function for standard-like twist maps

Carminati C.;Marmi S.;Sauzin D.;Sorrentino A.
2021

Abstract

We consider the minimal average action (Mather's β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1-holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather's β function.
2021
Settore MAT/07 - Fisica Matematica
Aubry-Mather theory; Mather's beta function; Standard map; Twist maps
File in questo prodotto:
File Dimensione Formato  
carminati-marmi-sauzin-sorrentino-advances-math-2021.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 634.58 kB
Formato Adobe PDF
634.58 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/101177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact