The presence of islet cells double positive for insulin and glucagon (Ins+/Glu+) has been described in the pancreas from both type 2 (T2D) and type 1 (T1D) diabetic subjects. We studied the role of pro-inflammatory cytokines on the occurrence, trajectory, and characteristics of Ins+/Glu+ cells in human pancreatic islets. Pancreas samples, isolated islets, and dispersed islet cells from 3 T1D and 11 non-diabetic (ND) multi-organ donors were studied by immunofluorescence, confocal microscopy, and/or electron microscopy. ND islet cells were exposed to interleukin-1β and inter-feron-γ for up to 120 h. In T1D islets, we confirmed an increased prevalence of Ins+/Glu+ cells. Cyto-kine-exposed islets showed a progressive increase of Ins+/Glu+ cells that represented around 50% of endocrine cells after 120h. Concomitantly, cells expressing insulin granules only decreased significantly over time, whereas those containing only glucagon granules remained stable. Interestingly, Ins+/Glu+ cells were less prone to cytokine-induced apoptosis than cells containing only insulin. Cy-tokine-exposed islets showed down-regulation of β-cell identity genes. In conclusion, pro-inflam-matory cytokines induce Ins+/Glu+ cells in human islets, possibly due to a switch from a β-to a β-/α-cell phenotype. These Ins+/Glu+ cells appear to be resistant to cytokine-induced apoptosis.

Pro-inflammatory cytokines induce insulin and glucagon double positive human islet cells that are resistant to apoptosis

Ferri G.;Cardarelli F.;
2021

Abstract

The presence of islet cells double positive for insulin and glucagon (Ins+/Glu+) has been described in the pancreas from both type 2 (T2D) and type 1 (T1D) diabetic subjects. We studied the role of pro-inflammatory cytokines on the occurrence, trajectory, and characteristics of Ins+/Glu+ cells in human pancreatic islets. Pancreas samples, isolated islets, and dispersed islet cells from 3 T1D and 11 non-diabetic (ND) multi-organ donors were studied by immunofluorescence, confocal microscopy, and/or electron microscopy. ND islet cells were exposed to interleukin-1β and inter-feron-γ for up to 120 h. In T1D islets, we confirmed an increased prevalence of Ins+/Glu+ cells. Cyto-kine-exposed islets showed a progressive increase of Ins+/Glu+ cells that represented around 50% of endocrine cells after 120h. Concomitantly, cells expressing insulin granules only decreased significantly over time, whereas those containing only glucagon granules remained stable. Interestingly, Ins+/Glu+ cells were less prone to cytokine-induced apoptosis than cells containing only insulin. Cy-tokine-exposed islets showed down-regulation of β-cell identity genes. In conclusion, pro-inflam-matory cytokines induce Ins+/Glu+ cells in human islets, possibly due to a switch from a β-to a β-/α-cell phenotype. These Ins+/Glu+ cells appear to be resistant to cytokine-induced apoptosis.
2021
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Apoptosis; Cytokines; Diabetes; Glucagon; Human islets; Insulin; α-cells; β-cells
File in questo prodotto:
File Dimensione Formato  
biomolecules-11-00320-v2.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/101309
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact