Despite the fact that the majority of current models assume that interstellar complex organic molecules (iCOMs) are formed on dust-grain surfaces, there is some evidence that neutral gas-phase reactions play an important role. In this paper, we investigate the reaction occurring in the gas phase between methylamine (CH3NH2) and the cyano (CN) radical, for which only fragmentary and/or inaccurate results have been reported to date. This case study allows us to point out the pivotal importance of employing quantum-chemical calculations at the state of the art. Since the two major products of the CH3NH2 + CN reaction, namely the CH3NH and CH2NH2 radicals, have not been spectroscopically characterized yet, some effort has been made for filling this gap.

Despite the fact that the majority of current models assume that interstellar complex organic molecules (iCOMs) are formed on dust-grain surfaces, there is some evidence that neutral gas-phase reactions play an important role. In this paper, we investigate the reaction occurring in the gas phase between methylamine (CH3NH2) and the cyano (CN) radical, for which only fragmentary and/or inaccurate results have been reported to date. This case study allows us to point out the pivotal importance of employing quantum-chemical calculations at the state of the art. Since the two major products of the CH3NH2 + CN reaction, namely the CH3NH and CH2NH2 radicals, have not been spectroscopically characterized yet, some effort has been made for filling this gap.

A twist on the reaction of the CN radical with methylamine in the interstellar medium: New hints from a state-of-the-art quantum-chemical study

Puzzarini C.
;
Salta Z.;Tasinato N.;Lupi J.;Cavallotti C.;Barone V.
2020

Abstract

Despite the fact that the majority of current models assume that interstellar complex organic molecules (iCOMs) are formed on dust-grain surfaces, there is some evidence that neutral gas-phase reactions play an important role. In this paper, we investigate the reaction occurring in the gas phase between methylamine (CH3NH2) and the cyano (CN) radical, for which only fragmentary and/or inaccurate results have been reported to date. This case study allows us to point out the pivotal importance of employing quantum-chemical calculations at the state of the art. Since the two major products of the CH3NH2 + CN reaction, namely the CH3NH and CH2NH2 radicals, have not been spectroscopically characterized yet, some effort has been made for filling this gap.
Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali
Astrochemistry; ISM: molecules; Molecular processes
File in questo prodotto:
File Dimensione Formato  
MNRAS_submitted.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/101533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact