The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωam to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116 592 040(54)×10-11 (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis, and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the 11 separate determinations of ωam, and the systematic uncertainties on the result.

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωa to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116592040(54)×10−11 (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of omega_a, and the systematic uncertainties on the result.

Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment

Lusiani, A.
Writing – Review & Editing
;
2021

Abstract

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωa to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116592040(54)×10−11 (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of omega_a, and the systematic uncertainties on the result.
Settore FIS/01 - Fisica Sperimentale
muon; anomalous magnetic moment
File in questo prodotto:
File Dimensione Formato  
PhysRevD.103.072002.pdf

accesso aperto

Descrizione: articolo pubblicato
Tipologia: Published version
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/102329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 35
social impact