We show that, when a finite anisotropic Heisenberg spin-1/2 chain in the gapped regime is driven far from equilibrium, oppositely polarized ferromagnetic domains build up at the edges of the chain, thus suppressing quantum spin transport. As a consequence, a negative differential conductivity regime arises, where increasing the driving decreases the current. The above results are explained in terms of magnon localization and are shown to be structurally stable against breaking of integrability.
Negative differential conductivity in far-from-equilibrium quantum spin chains
ROSSINI, DAVIDE
2009
Abstract
We show that, when a finite anisotropic Heisenberg spin-1/2 chain in the gapped regime is driven far from equilibrium, oppositely polarized ferromagnetic domains build up at the edges of the chain, thus suppressing quantum spin transport. As a consequence, a negative differential conductivity regime arises, where increasing the driving decreases the current. The above results are explained in terms of magnon localization and are shown to be structurally stable against breaking of integrability.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.