In this work we detail the application of a fast convolution algorithm to compute high dimensional integrals in the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary times, and we apply it successfully to quadratic and piecewise linear diffusion processes. The ability to reproduce statistical features of financial return time series, such as thickness of the tails and scaling properties, makes these processes appealing for option pricing. Since exact analytical results are lacking, we exploit the fast convolution as a numerical method alternative to Monte Carlo simulation both in the objective and risk neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in speed and efficiency terms.

Multiplicative noise, fast convolution and pricing

BORMETTI, GIACOMO;
2014

Abstract

In this work we detail the application of a fast convolution algorithm to compute high dimensional integrals in the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary times, and we apply it successfully to quadratic and piecewise linear diffusion processes. The ability to reproduce statistical features of financial return time series, such as thickness of the tails and scaling properties, makes these processes appealing for option pricing. Since exact analytical results are lacking, we exploit the fast convolution as a numerical method alternative to Monte Carlo simulation both in the objective and risk neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in speed and efficiency terms.
2014
Computational finance; Stochastic processes; Non-Gaussian option pricing; Numerical methods for option pricing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/10624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact