We study the charge conductivity in one-dimensional prototype models of interacting particles, such as the Hubbard and the t-V spinless fermion models, when coupled to some external baths injecting and extracting particles at the boundaries. We show that, if these systems are driven far from equilibrium, a negative differential conductivity regime can arise. The above electronic models can be mapped into Heisenberg-like spin ladders coupled to two magnetic baths, so that charge transport mechanisms are explained in terms of quantum spin transport. The negative differential conductivity is due to oppositely polarized ferromagnetic domains that arise at the edges of the chain and therefore inhibit spin transport: we propose a qualitative understanding of the phenomenon by analyzing the localization of one-magnon excitations created at the borders of a ferromagnetic region. We also show that negative differential conductivity is stable against breaking of integrability. Numerical simulations of nonequilibrium time evolution have been performed by employing a Monte Carlo wave function approach and a matrix product operator formalism.

Charge and spin transport in strongly correlated 1D quantum systems driven far from equilibrium

ROSSINI, DAVIDE;
2009

Abstract

We study the charge conductivity in one-dimensional prototype models of interacting particles, such as the Hubbard and the t-V spinless fermion models, when coupled to some external baths injecting and extracting particles at the boundaries. We show that, if these systems are driven far from equilibrium, a negative differential conductivity regime can arise. The above electronic models can be mapped into Heisenberg-like spin ladders coupled to two magnetic baths, so that charge transport mechanisms are explained in terms of quantum spin transport. The negative differential conductivity is due to oppositely polarized ferromagnetic domains that arise at the edges of the chain and therefore inhibit spin transport: we propose a qualitative understanding of the phenomenon by analyzing the localization of one-magnon excitations created at the borders of a ferromagnetic region. We also show that negative differential conductivity is stable against breaking of integrability. Numerical simulations of nonequilibrium time evolution have been performed by employing a Monte Carlo wave function approach and a matrix product operator formalism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/10667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 101
social impact