In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact surfaces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem.

Min-max solutions for super sinh-Gordon equations on compact surfaces

Jevnikar A.;Malchiodi A.;Wu R.
2021

Abstract

In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact surfaces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem.
2021
Settore MAT/05 - Analisi Matematica
Existence results; Min-max methods; Multiplicity results; Super sinh-Gordon equations
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
JMW-JDE-21.pdf

Accesso chiuso

Descrizione: pdf file
Tipologia: Published version
Licenza: Non pubblico
Dimensione 422.7 kB
Formato Adobe PDF
422.7 kB Adobe PDF   Richiedi una copia
11384_108918_pr.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 497.39 kB
Formato Adobe PDF
497.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/108918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact