In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact surfaces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem.
Min-max solutions for super sinh-Gordon equations on compact surfaces
Jevnikar A.;Malchiodi A.;Wu R.
2021
Abstract
In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact surfaces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JMW-JDE-21.pdf
Accesso chiuso
Descrizione: pdf file
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
422.7 kB
Formato
Adobe PDF
|
422.7 kB | Adobe PDF | Richiedi una copia |
11384_108918_pr.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
497.39 kB
Formato
Adobe PDF
|
497.39 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.