This paper is dedicated to extending and adapting to modal logic the approach of fractional semantics to classical logic. This is a multi-valued semantics governed by pure proof-theoretic considerations, whose truth-values are the rational numbers in the closed interval [0,1] . Focusing on the modal logic K, the proposed methodology relies on three key components: bilateral sequent calculus, invertibility of the logical rules, and stability (proof-invariance). We show that our semantic analysis of K affords an informational refinement with respect to the standard Kripkean semantics (a new proof of Dugundji’s theorem is a case in point) and it raises the prospect of a proof-theoretic semantics for modal logic.
Fractional-valued modal logic
PIAZZA MARIO
;TESI MATTEO
2021
Abstract
This paper is dedicated to extending and adapting to modal logic the approach of fractional semantics to classical logic. This is a multi-valued semantics governed by pure proof-theoretic considerations, whose truth-values are the rational numbers in the closed interval [0,1] . Focusing on the modal logic K, the proposed methodology relies on three key components: bilateral sequent calculus, invertibility of the logical rules, and stability (proof-invariance). We show that our semantic analysis of K affords an informational refinement with respect to the standard Kripkean semantics (a new proof of Dugundji’s theorem is a case in point) and it raises the prospect of a proof-theoretic semantics for modal logic.File | Dimensione | Formato | |
---|---|---|---|
fractional-valued-modal-logic.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
628.47 kB
Formato
Adobe PDF
|
628.47 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.