We propose a newapproximation for the relaxed energy E of the Dirichlet energy and prove that the minimizers of the approximating functionals converge to a minimizer u of the relaxed energy, and that u is partially regular without using the concept of Cartesian currents.We also use the same approximation method to study the variational problem of the relaxed energy for the Faddeev model and prove the existence of minimizers for the relaxed energy ˜E_F in the class of maps with Hopf degree ±1.

A New Approximation of Relaxed Energies for Harmonic Maps and the Faddeev Model

GIAQUINTA, Mariano;
2011

Abstract

We propose a newapproximation for the relaxed energy E of the Dirichlet energy and prove that the minimizers of the approximating functionals converge to a minimizer u of the relaxed energy, and that u is partially regular without using the concept of Cartesian currents.We also use the same approximation method to study the variational problem of the relaxed energy for the Faddeev model and prove the existence of minimizers for the relaxed energy ˜E_F in the class of maps with Hopf degree ±1.
File in questo prodotto:
File Dimensione Formato  
14.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 290.69 kB
Formato Adobe PDF
290.69 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact