In this paper we prove that any complete n-dimensional conformal gradient soliton with nonnegative Ricci tensor is either isometric to a direct product R x N^(n−1), or globally conformally equivalent to the Euclidean space R^n or to the round sphere S^n. In particular, we show that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor is rotationally symmetric, whenever the potential function is nonconstant.

In this paper we prove that any complete conformal gradient soliton with nonnegative Ricci tensor is either isometric to a direct product × N n-1, or globally conformally equivalent to the Euclidean space Rn or to the round sphere Rn. In particular, we show that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor is rotationally symmetric, whenever the potential function is nonconstant.

On the global structure of conformal gradient solitons with nonnegative Ricci tensor

MANTEGAZZA, Carlo Maria;MAZZIERI, LORENZO
2012

Abstract

In this paper we prove that any complete conformal gradient soliton with nonnegative Ricci tensor is either isometric to a direct product × N n-1, or globally conformally equivalent to the Euclidean space Rn or to the round sphere Rn. In particular, we show that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor is rotationally symmetric, whenever the potential function is nonconstant.
File in questo prodotto:
File Dimensione Formato  
On the global structure of conformal gradient solitons with nonnegative Ricci tensor.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 238.61 kB
Formato Adobe PDF
238.61 kB Adobe PDF   Richiedi una copia
CCM2012.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 208.38 kB
Formato Adobe PDF
208.38 kB Adobe PDF   Richiedi una copia
confsol.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Solo Lettura
Dimensione 300.63 kB
Formato Adobe PDF
300.63 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/11189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 41
social impact