We study strictly positive solutions to the critical Laplace equation −∆u = n(n − 2)u n+2 n−2 , decaying at most like d(o, x) −(n−2)/2 , on complete noncompact manifolds (M, g) with nonnegative Ricci curvature, of dimension n ≥ 3. We prove that, under an additional mild assumption on the volume growth, such a solution does not exist, unless (M, g) is isometric to R n and u is a Talenti function. The method employs an elementary analysis of a suitable function defined along the level sets of u.

A note on the critical Laplace Equation and Ricci curvature

Fogagnolo, Mattia
;
Malchiodi, Andrea
2022-01-01

Abstract

We study strictly positive solutions to the critical Laplace equation −∆u = n(n − 2)u n+2 n−2 , decaying at most like d(o, x) −(n−2)/2 , on complete noncompact manifolds (M, g) with nonnegative Ricci curvature, of dimension n ≥ 3. We prove that, under an additional mild assumption on the volume growth, such a solution does not exist, unless (M, g) is isometric to R n and u is a Talenti function. The method employs an elementary analysis of a suitable function defined along the level sets of u.
Settore MAT/05 - Analisi Matematica
critical equations; classification results; manifolds with nonnegative Ricci curvature; level sets
Fondi Ricerca SNS
Geometric problems with loss of compactness
File in questo prodotto:
File Dimensione Formato  
FMM.pdf

accesso aperto

Descrizione: pdf file
Tipologia: Submitted version (pre-print)
Licenza: Creative commons
Dimensione 364.76 kB
Formato Adobe PDF
364.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/112586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact