The first step to shed light on the abiotic synthesis of biochemical building blocks, and their further evolution toward biological systems, is the detection of the relevant species in astronomical environments, including earthlike planets. To this end, the species of interest need to be accurately characterized from structural, energetic, and spectroscopic viewpoints. This task is particularly challenging when dealing with flexible systems, whose spectroscopic signature is ruled by the interplay of small- and large-amplitude motions (SAMs and LAMs, respectively) and is further tuned by the conformational equilibrium. In such instances, quantum chemical (QC) calculations represent an invaluable tool for assisting the interpretation of laboratory measurements or even observations. In the present work, the role of QC results is illustrated with reference to glycolic acid (CH2OHCOOH), a molecule involved in photosynthesis and plant respiration and a precursor of oxalate in humans, which has been detected in the Murchison meteorite but not yet in the interstellar medium or in planetary atmospheres. In particular, the equilibrium structure of the lowest-energy conformer is derived by employing the so-called semiexperimental approach. Then, accurate yet cost-effective QC calculations relying on composite post-Hartree–Fock schemes and hybrid coupled-cluster/density functional theory approaches are used to predict the structural and ro-vibrational spectroscopic properties of the different conformers within the framework of the second-order vibrational perturbation theory. A purposely tailored discrete variable representation anharmonic approach is used to treat the LAMs related to internal rotations. The computed spectroscopic data, particularly those in the infrared region, complement the available experimental investigations, thus enhancing the possibility of an astronomical detection of this molecule.

Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection

Giorgia Ceselin;Zoi Salta;Julien Bloino;Nicola Tasinato
;
Vincenzo Barone
2022

Abstract

The first step to shed light on the abiotic synthesis of biochemical building blocks, and their further evolution toward biological systems, is the detection of the relevant species in astronomical environments, including earthlike planets. To this end, the species of interest need to be accurately characterized from structural, energetic, and spectroscopic viewpoints. This task is particularly challenging when dealing with flexible systems, whose spectroscopic signature is ruled by the interplay of small- and large-amplitude motions (SAMs and LAMs, respectively) and is further tuned by the conformational equilibrium. In such instances, quantum chemical (QC) calculations represent an invaluable tool for assisting the interpretation of laboratory measurements or even observations. In the present work, the role of QC results is illustrated with reference to glycolic acid (CH2OHCOOH), a molecule involved in photosynthesis and plant respiration and a precursor of oxalate in humans, which has been detected in the Murchison meteorite but not yet in the interstellar medium or in planetary atmospheres. In particular, the equilibrium structure of the lowest-energy conformer is derived by employing the so-called semiexperimental approach. Then, accurate yet cost-effective QC calculations relying on composite post-Hartree–Fock schemes and hybrid coupled-cluster/density functional theory approaches are used to predict the structural and ro-vibrational spectroscopic properties of the different conformers within the framework of the second-order vibrational perturbation theory. A purposely tailored discrete variable representation anharmonic approach is used to treat the LAMs related to internal rotations. The computed spectroscopic data, particularly those in the infrared region, complement the available experimental investigations, thus enhancing the possibility of an astronomical detection of this molecule.
2022
Settore CHIM/02 - Chimica Fisica
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
J_Phys_Chem_A_126_2373_2022_-_Ceselin_glycolic_acid.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/112646
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact