We give a sufficient criterion that guarantees that a many-body quantum system can be controlled by properly manipulating the (local) Hamiltonian of one of its subsystems. The method can be applied to a wide range of systems: it does not depend on the details of the couplings but only on their associated topology. As a special case, we prove that Heisenberg and Affleck-Kennedy-Lieb-Tasaki chains can be controlled by operating on one of the spins at their ends. In principle, arbitrary quantum algorithms can be performed on such chains by acting on a single qubit.
Local controllability of quantum networks
GIOVANNETTI, VITTORIO
2009
Abstract
We give a sufficient criterion that guarantees that a many-body quantum system can be controlled by properly manipulating the (local) Hamiltonian of one of its subsystems. The method can be applied to a wide range of systems: it does not depend on the details of the couplings but only on their associated topology. As a special case, we prove that Heisenberg and Affleck-Kennedy-Lieb-Tasaki chains can be controlled by operating on one of the spins at their ends. In principle, arbitrary quantum algorithms can be performed on such chains by acting on a single qubit.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.