Glucagon-like peptide-1 receptor (GLP-1R) agonists are being used for the treatment of type 2 diabetes (T2D) and may have beneficial effects on the pancreatic β-cells. Here, we evaluated the effects of GLP-1R agonism on insulin secretory granule (ISG) dynamics in primary β-cells isolated from human islets exposed to palmitate-induced lipotoxic stress. Islets cells were exposed for 48 h to 0.5 mM palmitate (hereafter, ‘Palm’) with or without the addition of a GLP-1 agonist, namely 10 nM exendin-4 (hereafter, ‘Ex-4′). Dissociated cells were first transfected with syncollin-EGFP in order to fluorescently mark the ISGs. Then, by applying a recently established spatiotemporal correlation spectroscopy technique, the average structural (i.e., size) and dynamic (i.e., the local diffusivity and mode of motion) properties of ISGs are extracted from a calculated imaging-derived Mean Square Displacement (iMSD) trace. Besides defining the structural/dynamic fingerprint of ISGs in human cells for the first time, iMSD analysis allowed to probe fingerprint variations under selected conditions: namely, it was shown that Palm affects ISGs dynamics in response to acute glucose stimulation by abolishing the ISGs mobilization typically imparted by glucose and, concomitantly, by reducing the extent of ISGs active/directed intracellular movement. By contrast, co-treatment with Ex-4 normalizes ISG dynamics, i.e., re-establish ISG mobilization and ability to per-form active transport in response to glucose stimulation. These observations were correlated with standard glucose-stimulated insulin secretion (GSIS), which resulted in being reduced in cells exposed to Palm but preserved in cells concomitantly exposed to 10 nM Ex-4. Our data support the idea that GLP-1R agonism may exert its beneficial effect on human β-cells under metabolic stress by maintaining ISGs’ proper intracellular dynamics.

Spatiotemporal correlation spectroscopy reveals a protective effect of peptide-based glp-1 receptor agonism against lipotoxicity on insulin granule dynamics in primary human β-cells

Ferri G.;Pesce L.;Cardarelli F.
2021

Abstract

Glucagon-like peptide-1 receptor (GLP-1R) agonists are being used for the treatment of type 2 diabetes (T2D) and may have beneficial effects on the pancreatic β-cells. Here, we evaluated the effects of GLP-1R agonism on insulin secretory granule (ISG) dynamics in primary β-cells isolated from human islets exposed to palmitate-induced lipotoxic stress. Islets cells were exposed for 48 h to 0.5 mM palmitate (hereafter, ‘Palm’) with or without the addition of a GLP-1 agonist, namely 10 nM exendin-4 (hereafter, ‘Ex-4′). Dissociated cells were first transfected with syncollin-EGFP in order to fluorescently mark the ISGs. Then, by applying a recently established spatiotemporal correlation spectroscopy technique, the average structural (i.e., size) and dynamic (i.e., the local diffusivity and mode of motion) properties of ISGs are extracted from a calculated imaging-derived Mean Square Displacement (iMSD) trace. Besides defining the structural/dynamic fingerprint of ISGs in human cells for the first time, iMSD analysis allowed to probe fingerprint variations under selected conditions: namely, it was shown that Palm affects ISGs dynamics in response to acute glucose stimulation by abolishing the ISGs mobilization typically imparted by glucose and, concomitantly, by reducing the extent of ISGs active/directed intracellular movement. By contrast, co-treatment with Ex-4 normalizes ISG dynamics, i.e., re-establish ISG mobilization and ability to per-form active transport in response to glucose stimulation. These observations were correlated with standard glucose-stimulated insulin secretion (GSIS), which resulted in being reduced in cells exposed to Palm but preserved in cells concomitantly exposed to 10 nM Ex-4. Our data support the idea that GLP-1R agonism may exert its beneficial effect on human β-cells under metabolic stress by maintaining ISGs’ proper intracellular dynamics.
2021
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
fluorescence; GLP-1 receptor agonism; IMSD; insulin secretory granule dynamics; pancreatic islets; syncollin; β-cells
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
pharmaceutics-13-01403.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/123344
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact